Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = LNT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6281 KiB  
Article
Bioactive Polysaccharides Prevent Lipopolysaccharide-Induced Intestinal Inflammation via Immunomodulation, Antioxidant Activity, and Microbiota Regulation
by Mingyang Gao, Wanqing Zhang, Yan Ma, Tingting Liu, Sijia Wang, Shuaihu Chen, Zhengli Wang and Hong Shen
Foods 2025, 14(15), 2575; https://doi.org/10.3390/foods14152575 - 23 Jul 2025
Viewed by 321
Abstract
Intestinal inflammation involves barrier impairment, immune hyperactivation, and oxidative stress imbalance. Bioactive polysaccharides universally alleviate inflammation via anti-inflammatory, antioxidant, and microbiota-modulating effects, yet exhibit distinct core mechanisms. Elucidating these differences is vital for targeted polysaccharide applications. This research examines distinct regulatory pathways through [...] Read more.
Intestinal inflammation involves barrier impairment, immune hyperactivation, and oxidative stress imbalance. Bioactive polysaccharides universally alleviate inflammation via anti-inflammatory, antioxidant, and microbiota-modulating effects, yet exhibit distinct core mechanisms. Elucidating these differences is vital for targeted polysaccharide applications. This research examines distinct regulatory pathways through which diverse bioactive polysaccharides mitigate lipopolysaccharide-triggered intestinal inflammation in male Kunming (KM) mice. This experiment employed Lentinula edodes polysaccharide (LNT), Auricularia auricula polysaccharide (AAP), Cordyceps militaris polysaccharide (CMP), Lycium barbarum polysaccharide (LBP), and Brassica rapa polysaccharide (BRP). The expression levels of biomarkers associated with the TLR4 signaling pathway, oxidative stress, and intestinal barrier function were quantified, along with comprehensive gut microbiota profiling. The results showed that all five polysaccharides alleviated inflammatory responses in mice by inhibiting inflammatory cytokine release, reducing oxidative damage, and modulating gut microbiota, but their modes of action differed: LBP significantly suppressed the TLR-4/MyD88 signaling pathway and its downstream pro-inflammatory cytokine expression, thereby blocking inflammatory signal transduction and reducing oxidative damage; LNT and CMP enhanced the body’s antioxidant capacity by increasing antioxidant enzyme activities and decreasing malondialdehyde (MDA) levels; AAP and BRP enriched Akkermansia (Akk.) within the Verrucomicrobia (Ver.) phylum, upregulating tight junction protein expression to strengthen the intestinal mucosal barrier and indirectly reduce oxidative damage. This research demonstrates that different polysaccharides alleviate inflammation through multi-target synergistic mechanisms: LBP primarily inhibits inflammatory pathways; AAP and BRP focus on intestinal barrier protection and microbiota modulation; and LNT and CMP exert effects via antioxidant enzyme activation. These data support designing polysaccharide blends that leverage complementary inflammatory modulation mechanisms. Full article
Show Figures

Figure 1

16 pages, 21960 KiB  
Article
Interplay of C Alloying, Temperature, and Microstructure in Governing Mechanical Behavior and Deformation Mechanisms of High-Manganese Steels
by Chenghao Zhang, Jinfu Zhao, Tengxiang Zhao, Ling Kong, Chunlei Zheng, Haokun Yang and Yuhui Wang
Metals 2025, 15(7), 779; https://doi.org/10.3390/met15070779 - 9 Jul 2025
Viewed by 207
Abstract
This study investigates the mechanical behavior and deformation mechanisms of Fe-30Mn-0.05C (30Mn0.05C) and Fe-34Mn-0.7C (34Mn0.7C) steels at room temperature (RT) and liquid nitrogen temperature (LNT). The 30Mn0.05C sample exhibited a significant enhancement in both strength and ductility at LNT, achieving a total elongation [...] Read more.
This study investigates the mechanical behavior and deformation mechanisms of Fe-30Mn-0.05C (30Mn0.05C) and Fe-34Mn-0.7C (34Mn0.7C) steels at room temperature (RT) and liquid nitrogen temperature (LNT). The 30Mn0.05C sample exhibited a significant enhancement in both strength and ductility at LNT, achieving a total elongation of 85%. In contrast, the 34Mn0.7C sample demonstrated superior ductility (90%) at RT, with a marginal reduction in plasticity but a remarkable increase in strength (>1100 MPa) at LNT. Compared to the 30Mn0.05C, the 34Mn0.7C, characterized by higher carbon content, displayed more pronounced dynamic strain aging (DSA) effects. Additionally, a greater density of deformation twins was activated at LNT, revealing a strong correlation between deformation twinning and DSA effects. This interplay accounts for the simultaneous strength improvement and ductility reduction observed in the 34Mn0.7C at LNT. Furthermore, the 34Mn0.7C sample exhibited a significantly refined grain structure after rolling, contributing to a substantial strength increase (approaching 1500 MPa) at the expense of ductility. This trade-off can be attributed to the pre-introduction of a higher density of dislocations and deformation twins during rolling, which facilitated strengthening but limited further plastic deformation. Full article
Show Figures

Figure 1

17 pages, 1267 KiB  
Article
Prediction of PD-L1 and CD68 in Clear Cell Renal Cell Carcinoma with Green Learning
by Yixing Wu, Alexander Shieh, Steven Cen, Darryl Hwang, Xiaomeng Lei, S. J. Pawan, Manju Aron, Inderbir Gill, William D. Wallace, C.-C. Jay Kuo and Vinay Duddalwar
J. Imaging 2025, 11(6), 191; https://doi.org/10.3390/jimaging11060191 - 10 Jun 2025
Viewed by 845
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer. Extensive efforts have been made to utilize radiomics from computed tomography (CT) imaging to predict tumor immune microenvironment (TIME) measurements. This study proposes a Green Learning (GL) framework for [...] Read more.
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer. Extensive efforts have been made to utilize radiomics from computed tomography (CT) imaging to predict tumor immune microenvironment (TIME) measurements. This study proposes a Green Learning (GL) framework for approximating tissue-based biomarkers from CT scans, focusing on the PD-L1 expression and CD68 tumor-associated macrophages (TAMs) in ccRCC. Our approach includes radiomic feature extraction, redundancy removal, and supervised feature selection through a discriminant feature test (DFT), a relevant feature test (RFT), and least-squares normal transform (LNT) for robust feature generation. For the PD-L1 expression in 52 ccRCC patients, treated as a regression problem, our GL model achieved a 5-fold cross-validated mean squared error (MSE) of 0.0041 and a Mean Absolute Error (MAE) of 0.0346. For the TAM population (CD68+/PanCK+), analyzed in 78 ccRCC patients as a binary classification task (at a 0.4 threshold), the model reached a 10-fold cross-validated Area Under the Receiver Operating Characteristic (AUROC) of 0.85 (95% CI [0.76, 0.93]) using 10 LNT-derived features, improving upon the previous benchmark of 0.81. This study demonstrates the potential of GL in radiomic analyses, offering a scalable, efficient, and interpretable framework for the non-invasive approximation of key biomarkers. Full article
(This article belongs to the Special Issue Imaging in Healthcare: Progress and Challenges)
Show Figures

Figure 1

20 pages, 4951 KiB  
Article
LNT-YOLO: A Lightweight Nighttime Traffic Light Detection Model
by Syahrul Munir and Huei-Yung Lin
Smart Cities 2025, 8(3), 95; https://doi.org/10.3390/smartcities8030095 - 6 Jun 2025
Viewed by 1121
Abstract
Autonomous vehicles are one of the key components of smart mobility that leverage innovative technology to navigate and operate safely in urban environments. Traffic light detection systems, as a key part of autonomous vehicles, play a key role in navigation during challenging traffic [...] Read more.
Autonomous vehicles are one of the key components of smart mobility that leverage innovative technology to navigate and operate safely in urban environments. Traffic light detection systems, as a key part of autonomous vehicles, play a key role in navigation during challenging traffic scenarios. Nighttime driving poses significant challenges for autonomous vehicle navigation, particularly in regard to the accuracy of traffic lights detection (TLD) systems. Existing TLD methodologies frequently encounter difficulties under low-light conditions due to factors such as variable illumination, occlusion, and the presence of distracting light sources. Moreover, most of the recent works only focused on daytime scenarios, often overlooking the significantly increased risk and complexity associated with nighttime driving. To address these critical issues, this paper introduces a novel approach for nighttime traffic light detection using the LNT-YOLO model, which is based on the YOLOv7-tiny framework. LNT-YOLO incorporates enhancements specifically designed to improve the detection of small and poorly illuminated traffic signals. Low-level feature information is utilized to extract the small-object features that have been missing because of the structure of the pyramid structure in the YOLOv7-tiny neck component. A novel SEAM attention module is proposed to refine the features that represent both the spatial and channel information by leveraging the features from the Simple Attention Module (SimAM) and Efficient Channel Attention (ECA) mechanism. The HSM-EIoU loss function is also proposed to accurately detect a small traffic light by amplifying the loss for hard-sample objects. In response to the limited availability of datasets for nighttime traffic light detection, this paper also presents the TN-TLD dataset. This newly curated dataset comprises carefully annotated images from real-world nighttime driving scenarios, featuring both circular and arrow traffic signals. Experimental results demonstrate that the proposed model achieves high accuracy in recognizing traffic lights in the TN-TLD dataset and in the publicly available LISA dataset. The LNT-YOLO model outperforms the original YOLOv7-tiny model and other state-of-the-art object detection models in mAP performance by 13.7% to 26.2% on the TN-TLD dataset and by 9.5% to 24.5% on the LISA dataset. These results underscore the model’s feasibility and robustness compared to other state-of-the-art object detection models. The source code and dataset will be available through the GitHub repository. Full article
Show Figures

Figure 1

17 pages, 9732 KiB  
Article
Gel Properties and Interaction Mechanism of Heat-Induced Lentinan–Chicken Myofibrillar Protein
by Kexin Li, Ya Ren, Yong Li, Liang Li, Yanfen Cheng, Shaojun Yun, Feier Cheng, Wenfei Zhao, Li Zhao, Mingchang Chang, Jinling Cao and Cuiping Feng
Foods 2025, 14(9), 1614; https://doi.org/10.3390/foods14091614 - 2 May 2025
Viewed by 697
Abstract
The enhancement of gel properties in chicken myofibrillar proteins (MPs) is a crucial objective in meat processing. In this experiment, we systematically investigated the effects of lentinan (LNT) on MP gel formation ability and three-dimensional network structure features through multi-scale structural characterization and [...] Read more.
The enhancement of gel properties in chicken myofibrillar proteins (MPs) is a crucial objective in meat processing. In this experiment, we systematically investigated the effects of lentinan (LNT) on MP gel formation ability and three-dimensional network structure features through multi-scale structural characterization and molecular interactions analysis and elucidated the molecular pathways of their molecular actions in regulating gel properties. The addition of LNT (0–2%, w/v) significantly enhanced the water-holding capacity (WHC), textural, and rheological properties of LNT-MPs. As the concentration of LNT increased, the hydrophobic and electrostatic interactions became more pronounced. Conversely, the contribution from disulfide bonds exhibited an inverse relationship, with hydrogen bonds demonstrating the least impact. Subsequently, the α-helix content decreased from 23.75% to 22.64%, and the β-fold content increased from 28.03% to 29.22%, suggesting that the protein aggregates reorganized to form larger aggregates, which contributed to forming a more stable network structure of gels. This investigation establishes LNT’s capacity to modify the gelation mechanisms of MPs. These outcomes offer crucial insights for implementing fungal polysaccharides in processed meat product development. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

12 pages, 745 KiB  
Article
Supplementation with Lentinan Improves the Colostrum Quality of Holstein Dairy Cows and the Immunity and Antioxidant Capacity of Newborn Calves
by Yinghao Huang, Yapeng Hu, Longfei Lv, Dian Wang, Xiao Li, Sijia Liu, Zhao Zhuo, Caiyun Fan and Jianbo Cheng
Animals 2025, 15(6), 835; https://doi.org/10.3390/ani15060835 - 14 Mar 2025
Viewed by 892
Abstract
The aim of this study was to evaluate the effects of lentinan (LNT) on the quality of colostrum produced by perinatal dairy cows and the health status of their newborn calves. A total of 40 expectant Holstein cows, matched for parity and expected [...] Read more.
The aim of this study was to evaluate the effects of lentinan (LNT) on the quality of colostrum produced by perinatal dairy cows and the health status of their newborn calves. A total of 40 expectant Holstein cows, matched for parity and expected date of delivery, were selected and randomly divided into four groups: a control group fed a total mixed diet (TMR); a low LNT group (10 g/d, LLNT); a medium LNT group (20 g/d, MLNT); and a high LNT group (40 g/d, HLNT). The study commenced 21 days prior to parturition and continued for three weeks. Colostrum was collected from the cows immediately after delivery and subsequently fed to the newborn calves. The results indicated that colostrum milk protein production and IgG production in the MLNT group were significantly increased (p < 0.05). Following colostrum gavage, serum SOD and IgG in both the MLNT and HLNT groups showed significant increases (p < 0.05), while MDA and IL-1β levels were significantly decreased (p < 0.05). Moreover, calves in the MLNT and HLNT groups experienced lower incidences of diarrhea, pneumonia, and overall morbidity compared to those in the control group. In conclusion, LNT enhanced the quality of colostrum in perinatal cows and contributed to the health of newborn calves through colostrum. This study offers new research avenues for improving the health of newborn calves and provides a theoretical foundation for the development of LNT as a novel feed additive. Full article
Show Figures

Figure 1

20 pages, 6141 KiB  
Article
Effect of Low Nighttime Temperature on Oil Accumulation of Rapeseed Seeds (Brassica napus L.) Based on RNA-Seq of Silique Wall Tissue
by Chao Mi, Yanning Zhao, Xuetao Yang, Liangbin Lin and Jinxiong Wang
Agriculture 2025, 15(6), 576; https://doi.org/10.3390/agriculture15060576 - 9 Mar 2025
Viewed by 753
Abstract
This study investigated the impact of nighttime temperature and elevation on the oil and erucic acid content of rapeseed (Brassica napus L.) seeds, focusing on the role of sugar synthesis in the silique wall as a substrate for oil synthesis. Field experiments [...] Read more.
This study investigated the impact of nighttime temperature and elevation on the oil and erucic acid content of rapeseed (Brassica napus L.) seeds, focusing on the role of sugar synthesis in the silique wall as a substrate for oil synthesis. Field experiments across different altitudes and controlled low nighttime temperature (LNT) treatments (20/18 °C and 20/13 °C) were conducted. Transcriptome analysis of the silique walls was performed to explore gene expression changes. The results showed that higher altitudes and lower nighttime temperatures significantly increased seed oil and erucic acid content, particularly in strong temperature-sensitive line (STSL) seeds. LNT conditions promoted sucrose synthesis and transport in the silique wall by upregulating genes involved in sugar transport (SUT, SWEET, SUC1) and transcription factors (WRKY51, NAC104). This, in turn, enhanced the substrate availability for oil synthesis in the seeds. Furthermore, genes associated with oil biosynthesis (SAD, FAD2, KAS) were significantly upregulated under LNT, promoting oil accumulation. In conclusion, nighttime temperature is a critical factor influencing oil content in rapeseed seeds. Low nighttime temperatures enhance sucrose transport and gene expression in the silique wall, leading to increased oil synthesis. These findings provide insights for breeding strategies aimed at improving seed oil content under varying climatic conditions. Full article
(This article belongs to the Special Issue Crop Yield Improvement in Genetic and Biology Breeding)
Show Figures

Figure 1

9 pages, 1216 KiB  
Brief Report
Lentinan Reduces Transmission Efficiency of COVID-19 by Changing Aerodynamic Characteristic of Exhaled SARS-CoV-2 Aerosols in Golden Hamsters
by Cheng Zhang, Jiaming Li, Huan Cui, Yifei Jin, Zhaoliang Chen, Lei Zhang, Sihui Song, Bing Lu, Zhongyi Wang and Zhendong Guo
Microorganisms 2025, 13(3), 597; https://doi.org/10.3390/microorganisms13030597 - 5 Mar 2025
Viewed by 637
Abstract
Lentinan (LNT) was found to reduce the aerosol transmission rate between golden hamsters from 100% (9/9) to 44.4% (4/9). The viral loads in the respiratory system, including the nasal turbinate, trachea, and lung, were significantly reduced in the infected golden hamsters that received [...] Read more.
Lentinan (LNT) was found to reduce the aerosol transmission rate between golden hamsters from 100% (9/9) to 44.4% (4/9). The viral loads in the respiratory system, including the nasal turbinate, trachea, and lung, were significantly reduced in the infected golden hamsters that received LNT treatment. Furthermore, the amount of exhaled virus aerosols in hamsters treated with LNT was significantly lower than that in untreated hamsters throughout the entire disease progression. In detail, the amounts of virus-laden particles with aerodynamic diameters less than 5 µm exhibited a significant decreasing trend following LNT treatment. Moreover, the detection rate of infectious SARS-CoV-2 in each stage of the Anderson-6 sampler exhibited a decreasing trend following LNT treatment post-infection. In summary, our findings indicate that LNT therapy represents a promising therapeutic candidate for the treatment of COVID-19 patients. Meanwhile, during the course of treatment, LNT has the potential to reduce viral infectivity in affected individuals. Full article
Show Figures

Figure 1

15 pages, 5683 KiB  
Article
An Ion Discharge-Driven Thruster Based on a Lithium Niobate Piezoelectric Transformer
by Qiannan Tao, Xinshuai Wang, Yang Gu and Wei Li
Micromachines 2025, 16(3), 277; https://doi.org/10.3390/mi16030277 - 27 Feb 2025
Viewed by 694
Abstract
Microrobots, characterized by their small size, flexibility, and portability, have a diverse range of potential applications. However, microrobots’ actuation (piezoelectric ceramics, dielectric elastomers, ion winds, etc.) often requires a high voltage, typically hundreds of volts. The lithium niobate transformer (LNT), a piezoelectric voltage [...] Read more.
Microrobots, characterized by their small size, flexibility, and portability, have a diverse range of potential applications. However, microrobots’ actuation (piezoelectric ceramics, dielectric elastomers, ion winds, etc.) often requires a high voltage, typically hundreds of volts. The lithium niobate transformer (LNT), a piezoelectric voltage transformer, presents a promising solution for miniaturizing high-voltage power supplies due to its compact size, low weight, and high step-up ratio. This study explores the effects of structural parameters and external circuits on the resonant frequency and step-up ratio of the LNT through numerical simulations and experiments. The results indicate the following: (1) the second-order longitudinal vibration frequency of the lithium niobate (LN) plate inversely correlates with its length; (2) the thickness and width of the plate have minimal impact on the frequency; (3) the step-up ratio increases as the plate thickness decreases. The experimental results suggest that LN plates with a thickness of 1 mm are preferable due to the fragility of 0.5 mm plates, especially at the output end. Additionally, optimizing the input circuit enhances voltage amplification, allowing the LNT to generate sufficient output voltage for corona discharge. These findings highlight the potential of LNTs for efficiently and reliably powering small-scale devices. Full article
Show Figures

Figure 1

19 pages, 4894 KiB  
Article
Extraction and Identification of Polysaccharide from Lentinus edodes and Its Effect on Immunosuppression and Intestinal Barrier Injury Induced by Cyclophosphamide
by Xiaodi Jin, Zhiyong Wu, Hao Chen, Weiqi Liu, Fuhua Gu and Jichang Li
Int. J. Mol. Sci. 2024, 25(22), 12432; https://doi.org/10.3390/ijms252212432 - 19 Nov 2024
Cited by 2 | Viewed by 1441
Abstract
Lentinus edodes serves as a significant source of both medicine and food, with its key component, lentinan (LNT), recognized as an effective immunomodulator. However, the mechanisms by which it regulates immune and intestinal functions under conditions of immunosuppression remain unclear. This study aims [...] Read more.
Lentinus edodes serves as a significant source of both medicine and food, with its key component, lentinan (LNT), recognized as an effective immunomodulator. However, the mechanisms by which it regulates immune and intestinal functions under conditions of immunosuppression remain unclear. This study aims to investigate the components of lentinan and examine its potential effects on countering cyclophosphamide (CP)-induced immunosuppression, intestinal barrier damage, and dysregulation of gut microbiota. In this study, the effects of LNT were evaluated by serological indicators, histopathological changes in ileum, tight-junction-related protein expression, cytokine expression levels, and gut microbiota 16S rRNA gene sequencing. We found that LNT was effective in mitigating the abnormalities in body weight, immune organ index, and serum levels of IL-6, IL-2, IFN-γ, and IgG in mice induced by CP (p < 0.05). Furthermore, LNT demonstrated the ability to alleviate intestinal barrier damage induced by CP by increasing the mRNA levels of TNF-α, IL-1β, IFN-γ, Occludin, and ZO-1 (p < 0.05). Additionally, 16S rRNA gene sequencing revealed that LNT also normalized the disrupted abundance of Firmicutes, Proteobacteria, and Bacteroidets caused by CP. This restoration brought the gut microbiota back to normal levels and increased the abundance of certain tumor-inhibiting bacteria, such as Alistipes. Overall, lentinan demonstrated the ability to reverse the immunosuppressive effects induced by cyclophosphamide and modulate gut microbiota to restore a healthy microbial balance. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

15 pages, 2293 KiB  
Article
A Hydroponic System to Study the Effects of Root and Meristem Night Temperature on Growth, Photosynthesis Carbon Balance, and Antioxidant Enzymes in Rice
by Alejandro J. Pieters, Sabine Stürz, Julia Asch and Folkard Asch
Agriculture 2024, 14(9), 1574; https://doi.org/10.3390/agriculture14091574 - 10 Sep 2024
Viewed by 1586
Abstract
Nocturnal root and meristem temperature (RMT) can have a strong effect on rice growth and yield. However, underlying mechanisms are not well understood. To investigate the effects of night-time RMT on photosynthesis biomass allocation and activities of antioxidant enzymes, we designed a hydroponic [...] Read more.
Nocturnal root and meristem temperature (RMT) can have a strong effect on rice growth and yield. However, underlying mechanisms are not well understood. To investigate the effects of night-time RMT on photosynthesis biomass allocation and activities of antioxidant enzymes, we designed a hydroponic system that maintained the following daily patterns of day/night temperature: 18/28 °C (HNT) or 28/18 °C (LNT). Rice plants cv. IR64 were grown in the greenhouse and subjected to either HNT or LNT. HNT stimulated growth and tillering but did not affect biomass allocation. HNT plants increased total biomass by 16 and 35%, depending on time of exposure. HNT increased rates of photosynthesis (Pn) compared to LNT plants in leaves of different ages. Overnight carbohydrate remobilisation was larger in HNT than in LNT plants, particularly at 16 days after treatment (dat), when Pn and relative growth rates were highest. Leaf soluble protein concentrations and specific leaf area were not affected by RMT, indicating higher photosynthetic nitrogen use efficiency in HNT plants. Super Oxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase activities did not respond to RMT, indicating no change in the production of reactive oxygen species in LNT plants despite lower photosynthesis rates. HNT increased sink demand by stimulating tillering, the increased sink demand upregulated the source activity through a larger leaf area per plant and a higher Pn throughout the canopy. The hydroponic system described here was able to control the temperature of the nutrient solution effectively, the installation of a second pump directly circulating the nutrient solution from and back to the reservoir through the cooling system allowed reaching the target temperature within 1 h. This system opens new opportunities to characterise plant responses to RMT alone or in combination with other environmental drivers. Full article
(This article belongs to the Special Issue Innovative Hydroponic Systems for Sustainable Agriculture)
Show Figures

Figure 1

12 pages, 3770 KiB  
Article
Effect of High-Pressure Torsion Temperatures on the Precipitation and Properties of Cu-Cr Alloy
by Yu Zhang, Depeng Shen, Guoqiang Liu and Bingtao Tang
Materials 2024, 17(17), 4429; https://doi.org/10.3390/ma17174429 - 9 Sep 2024
Cited by 2 | Viewed by 1166
Abstract
This study examines the impact of high-pressure torsion (HPT) processing at various temperatures on the precipitation behavior of Cu-Cr alloys. The introduction of defects through HPT is observed to promote the precipitation of Cr atoms. Unlike the traditional large-scale precipitation that typically occurs [...] Read more.
This study examines the impact of high-pressure torsion (HPT) processing at various temperatures on the precipitation behavior of Cu-Cr alloys. The introduction of defects through HPT is observed to promote the precipitation of Cr atoms. Unlike the traditional large-scale precipitation that typically occurs around 400 °C, HPT can induce the precipitation of solute atoms even at room temperature. Furthermore, the temperature at which HPT is performed significantly influences the behavior of the precipitated phase during subsequent aging, ultimately affecting the alloy’s overall properties. At elevated temperatures (ETs) and room temperature (RT), Cr atoms tend to aggregate, forming Guinier–Preston (GP) zones or precipitates, which coarsen into incoherent precipitates after annealing. In contrast, when HPT is conducted at liquid nitrogen temperature (LNT), Cr atoms are retained in their original positions, leading to the formation of uniformly distributed, high-density small precipitates post-annealing. This phenomenon results in superior properties for HPT-LNT-treated samples, evidenced by a microhardness of 191.8 ± 3.2 HV and an electrical conductivity of 84.6 ± 1.8% IACS. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

30 pages, 5968 KiB  
Article
Nitrate Starvation Induces Lateral Root Organogenesis in Triticum aestivum via Auxin Signaling
by Chengming Tang, Yunxiu Zhang, Xiao Liu, Bin Zhang, Jisheng Si, Haiyong Xia, Shoujin Fan and Lingan Kong
Int. J. Mol. Sci. 2024, 25(17), 9566; https://doi.org/10.3390/ijms25179566 - 3 Sep 2024
Cited by 2 | Viewed by 1300
Abstract
The lateral root (LR) is an essential component of the plant root system, performing important functions for nutrient and water uptake in plants and playing a pivotal role in cereal crop productivity. Nitrate (NO3) is an essential nutrient for plants. [...] Read more.
The lateral root (LR) is an essential component of the plant root system, performing important functions for nutrient and water uptake in plants and playing a pivotal role in cereal crop productivity. Nitrate (NO3) is an essential nutrient for plants. In this study, wheat plants were grown in 1/2 strength Hoagland’s solution containing 5 mM NO3 (check; CK), 0.1 mM NO3 (low NO3; LN), or 0.1 mM NO3 plus 60 mg/L 2,3,5-triiodobenzoic acid (TIBA) (LNT). The results showed that LN increased the LR number significantly at 48 h after treatment compared with CK, while not increasing the root biomass, and LNT significantly decreased the LR number and root biomass. The transcriptomic analysis showed that LN induced the expression of genes related to root IAA synthesis and transport and cell wall remodeling, and it was suppressed in the LNT conditions. A physiological assay revealed that the LN conditions increased the activity of IAA biosynthesis-related enzymes, the concentrations of tryptophan and IAA, and the activity of cell wall remodeling enzymes in the roots, whereas the content of polysaccharides in the LRP cell wall was significantly decreased compared with the control. Fourier-transform infrared spectroscopy and atomic microscopy revealed that the content of cell wall polysaccharides decreased and the cell wall elasticity of LR primordia (LRP) increased under the LN conditions. The effects of LN on IAA synthesis and polar transport, cell wall remodeling, and LR development were abolished when TIBA was applied. Our findings indicate that NO3 starvation may improve auxin homeostasis and the biological properties of the LRP cell wall and thus promote LR initiation, while TIBA addition dampens the effects of LN on auxin signaling, gene expression, physiological processes, and the root architecture. Full article
Show Figures

Figure 1

13 pages, 2619 KiB  
Article
High-Strain-Rate Deformation Behavior of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 Eutectic High-Entropy Alloy at Room and Cryogenic Temperatures
by Kun Jiang, Zhiping Xiong and Xi Chen
Materials 2024, 17(12), 2995; https://doi.org/10.3390/ma17122995 - 18 Jun 2024
Cited by 3 | Viewed by 1459
Abstract
The deformation behaviors of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 eutectic high-entropy alloy (EHEA) under high strain rates have been investigated at both room temperature (RT, 298 K) and liquid nitrogen temperature (LNT, 77 K). The current Co0.96 [...] Read more.
The deformation behaviors of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 eutectic high-entropy alloy (EHEA) under high strain rates have been investigated at both room temperature (RT, 298 K) and liquid nitrogen temperature (LNT, 77 K). The current Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 EHEA exhibits a high yield strength of 740 MPa along with a high fracture strain of 35% under quasi-static loading. A remarkable positive strain rate effect can be observed, and its yield strength increased to 1060 MPa when the strain rate increased to 3000/s. Decreasing temperature will further enhance the yield strength significantly. The yield strength of this alloy at a strain rate of 3000/s increases to 1240 MPa under the LNT condition. Moreover, the current EHEA exhibits a notable increased strain-hardening ability with either an increasing strain rate or a decreasing temperature. Transmission electron microscopy (TEM) characterization uncovered that the dynamic plastic deformation of this EHEA at RT is dominated by dislocation slip. However, under severe conditions of high strain rate in conjunction with LNT, dislocation dissociation is promoted, resulting in a higher density of nanoscale deformation twins, stacking faults (SFs) as well as immobile Lomer–Cottrell (L-C) dislocation locks. These deformation twins, SFs and immobile dislocation locks function effectively as dislocation barriers, contributing notably to the elevated strain-hardening rate observed during dynamic deformation at LNT. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

13 pages, 3633 KiB  
Article
Relationship between Chalkiness and the Structural and Physicochemical Properties of Rice Starch at Different Nighttime Temperatures during the Early Grain-Filling Stage
by Changzhi Long, Yanli Du, Mingyang Zeng, Xueyun Deng, Zhengwei Zhang, Dong Liu and Yongjun Zeng
Foods 2024, 13(10), 1516; https://doi.org/10.3390/foods13101516 - 13 May 2024
Viewed by 1761
Abstract
The chalkiness, starch fine structure, and physiochemical properties of rice starch were analyzed and their correlations were investigated under different nighttime temperatures during the early grain-filling stage. Compared to MT, medium temperature (MT) and low (LNT) and high (HNT) nighttime temperatures resulted in [...] Read more.
The chalkiness, starch fine structure, and physiochemical properties of rice starch were analyzed and their correlations were investigated under different nighttime temperatures during the early grain-filling stage. Compared to MT, medium temperature (MT) and low (LNT) and high (HNT) nighttime temperatures resulted in an increased chalky grain rate (CGR) and chalkiness degree (CD). LNT mainly affected the chalkiness by increasing peak1 (short branch chains of amylopectin), the branching degree, and the proportion of small starch granules but decreasing peak2 (long branch chains of amylopectin) and peak3 (amylose branches). This altered the pasting properties, such as by increasing the peak viscosity and final viscosity. However, HNT mainly affected the chalkiness by increasing peak2 and the crystallinity degree but decreasing peak1 and peak3. Regarding the thermal properties, HNT also elevated peak and conclusion temperatures. The CGR and CD were significantly and positively correlated with the proportions of small and medium starch granules, peak1, branching degree, gelatinization enthalpy, setback viscosity, and pasting time but markedly and negatively correlated with the proportion of large starch granules, amylose content, peak3, peak viscosity, and breakdown viscosity. These findings suggest that LNT and HNT disrupted the starch structure, resulting in increased chalkiness. However, their mechanisms of action differ. Full article
Show Figures

Figure 1

Back to TopTop