Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = La-Ca-Mn-O

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

12 pages, 4964 KiB  
Article
Cationic Mismatch Effect Induced by Double Substitution on the Structural and Magnetic Properties of La0.5Ca0.5MnO3
by Wadie Abdelhedi, Akram Krichene, Wahiba Boujelben and Nassira Chniba-Boudjada
Magnetochemistry 2025, 11(5), 36; https://doi.org/10.3390/magnetochemistry11050036 - 23 Apr 2025
Viewed by 747
Abstract
In this study, we aimed to induce controlled structural disorder through a double substitution approach in the La0.5Ca0.5MnO3 compound by investigating La0.5−xRexCa0.5−yAeyMnO3 compounds with x = 0.05 [...] Read more.
In this study, we aimed to induce controlled structural disorder through a double substitution approach in the La0.5Ca0.5MnO3 compound by investigating La0.5−xRexCa0.5−yAeyMnO3 compounds with x = 0.05 and 0.1 and Re = Eu, Nd, Gd, Pr, and Ae = Ba and Sr. The y values are adjusted to maintain a constant average ionic radius (<rA> = 1.198 Å) and an unchanged Mn3+/Mn4+ ratio. These samples were synthesized using the sol–gel method. XRD analysis confirms structural stability despite the induced disorder, showing subtle lattice distortions. Magnetic measurements reveal that introducing low disorder annihilates the charge ordered (CO) state, enhances double-exchange interactions, and influences the ferromagnetic (FM) volume fractions. Moderate disorder strengthens AFM–CO state, triggering a first–order metamagnetic transition and reducing the Curie temperature value. Magnetic field-dependent magnetization data show disorder dependent magnetic behavior and suggest the presence of the Griffiths phase for all samples, confirming the role of structural disorder in tuning magnetic phase coexistence. Pr-based samples display a considerable magnetocaloric effect near their Curie temperature. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Novel Functional Magnetic Materials)
Show Figures

Figure 1

17 pages, 4847 KiB  
Article
Comparative Evaluation of Various ABO3 Perovskites (A = La, Ca, Sr; B = Mn, Fe) as Oxygen Carrier Materials in Chemical Looping Hydrogen Production
by Antigoni Evdou and Vassilis Zaspalis
Hydrogen 2025, 6(2), 27; https://doi.org/10.3390/hydrogen6020027 - 17 Apr 2025
Viewed by 1191
Abstract
This study comparatively evaluates the performance of ABO3 perovskite materials (A = La, Ca, Sr; B = Mn, Fe) as oxygen carriers in three-step Chemical Looping Hydrogen (CLH) technology, focusing on redox behavior, oxygen transport capacity, hydrogen production, and selectivity under controlled [...] Read more.
This study comparatively evaluates the performance of ABO3 perovskite materials (A = La, Ca, Sr; B = Mn, Fe) as oxygen carriers in three-step Chemical Looping Hydrogen (CLH) technology, focusing on redox behavior, oxygen transport capacity, hydrogen production, and selectivity under controlled pulse-mode conditions. The redox behavior of the materials is analyzed in relation to their defect chemistry. Perovskites such as (La1−xCax)MnO3, (La1−xSrx)MnO3, and (La0.6Ca0.4)(Mn1−xFex)O3 were synthesized via wet chemical methods and tested in chemical looping cycles. Doping A-site cations with Ca or Sr enhanced oxygen delivery capacity by more than 100% upon reduction with CH4 when dopant content (x) increased from 0 to 0.5. However, H2 selectivity decreased from 52% to 2.5% for (La1−xCax)MnO3 and from 46% to 14% for (La1−xSrx)MnO3 under the same conditions. In contrast, substituting Mn with Fe significantly improved hydrogen production, particularly in LaFeO3, which exhibited the highest hydrogen selectivity and yield. At 1000 °C, LaFeO3 produced nearly 10 mmol H2 g−1, with 80% generated during the reduction step at 99.9% selectivity and the remaining 20% during the water-splitting step at 100% selectivity. These results are linked to the extent of B-site cation reduction reactions (i) B4+ → B3+, which facilitates complete fuel oxidation and (ii) B3+ → B2+, which leads to partial fuel oxidation. The reverse of (ii) also contributes to H2 production during water splitting. Additionally, the study assesses the materials’ microstructure and stability over prolonged cycles. The findings highlight Fe-based perovskites, particularly LaFeO3, as promising candidates for CLH applications, emphasizing the need for structural and compositional optimization to enhance hydrogen production efficiency. Full article
Show Figures

Figure 1

16 pages, 5813 KiB  
Article
Unlocking the Potential of Mg-Doped Rare Earth Manganites: Machine Learning-Guided Synthesis and Insights into Structural and Optical Properties
by Chikh Lakhdar Ben Messaoud, Zoulikha Hebboul, Ibn Khaldoun Lefkaier, Ahmed Draoui, Ahmed Lamine Ben Kamri, Souraya Goumri-Said, Mohammed Benali Kanoun, Romualdo S. Silva, José A. Alonso and Sophie Laurent
Nanomaterials 2025, 15(7), 561; https://doi.org/10.3390/nano15070561 - 6 Apr 2025
Viewed by 784
Abstract
By leveraging machine learning insights from prior perovskite studies and employing the sol–gel method, we successfully synthesized two novel perovskite nanoceramics—M0.5 Ca0.25Mg0.25MnO3 (M = La, Pr)—as multifunctional nanomaterials. X-ray diffraction (XRD) confirmed their orthorhombic Pnma crystal structure. [...] Read more.
By leveraging machine learning insights from prior perovskite studies and employing the sol–gel method, we successfully synthesized two novel perovskite nanoceramics—M0.5 Ca0.25Mg0.25MnO3 (M = La, Pr)—as multifunctional nanomaterials. X-ray diffraction (XRD) confirmed their orthorhombic Pnma crystal structure. The Williamson–Hall method estimated average particle sizes of 59.5 nm for PCMMO and 21.8 nm for LCMMO, while the Scherrer method provided corresponding values of 32.59 nm and 20.43 nm. SEM, UV-Vis, and FTIR analyses validated the chemical composition, homogeneity, and optical properties of the synthesized compounds, revealing band gaps of 3.25 eV (LCMMO) and 3.71 eV (PCMMO) with Urbach energies of 0.29 eV and 0.26 eV, respectively. These findings provide valuable insights into the structural and optical properties of LCMMO and PCMMO, highlighting their potential as multifunctional materials for advanced device applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

23 pages, 3584 KiB  
Review
Recent Advances of Colossal Magnetoresistance in Versatile La-Ca-Mn-O Material-Based Films
by Navjyoti Boora, Rafiq Ahmad, Shafaque Rahman, Nguyen Quoc Dung, Akil Ahmad, Mohammed B. Alshammari and Byeong-Il Lee
Magnetochemistry 2025, 11(1), 5; https://doi.org/10.3390/magnetochemistry11010005 - 16 Jan 2025
Cited by 2 | Viewed by 1964
Abstract
Hole-doped manganese oxides exhibit a gigantic negative magnetoresistance, referred to as colossal magnetoresistance (CMR), owing to the interplay between double-exchange (DE) ferromagnetic metal and charge-ordered antiferromagnetic insulator/semiconductor phases. Magnetoresistive manganites display a sharp resistivity drop at the metal–insulator transition temperature (TMI). [...] Read more.
Hole-doped manganese oxides exhibit a gigantic negative magnetoresistance, referred to as colossal magnetoresistance (CMR), owing to the interplay between double-exchange (DE) ferromagnetic metal and charge-ordered antiferromagnetic insulator/semiconductor phases. Magnetoresistive manganites display a sharp resistivity drop at the metal–insulator transition temperature (TMI). CMR effects in perovskite manganites, specifically La0.67Ca0.33MnO3 (La-Ca-Mn-O or LCMO), have been extensively investigated. This review paper provides a comprehensive introduction to the crystallographic structure, as well as the electronic and magnetic properties, of LCMO films. Furthermore, we delve into a detailed discussion of the effects of epitaxial strain induced by different substrates on LCMO films. Additionally, we review the early findings and diverse applications of LCMO thin films. Finally, we outline potential challenges and prospects for achieving superior LCMO film properties. Full article
(This article belongs to the Special Issue Magnetic Materials, Thin Films and Nanostructures—2nd Edition)
Show Figures

Figure 1

17 pages, 9952 KiB  
Article
Petrogenesis and an Evaluation of the Melting Conditions of the Late Permian ELIP Picrites, SW China: Constraints Due to Primary Magma and Olivine Composition
by Xin-Shang Bao, Rui-Rui Zhang, Shao-Bo Wang, Xiao-Yuan He and Xiao-Hui Zhu
Minerals 2024, 14(10), 984; https://doi.org/10.3390/min14100984 - 29 Sep 2024
Viewed by 976
Abstract
The late Permian Emeishan large igneous province (ELIP) in SW China is a melting product of the Emeishan mantle plume. Recently, it has been debated whether peridotite or pyroxenite is the dominant lithology of the mantle source in the ELIP. To address this, [...] Read more.
The late Permian Emeishan large igneous province (ELIP) in SW China is a melting product of the Emeishan mantle plume. Recently, it has been debated whether peridotite or pyroxenite is the dominant lithology of the mantle source in the ELIP. To address this, systematic analyses of bulk-rock and coexisting spinel and olivine compositions were conducted on picrites from Lijiang–Yongsheng, Dali–Binchuan, Yumen, Muli, and Ertan. The ELIP picrites exhibit positive TiO2–CaO and negative MgO–CaO correlations, as well as low FC3MS values (−0.24–0.1), supporting a peridotite-dominated mantle source. This lithology of the mantle source is also supported by the high 100 × Mn–Fe (1.43–1.73) and Mn–Zn (13.6–18.4) values but low 10,000 × Zn–Fe (8.0–12.7) ratios of the olivine phenocrysts. The estimated mantle potential temperature for Lijiang, Yongsheng, Yumen–Ertan, Muli, and Dali–Binchuan picrites decreased away from Lijiang and Yongsheng, suggesting that the Lijiang and Yongsheng areas were the center of the ELIP. The Lijiang–Yongsheng primary magma shows similar SiO2 content but lower Al2O3 contents (average of 8.24 wt.%) and higher MgO contents (average of 21.42 wt.%) than those of Dali–Binchuan primary magma (Al2O3: 9.86 wt.%; MgO: 19.02 wt.%). Also considering the high Gd–Yb (average of 3.05) and La–Yb (average of 14.61) ratios and mantle potential temperature (average of 1599 °C), we proposed that Lijiang–Yongsheng lavas are produced via the melting of a garnet–peridotitic mantle. In contrast, the Dali–Binchuan lavas with low Gd–Yb (average of 1.91) and La–Yb (average of 5.88) ratios can be explained by their formation in the garnet–spinel transition zone of a peridotitic mantle. The Yumen–Ertan primary magma displays similar mantle potential temperature (average of 1600 °C), Al2O3 and FeO content, and Gd–Yb ratios to those of Lijiang–Yongsheng lavas, indicating that YumenvErtan primary magma may be attributed to the partial melting of garnet with minor peridotite. Therefore, heterogeneous plume-head mantle sources lead to the evaluation of melting conditions of the late Permian ELIP picrites. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

15 pages, 4840 KiB  
Article
(La1−xCax)MnO3−δ (x = 0, 0.2, 0.3, 0.4) Perovskites as Redox Catalysts in Chemical Looping Hydrogen Production Process: The Relation between Defect Chemistry and Redox Performance
by Moschos Moschos, Antigoni Evdou and Vassilios Zaspalis
Catalysts 2024, 14(7), 431; https://doi.org/10.3390/catal14070431 - 6 Jul 2024
Cited by 1 | Viewed by 1429
Abstract
The interaction between point defects in (La1−xCax)MnO3−δ (x = 0, 0.2, 0.3, 0.4) perovskites and their redox catalytic properties in a three-reactor chemical looping hydrogen production process is investigated. During the reduction step with CH4, the [...] Read more.
The interaction between point defects in (La1−xCax)MnO3−δ (x = 0, 0.2, 0.3, 0.4) perovskites and their redox catalytic properties in a three-reactor chemical looping hydrogen production process is investigated. During the reduction step with CH4, the behavior of the materials is extrinsically determined and strongly depends on the Ca content. At small oxygen deficiencies, CH4 becomes oxidized to CO2. As the deficiency increases, partial oxidation to CO and H2 at a molar ratio of approximately 2 is favored. During the water-splitting step, the dependency on the Ca content is much weaker since it is intrinsically determined by the Mn2+→Mn3+ oxidation with simultaneous annihilation of oxygen vacancies that are not required to compensate for the extra negative charge of the Ca dopant. Hydrogen productivities in the order of 13 cm3 (STP) H2/g solid could be achieved during the water-splitting step at 1000 °C. The materials exhibited reproducible catalytic behavior during 10 cycles of the complete three-step process and were found to retain their perovskite structure. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Graphical abstract

15 pages, 17818 KiB  
Article
Particle Size Effect on Optical and Gas-Sensing Properties of La0.67Ca0.2Ba0.13Fe0.97M0.03O3 (M = Ti4+, Mn3+, and Cr3+) Compounds
by Ahmed Dhahri, H. Saoudi, S. R. Gavinho, A. Benali, N. Abdelmoula, R. Dhahri, Lin Peng, Jiangtao Wu, J. Pina and B. F. O. Costa
Crystals 2024, 14(2), 173; https://doi.org/10.3390/cryst14020173 - 8 Feb 2024
Cited by 2 | Viewed by 1606
Abstract
In the present work, the morphological, optical, and gas-sensing properties of La0.67Ca0.2Ba0.13Fe0.97M0.03O3 (M = Ti, Cr, and Mn) nano-powders prepared via the auto-combustion route, were investigated. TEM images prove the nanoscale particle [...] Read more.
In the present work, the morphological, optical, and gas-sensing properties of La0.67Ca0.2Ba0.13Fe0.97M0.03O3 (M = Ti, Cr, and Mn) nano-powders prepared via the auto-combustion route, were investigated. TEM images prove the nanoscale particle size of all the samples. Optical studies confirm the semiconductor behavior of the studied materials. The response of the prepared nano-powders towards the presence of two gas-reducing agents (ethanol and acetone) was investigated. From the resistance ratio under air and gas, it was possible to determine the response to different gases and deduce that La0.67Ca0.2Ba0.13Fe0.97Ti0.03O3 presents the highest responses to ethanol and acetone. Likewise, we deduced that the prepared materials were able to detect low concentrations of ethanol and acetone gases. Full article
Show Figures

Figure 1

21 pages, 3801 KiB  
Article
Chemostratigraphic Approach to the Study of Resources’ Deposit in the Upper Silesian Coal Basin (Poland)
by Ewa Krzeszowska
Energies 2024, 17(3), 642; https://doi.org/10.3390/en17030642 - 29 Jan 2024
Cited by 1 | Viewed by 1310
Abstract
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the [...] Read more.
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the increasing availability of alternative energy sources globally, it is a fact that the use of fossil fuels will remain necessary for the next few decades. Therefore, research on coal-bearing formations using modern research methods is still very important. The application of geochemistry and chemostratigraphy in reservoir characterization has become increasingly common in recent years. This paper presents the possibility of applying chemostratigraphic techniques to the study of the Carboniferous coal-bearing succession of the Upper Silesian Coal Basin. The material studied comes from 121 core samples (depth 481–1298 m), representing the Mudstone Series (Westphalian A, B). Major oxide concentrations of Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2, and Cr2O3 were obtained using X-ray fluorescence (XRF) spectrometry. Trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP/MS). The geochemical record from the Mudstone Series shows changes in the concentration of major elements and selected trace elements, leading to the identification of four chemostratigraphic units. These units differ primarily in the content of Fe, Ca, Mg, Mn, and P as well as the concentration of Zr, Hf, Nb, Ta, and Ti. The study also discusses quartz origin (based on SiO2 and TiO2), sediment provenance and source-area rock compositions (based on Al2O3/ TiO2, TiO2/Zr, and La/Th), and paleoredox conditions (based on V/Cr, Ni/Co, U/Th, (Cu+Mo)/Zn, and Sr/Ba) for the chemostratigraphic units. Chemostratigraphy was used for the first time in the study of the Carboniferous coal-bearing series of the USCB, concluding that it can be used as an effective stratigraphic tool and provide new information on the possibility of correlating barren sequences of the coal-bearing succession. Full article
Show Figures

Figure 1

11 pages, 5450 KiB  
Article
Enhanced Electrochemical Performance of LaMnO3 Nanoparticles by Ca/Sr Doping
by Junhan Zheng, Hongquan Zhao, Xu Guo, Xiaoyun Jin, Lei Wang, Songtao Dong and Jian Chen
Coatings 2024, 14(1), 20; https://doi.org/10.3390/coatings14010020 - 24 Dec 2023
Cited by 8 | Viewed by 2264
Abstract
In this paper, the sol-gel method was used to synthesize powders of LaMnO3 (LMO), La0.85Ca0.15MnO3 (LCM), and La0.85Sr0.15MnO3 (LSM). The effect of substituting Ca and Sr at the A-site on the perovskite [...] Read more.
In this paper, the sol-gel method was used to synthesize powders of LaMnO3 (LMO), La0.85Ca0.15MnO3 (LCM), and La0.85Sr0.15MnO3 (LSM). The effect of substituting Ca and Sr at the A-site on the perovskite crystal structure and electrochemical capabilities of LMO was investigated. LCM retained its orthogonal structure in comparison to the parent LMO components, whereas LSM transitioned to a rhombic structure. At 0.5 A/g, the specific capacitance of LCM and LSM electrodes is 185.5 F/g and 248 F/g, respectively. The specific capacitance of LCM was three times greater than that of the LMO electrode. Among the three samples (LMO, 22.25 m2 g−1; LSM, 31.56 m2 g−1), the LCM sample exhibited the highest specific surface area of 38.79 m2 g−1. The charge transfer resistances of the LMO, LCM, and LSM are 0.48 Ω, 0.36 Ω, and 0.38 Ω, respectively. The LCM electrode exhibits the greatest capacitance performance due to its more refined morphology, increased concentration of oxygen vacancy, and more complete utilization of the perovskite bulk structure. The above results demonstrate that Ca or Sr substitution of A-site compounds has great potential for supercapacitor applications. Full article
(This article belongs to the Topic Properties of the Corroding Interface)
Show Figures

Figure 1

22 pages, 9321 KiB  
Article
New Minerals from Inclusions in Corundum Xenocrysts from Mt. Carmel, Israel: Magnéliite, Ziroite, Sassite, Mizraite-(Ce) and Yeite
by Chi Ma, Fernando Cámara, Luca Bindi, Vered Toledo and William L. Griffin
Materials 2023, 16(24), 7578; https://doi.org/10.3390/ma16247578 - 9 Dec 2023
Cited by 7 | Viewed by 1917
Abstract
Our nanomineralogical investigation of melt inclusions in corundum xenocrysts from the Mt. Carmel area, Israel has revealed seven IMA-approved new minerals since 2021. We report here four new oxide minerals and one new alloy mineral. Magnéliite (Ti3+2Ti4+2O [...] Read more.
Our nanomineralogical investigation of melt inclusions in corundum xenocrysts from the Mt. Carmel area, Israel has revealed seven IMA-approved new minerals since 2021. We report here four new oxide minerals and one new alloy mineral. Magnéliite (Ti3+2Ti4+2O7; IMA 2021-111) occurs as subhedral crystals, ~4 μm in size, with alabandite, zirconolite, Ti,Al,Zr-oxide, and hibonite in corundum Grain 767-1. Magnéliite has an empirical formula (Ti3+1.66Al0.13Ti4+0.15Mg0.10Ca0.01Sc0.01)Σ2.06 (Ti4+1.93Zr0.08)Σ2.01O7 and the triclinic P1¯ Ti4O7-type structure with the cell parameters: a = 5.60(1) Å, b = 7.13(1) Å, c = 12.47(1) Å, α = 95.1(1)°, β = 95.2(1)°, γ = 108.7(1)°, V = 466(2) Å3, Z = 4. Ziroite (ZrO2; IMA 2022-013) occurs as irregular crystals, ~1–4 μm in size, with baddeleyite, hibonite, and Ti,Al,Zr-oxide in corundum Grain 479-1a. Ziroite has an empirical formula (Zr0.72Ti4+0.26Mg0.02Al0.02Hf0.01)Σ1.03O2 and the tetragonal P42/nmc zirconia(HT)-type structure with the cell parameters: a = 3.60(1) Å, c = 5.18(1) Å, V = 67.1(3) Å3, Z = 2. Sassite (Ti3+2Ti4+O5; IMA 2022-014) occurs as subhedral-euhedral crystals, ~4–16 μm in size, with Ti,Al,Zr-oxide, mullite, osbornite, baddeleyite, alabandite, and glass in corundum Grain 1125C1. Sassite has an empirical formula (Ti3+1.35Al0.49Ti4+0.08Mg0.07)Σ1.99(Ti4+0.93Zr0.06Si0.01)Σ1.00O5 and the orthorhombic Cmcm pseudobrookite-type structure with the cell parameters: a = 3.80(1) Å, b = 9.85(1) Å, c = 9.99(1) Å, V = 374(1) Å3, Z = 4. Mizraite-(Ce) (Ce(Al11Mg)O19; IMA 2022-027) occurs as euhedral crystals, <1–14 μm in size, with Ce-silicate, Ti-sulfide, Ti,Al,Zr-oxide, ziroite, and thorianite in corundum Grain 198-8. Mizraite-(Ce) has an empirical formula (Ce0.76Ca0.10La0.07Nd0.01)Σ0.94(Al10.43Mg0.84Ti3+0.60Si0.09Zr0.04)Σ12.00O19 and the hexagonal P63/mmc magnetoplumbite-type structure with the cell parameters: a = 5.61(1) Å, c = 22.29(1) Å, V = 608(2) Å3, Z = 2. Yeite (TiSi; IMA 2022-079) occurs as irregular-subhedral crystals, 1.2–3.5 μm in size, along with wenjiite (Ti5Si3) and zhiqinite (TiSi2) in Ti-Si alloy inclusions in corundum Grain 198c. Yeite has an empirical formula (Ti0.995Mn0.003V0.001Cr0.001)(Si0.996P0.004) and the orthorhombic Pnma FeB-type structure with the cell parameters: a = 6.55(1) Å, b = 3.64(1) Å, c = 4.99(1) Å, V = 119.0(4) Å3, Z = 4. The five minerals are high-temperature oxide or alloy phases, formed in melt pockets in corundum xenocrysts derived from the upper mantle beneath Mt. Carmel. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials)
Show Figures

Figure 1

13 pages, 2818 KiB  
Article
Inorganic Green Pigments Based on LaSr2AlO5
by Kazuki Yamaguchi, Akari Takemura, Saki Furumoto, Ryohei Oka and Toshiyuki Masui
Ceramics 2023, 6(4), 2269-2281; https://doi.org/10.3390/ceramics6040138 - 22 Nov 2023
Cited by 1 | Viewed by 2537
Abstract
La1.03Sr1.97Al0.97M0.03O5 (M = Fe, Co, Ni, and Cu) samples were synthesized using a citrate sol–gel method to develop a novel environmentally friendly inorganic green pigment. Among them, the Co-doped sample exhibited a vivid [...] Read more.
La1.03Sr1.97Al0.97M0.03O5 (M = Fe, Co, Ni, and Cu) samples were synthesized using a citrate sol–gel method to develop a novel environmentally friendly inorganic green pigment. Among them, the Co-doped sample exhibited a vivid yellow, but not green. Then, (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 was synthesized and characterized with respect to the crystal structure, optical properties, and color. The sample was obtained in a single-phase form and the lattice volume was smaller than that of the (La0.94Ca0.06)Sr2AlO5 sample, indicating that Mn ions in the lattice of the sample were pentavalent. The sample exhibited optical absorption at a wavelength below 400 nm and around 650 nm. These absorptions were attributed to the ligand, the metal charge transfer (LMCT), and d-d transitions of Mn5+. Because the green light corresponding to 500 to 560 nm was reflected strongly, the synthesized sample exhibited a bright green color. (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 showed high brightness (L* = 50.1) and greenness (a* = −20.8), and these values were as high as those of the conventional green pigments such as chromium oxide and cobalt green. Therefore, the (La0.94Ca0.06)Sr2(Al0.97Mn0.03)O5 pigment is a potential candidate for a novel environmentally friendly inorganic green pigment. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 4675 KiB  
Article
Screening Ba0.9A0.1MnO3 and Ba0.9A0.1Mn0.7Cu0.3O3 (A = Mg, Ca, Sr, Ce, La) Sol-Gel Synthesised Perovskites as GPF Catalysts
by Nawel Ghezali, Álvaro Díaz Verde and María José Illán Gómez
Materials 2023, 16(21), 6899; https://doi.org/10.3390/ma16216899 - 27 Oct 2023
Cited by 4 | Viewed by 1625
Abstract
Ba0.9A0.1MnO3 (BM-A) and Ba0.9A0.1Mn0.7Cu0.3O3 (BMC-A) (A = Mg, Ca, Sr, Ce, La) perovskite-type mixed oxides were synthesised, characterised, and used for soot oxidation in simulated Gasoline Direct Injection (GDI) [...] Read more.
Ba0.9A0.1MnO3 (BM-A) and Ba0.9A0.1Mn0.7Cu0.3O3 (BMC-A) (A = Mg, Ca, Sr, Ce, La) perovskite-type mixed oxides were synthesised, characterised, and used for soot oxidation in simulated Gasoline Direct Injection (GDI) engine exhaust conditions. The samples have been obtained by the sol-gel method in an aqueous medium and deeply characterised. The characterization results indicate that the partial substitution of Ba by A metal in BaMnO3 (BM) and BaMn0.7Cu0.3O3 (BMC) perovskites: (i) favours the hexagonal structure of perovskite; (ii) improves the reducibility and the oxygen desorption during Temperature-Programmed Desorption (O2-TPD) tests and, consequently, the oxygen mobility; (iii) mantains the amount of oxygen vacancies and of Mn(IV) and Mn(III) oxidation states, being Mn(IV) the main one; and (iv) for Ba0.9A0.1Mn0.7Cu0.3O3 (BMC-A) series, copper is partially incorporated into the structure. The soot conversion data reveal that Ba0.9La0.1Mn0.7Cu0.3O3 (BMC-La) is the most active catalyst in an inert (100% He) reaction atmosphere, as it presents the highest amount of copper on the surface, and that Ba0.9Ce0.1MnO3 (BM-Ce) is the best one if a low amount of O2 (1% O2 in He) is present, as it combines the highest emission of oxygen with the good redox properties of Ce(IV)/Ce(III) and Mn(IV)/Mn(III) pairs. Full article
Show Figures

Figure 1

26 pages, 5625 KiB  
Article
Methane Catalytic Combustion under Lean Conditions over Pristine and Ir-Loaded La1−xSrxMnO3 Perovskites: Efficiency, Hysteresis, and Time-on-Stream and Thermal Aging Stabilities
by Catherine Drosou, Ersi Nikolaraki, Theodora Georgakopoulou, Sotiris Fanourgiakis, Vassilios T. Zaspalis and Ioannis V. Yentekakis
Nanomaterials 2023, 13(15), 2271; https://doi.org/10.3390/nano13152271 - 7 Aug 2023
Cited by 3 | Viewed by 2064
Abstract
The increasing use of natural gas as an efficient, reliable, affordable, and cleaner energy source, compared with other fossil fuels, has brought the catalytic CH4 complete oxidation reaction into the spotlight as a simple and economic way to control the amount of [...] Read more.
The increasing use of natural gas as an efficient, reliable, affordable, and cleaner energy source, compared with other fossil fuels, has brought the catalytic CH4 complete oxidation reaction into the spotlight as a simple and economic way to control the amount of unconverted methane escaping into the atmosphere. CH4 emissions are a major contributor to the ‘greenhouse effect’, and therefore, they need to be effectively reduced. Catalytic CH4 oxidation is a promising method that can be used for this purpose. Detailed studies of the activity, oxidative thermal aging, and the time-on-stream (TOS) stability of pristine La1−xSrxMnO3 perovskites (LSXM; X = % substitution of La with Sr = 0, 30, 50 and 70%) and iridium-loaded Ir/La1−xSrxMnO3 (Ir/LSXM) perovskite catalysts were conducted in a temperature range of 400–970 °C to achieve complete methane oxidation under excess oxygen (lean) conditions. The effect of X on the properties of the perovskites, and thus, their catalytic performance during heating/cooling cycles, was studied using samples that were subjected to various pretreatment conditions in order to gain an in-depth understanding of the structure–activity/stability correlations. Large (up to ca. 300 °C in terms of T50) inverted volcano-type differences in catalytic activity were found as a function of X, with the most active catalysts being those where X = 0%, and the least active were those where X = 50%. Inverse hysteresis phenomena (steady-state rate multiplicities) were revealed in heating/cooling cycles under reaction conditions, the occurrence of which was found to depend strongly on the employed catalyst pre-treatment (pre-reduction or pre-oxidation), while their shape and the loop amplitude were found to depend on X and the presence of Ir. All findings were consistently interpreted, which involved a two-term mechanistic model that utilized the synergy of Eley–Rideal and Mars–van Krevelen kinetics. Full article
Show Figures

Graphical abstract

19 pages, 4468 KiB  
Article
Optimizing Citrate Combustion Synthesis of A-Site-Deficient La,Mn-Based Perovskites: Application for Catalytic CH4 Combustion in Stoichiometric Conditions
by Andrea Osti, Lorenzo Rizzato, Jonathan Cavazzani and Antonella Glisenti
Catalysts 2023, 13(8), 1177; https://doi.org/10.3390/catal13081177 - 1 Aug 2023
Cited by 7 | Viewed by 2167
Abstract
LaMnO3-based perovskites are widely recognized as promising catalysts for several oxidation reactions, but the final physicochemical and catalytic properties can be greatly influenced by the adopted synthesis procedure. In this work, a series of A-site-deficient perovskites of composition La0.8MnO [...] Read more.
LaMnO3-based perovskites are widely recognized as promising catalysts for several oxidation reactions, but the final physicochemical and catalytic properties can be greatly influenced by the adopted synthesis procedure. In this work, a series of A-site-deficient perovskites of composition La0.8MnO3 and La0.8Mn0.9B0.1O3 (B = Ni, Cu) were prepared through the citrate combustion route with variations in two synthesis parameters: a citric acid/metal cations molar ratio (CA/M) of either 1.1 or 1.5 and either acidic (given by HNO3 + citric acid) or neutral (after NH3 addition) pH of the precursor solution. The obtained samples were characterized by XRD, H2-TPR, O2-TPD, N2 physisorption, SEM-EDX and XPS. Acidic pH coupled with a CA/M ratio of 1.1 clearly emerged superior among all the other combinations of the two parameters, resulting in smaller crystallite size, higher surface area and porosity, enhanced Mn4+ reducibility and the ability to release oxygen species; these features were even further improved by B-site substitution with 10 mol% Ni and Cu cations. The synthesized catalysts were tested in CH4 oxidation to CO2 under stoichiometric O2, confirming the great superiority of samples prepared in acidic pH with a CA/M ratio of 1.1. Ni and Cu doping had a beneficial effect on catalytic activity, which, however, was more evident for less optimized perovskites (acidic pH and CA/M ratio of 1.5), without significance differences among the two dopants. Full article
Show Figures

Graphical abstract

Back to TopTop