Enhanced Electrochemical Performance of LaMnO3 Nanoparticles by Ca/Sr Doping
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials Preparation
2.2. Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mefford, J.T.; Hardin, W.G.; Dai, S.; Johnston, K.P.; Stevenson, K.J. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 2014, 13, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Joanni, E.; Sahoo, S.; Shim, J.-J.; Tan, W.K.; Matsuda, A.; Singh, R.K. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials. Carbon 2022, 193, 298–338. [Google Scholar] [CrossRef]
- Zhu, B.; Chan, E.W.C.; Li, S.Y.; Sun, X.; Travas-Sejdic, J. Soft, flexible and self-healable supramolecular conducting polymer-based hydrogel electrodes for flexible supercapacitors. J. Mater. Chem. C 2022, 10, 14882–14891. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, G.; Zhang, T.; Hao, S.; Jia, Z.; Li, Y. Fabrication of Co3O4/polyaniline-based carbon electrode for high-performance supercapacitor. J. Alloys Compd. 2021, 863, 158071. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhu, Q.Q.; Wang, X.E.; Zhang, H.C.; Zhang, J.J.; Wang, L.F. Structural and electrochemical properties of La0.85Sr0.15MnO3 powder as an electrode material for supercapacitor. J. Alloys Compd. 2016, 675, 195–200. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H. Oxygen adsorption capability and electrochemical properties induced by oxygen vacancies in cerium-doped LaFeO3 perovskite oxide. Scr. Mater. 2024, 242, 115880. [Google Scholar] [CrossRef]
- Mo, H.; Nan, H.; Lang, X.; Liu, S.; Qiao, L.; Hu, X.; Tian, H. Influence of calcium doping on performance of LaMnO3 supercapacitors. Ceram. Int. 2018, 44, 9733–9741. [Google Scholar] [CrossRef]
- Hu, Q.; Yue, B.; Shao, H.; Yang, F.; Wang, J.; Wang, Y.; Liu, J. Facile syntheses of perovskite type LaMO3 (M=Fe, Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. J. Alloys Compd. 2021, 852, 157002. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, B.; Sun, Y.; Yang, H.; Zhang, X. Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu. J. Alloys Compd. 2015, 638, 204–213. [Google Scholar] [CrossRef]
- Song, Y.-L.; Wang, Z.-C.; Yan, Y.-D.; Zhang, M.-L.; Wang, G.-L.; Yin, T.-Q.; Xue, Y.; Gao, F.; Qiu, M. Molten salt synthesis and supercapacitor properties of oxygen-vacancy LaMnO3−δ. J. Energy Chem. 2020, 43, 173–181. [Google Scholar] [CrossRef]
- Elsiddig, Z.A.; Xu, H.; Wang, D.; Zhang, W.; Guo, X.; Zhang, Y.; Guo, X.; Zhang, Y.; Sun, Z.; Chen, J. Modulating Mn4+ ions and oxygen vacancies in nonstoichiometric LaMnO3 perovskite by a facile sol-gel method as high-performance supercapacitor electrodes. Electrochim. Acta 2017, 253, 422–429. [Google Scholar] [CrossRef]
- Deshmukh, V.V.; Harini, H.V.; Nagaswarupa, H.P.; Naik, R.; Ravikumar, C.R. Development of novel Co3+ doped LaMnO3 perovskite electrodes for supercapacitors and sensors: Mechanism of electrochemical energy storage and oxygen intercalation. J. Energy Storage 2023, 68, 107805. [Google Scholar] [CrossRef]
- Shafi, P.M.; Joseph, N.; Thirumurugan, A.; Bose, A.C. Enhanced electrochemical performances of agglomeration-free LaMnO3 perovskite nanoparticles and achieving high energy and power densities with symmetric supercapacitor design. Chem. Eng. J. 2018, 338, 147–156. [Google Scholar] [CrossRef]
- Shafi, P.M.; Mohapatra, D.; Reddy, V.P.; Dhakal, G.; Kumar, D.R.; Tuma, D.; Brousse, T.; Shim, J.-J. Sr- and Fe-substituted LaMnO3 Perovskite: Fundamental insight and possible use in asymmetric hybrid supercapacitor. Energy Storage Mater. 2022, 45, 119–129. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, J.; Li, X.; Yue, L.; Liu, Q.; Lu, S.; Asiri, A.M.; Hu, J.; Luo, Y.; Sun, X. Recent advances in perovskite oxides as electrode materials for supercapacitors. Chem. Commun. 2021, 57, 2343–2355. [Google Scholar] [CrossRef]
- Nan, H.-S.; Hu, X.-Y.; Tian, H.-W. Recent advances in perovskite oxides for anion-intercalation supercapacitor: A review. Mater. Sci. Semicond. Process. 2019, 94, 35–50. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Y.; Zhou, W.; Tade, M.O.; Shao, Z. B-site cation-ordered double-perovskite oxide as an outstanding electrode material for supercapacitive energy storage based on the anion intercalation mechanism. ACS Appl. Mater. Interfaces 2018, 10, 9415–9423. [Google Scholar] [CrossRef]
- Hadji, F.; Omari, M.; Mebarki, M.; Gabouze, N.; Layadi, A. Zinc doping effect on the structural and electrochemical properties of LaCoO3 perovskite as a material for hybrid supercapacitor electrodes. J. Alloys Compd. 2023, 942, 169047. [Google Scholar] [CrossRef]
- Yatoo, M.A.; Seymour, I.D.; Skinner, S.J. Neutron diffraction and DFT studies of oxygen defect and transport in higher-order Ruddlesden–Popper phase materials. RSC Adv. 2023, 13, 13786–13797. [Google Scholar] [CrossRef]
- Dong, S.-T.; Ye, X.; Fu, Z.; Jin, X.; Wei, J.; Wang, L.; Zhang, Y.-M. Effects of strontium substitution for La on the electrochemical performance of LaAlO3 perovskite nanotubes. J. Mater. Res. Technol. 2022, 19, 91–100. [Google Scholar] [CrossRef]
- Ye, X.; Dong, S.; Jin, X.; Wei, J.; Wang, L.; Zhang, Y. Enhancement in the Electrochemical Performance of Strontium (Sr)-Doped LaMnO3 as Supercapacitor Materials. Coatings 2022, 12, 1739. [Google Scholar] [CrossRef]
- Dong, S.-T.; Jin, X.; Ye, X.; Wei, J.; Wang, L.; Zhang, Y.-M. Effects of Calcium Substitution for La on the Electrochemical Performance of LaMnO3 Nanoparticles. ChemistrySelect 2023, 8, e202203977. [Google Scholar] [CrossRef]
- Bhojane, P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding. J. Energy Storage 2022, 45, 103654. [Google Scholar] [CrossRef]
- Mendoza, R.; Oliva, J.; Padmasree, K.P.; Mtz-Enriquez, A.I.; Hayat, A.; Rodriguez-Gonzalez, V. A sustainable avocado-peel based electrode for efficient graphene supercapacitors: Enhancement of capacitance by using Sr doped LaMnO3 perovskites. Ceram. Int. 2022, 48, 30967–30977. [Google Scholar] [CrossRef]
- Lang, X.; Mo, H.; Hu, X.; Tian, H. Supercapacitor performance of perovskite La1−xSrxMnO3. Dalton Trans. 2017, 46, 13720–13730. [Google Scholar] [CrossRef] [PubMed]
- Louca, D.; Egami, T.; Brosha, E.L.; Röder, H.; Bishop, A.R. Local Jahn-Teller distortion in La1−xSrxMnO3 observed by pulsed neutron diffraction. Phys. Rev. B 1997, 56, R8475. [Google Scholar] [CrossRef]
- Yatoo, M.A.; Habib, F.; Malik, A.H.; Qazi, M.J.; Ahmad, S.; Ganayee, M.A.; Ahmad, Z. Solid-oxide fuel cells: A critical review of materials for cell components. MRS Commun. 2023, 13, 378–384. [Google Scholar] [CrossRef]
- Podobedov, V.B.; Weber, A.; Romero, D.B.; Rice, J.P.; Drew, H.D. Effect of structural and magnetic transitions in La1−xMxMnO3 (M=Sr, Ca) single crystals in Raman scattering. Phys. Rev. B 1998, 58, 43. [Google Scholar] [CrossRef]
- Ma, P.P.; Lu, Q.L.; Lei, N.; Liu, Y.K.; Yu, B.; Dai, J.M.; Li, S.H.; Jiang, G.H. Effect of A-site substitution by Ca or Sr on the structure and electrochemical performance of LaMnO3 perovskite. Electrochim. Acta 2020, 332, 135489. [Google Scholar] [CrossRef]
- Wu, J.; Tu, W.; Zhang, Y.; Guo, B.; Li, S.; Zhang, Y.; Wang, Y.; Pan, M. Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries. Powder Technol. 2017, 311, 200–205. [Google Scholar] [CrossRef]
- Nagamuthu, S.; Vijayakumar, S.; Ryu, K.S. Cerium oxide mixed LaMnO3 nanoparticles as the negative electrode for aqueous asymmetric supercapacitor devices. Mater. Chem. Phys. 2017, 199, 543–551. [Google Scholar] [CrossRef]
- Banerjee, D.; Nesbitt, H.W. XPS study of reductive dissolution of birnessite by oxalate: Rates and mechanistic aspects of dissolution and redox processes. Geochim. Cosmochim. Acta 1999, 63, 3025–3038. [Google Scholar] [CrossRef]
- Hammouche, A.; Siebert, E.; Hammou, A. Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater. Res. Bull. 1989, 24, 367–380. [Google Scholar] [CrossRef]
- Yan, D.; Wang, W.; Luo, X.; Chen, C.; Zeng, Y.; Zhu, Z. NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem. Eng. J. 2018, 334, 864–872. [Google Scholar] [CrossRef]
- Zhong, F.; Zhuang, H.; Gu, Q.; Long, J. Structural evolution of alkaline earth metal stannates MSnO3 (M = Ca, Sr, and Ba) photocatalysts for hydrogen production. RSC Adv. 2016, 6, 42474–42481. [Google Scholar] [CrossRef]
- Komai, S.; Hirano, M.; Ohtsu, N. Spectral analysis of Sr 3d XPS spectrum in Sr-containing hydroxyapatite. Surf. Interface Anal. 2020, 52, 823–828. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
LaMnO3 | La0.85Ca0.15MnO3 | La0.85Sr0.15MnO3 | |
---|---|---|---|
Mn2+(%) | 17.84 | 14.53 | 14.82 |
Mn3+(%) | 65.22 | 58.63 | 56.03 |
Mn4+(%) | 16.94 | 26.83 | 29.14 |
O 1(%) | 44.8 | 37.9 | 39.9 |
O 2(%) | 47.6 | 55.6 | 53.6 |
O 3(%) | 7.6 | 6.5 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Zhao, H.; Guo, X.; Jin, X.; Wang, L.; Dong, S.; Chen, J. Enhanced Electrochemical Performance of LaMnO3 Nanoparticles by Ca/Sr Doping. Coatings 2024, 14, 20. https://doi.org/10.3390/coatings14010020
Zheng J, Zhao H, Guo X, Jin X, Wang L, Dong S, Chen J. Enhanced Electrochemical Performance of LaMnO3 Nanoparticles by Ca/Sr Doping. Coatings. 2024; 14(1):20. https://doi.org/10.3390/coatings14010020
Chicago/Turabian StyleZheng, Junhan, Hongquan Zhao, Xu Guo, Xiaoyun Jin, Lei Wang, Songtao Dong, and Jian Chen. 2024. "Enhanced Electrochemical Performance of LaMnO3 Nanoparticles by Ca/Sr Doping" Coatings 14, no. 1: 20. https://doi.org/10.3390/coatings14010020
APA StyleZheng, J., Zhao, H., Guo, X., Jin, X., Wang, L., Dong, S., & Chen, J. (2024). Enhanced Electrochemical Performance of LaMnO3 Nanoparticles by Ca/Sr Doping. Coatings, 14(1), 20. https://doi.org/10.3390/coatings14010020