Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = LCC compensation topology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5889 KiB  
Article
A Strong Misalignment Tolerance Wireless Power Transfer System for AUVs with Hybrid Magnetic Coupler
by Haibing Wen, Xiaolong Zhou, Yu Wang, Zhengchao Yan, Kehan Zhang, Jie Wen, Lei Yang, Yaopeng Zhao, Yang Liu and Xiangqian Tong
J. Mar. Sci. Eng. 2025, 13(8), 1423; https://doi.org/10.3390/jmse13081423 - 25 Jul 2025
Viewed by 198
Abstract
Wireless power transfer systems require not only strong coupling capabilities but also stable output under various misalignment conditions. This paper proposes a hybrid magnetic coupler for autonomous underwater vehicles (AUVs), featuring two identical arc-shaped rectangular transmitting coils and a combination of an arc-shaped [...] Read more.
Wireless power transfer systems require not only strong coupling capabilities but also stable output under various misalignment conditions. This paper proposes a hybrid magnetic coupler for autonomous underwater vehicles (AUVs), featuring two identical arc-shaped rectangular transmitting coils and a combination of an arc-shaped rectangular receiving coil and two anti-series connected solenoid coils. The arc-shaped rectangular receiving coil captures the magnetic flux generated by the transmitting coil, which is directed toward the center, while the solenoid coils capture the axial magnetic flux generated by the transmitting coil. The parameters of the proposed magnetic coupler have been optimized to enhance the coupling coefficient and improve the system’s tolerance to misalignments. To verify the feasibility of the proposed magnetic coupler, a 300 W prototype with LCC-S compensation topology is built. Within a 360° rotational misalignment range, the system’s output power maintains around 300 W, with a stable power transmission efficiency of over 92.14%. When axial misalignment of 40 mm occurs, the minimum output power is 282.8 W, and the minimum power transmission efficiency is 91.6%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 3561 KiB  
Article
A Novel Capacitor-Commutated Converter Based on Submodule-Cascaded STATCOM
by Ming Yan, Songge Huang, Wenbin Yang, Chenyi Tang, Jianan Jiang and Yaolu He
Electronics 2025, 14(13), 2646; https://doi.org/10.3390/electronics14132646 - 30 Jun 2025
Viewed by 164
Abstract
To address the challenge of a conventional line-commutated converter (LCC), unable to operate properly in connection with a very weak AC system, the technology of the capacitor-commutated converter (CCC) was widely utilized in 1990s. The topology of the CCC is constructed as a [...] Read more.
To address the challenge of a conventional line-commutated converter (LCC), unable to operate properly in connection with a very weak AC system, the technology of the capacitor-commutated converter (CCC) was widely utilized in 1990s. The topology of the CCC is constructed as a conventional LCC modified with a series capacitor between the converter transformer and the thyristor valves in each phase. Additional phase voltage can be generated on the capacitor to assist the process of the commutation. However, the CCC technology may experience continuous commutation failure due to the uncontrolled charging of the series capacitor. Based on the submodule-cascaded static synchronous compensator (STATCOM), this paper proposes a novel topology called the submodule-cascaded STATCOM-based CCC (SCCC). The SCCC technology enables the function of reactive power compensation and active filtering. It can also improve the transient characteristics of the AC faults via dynamic reactive power injection during the transient process, which helps to reduce the risk of continuous commutation failure in the CCC. Full article
Show Figures

Figure 1

14 pages, 2404 KiB  
Article
The Development of a 1 kW Mid-Range Wireless Power Transfer Platform for Autonomous Guided Vehicle Applications Using an LCC-S Resonant Compensator
by Worapong Pairindra, Suwaphit Phongsawat, Teeraphon Phophongviwat and Surin Khomfoi
World Electr. Veh. J. 2025, 16(6), 322; https://doi.org/10.3390/wevj16060322 - 9 Jun 2025
Cited by 1 | Viewed by 691
Abstract
This study presents the development, simulation, and hardware implementation of a 48 V, 1 kW mid-range wireless power transfer (WPT) platform for autonomous guided vehicle (AGV) charging in industrial applications. The system uses an LCC-S compensation topology, selected for its ability to maintain [...] Read more.
This study presents the development, simulation, and hardware implementation of a 48 V, 1 kW mid-range wireless power transfer (WPT) platform for autonomous guided vehicle (AGV) charging in industrial applications. The system uses an LCC-S compensation topology, selected for its ability to maintain a constant output voltage and deliver high efficiency even under load variations at a typical coil distance of 15 cm. It can also operate at different distances by adjusting the compensator circuit. A proportional–integral (PI) controller is implemented for current regulation, offering a practical, low-cost solution well suited to industrial embedded systems. Compared to advanced control strategies, the PI controller provides sufficient accuracy with minimal computational demand, enabling reliable operation in real-world environments. Current adjustment can be dynamically carried out in response to real-time changes and continuously monitored based on the AGV battery’s state of charge (SOC). Simulation and experimental results validate the system’s performance, achieving over 80% efficiency and demonstrating its feasibility for scalable, robust AGV charging in Industry 4.0 Manufacturing Settings. Full article
(This article belongs to the Special Issue Wireless Power Transfer Technology for Electric Vehicles)
Show Figures

Figure 1

18 pages, 5593 KiB  
Article
Optimal Design of Resonant Network for 800 V Class 11.1 kW Wireless Power Transfer System with Double-Sided LCC Compensation Circuit
by Chul-Min Kim and Jong-Soo Kim
Electronics 2025, 14(9), 1701; https://doi.org/10.3390/electronics14091701 - 22 Apr 2025
Viewed by 627
Abstract
This study proposes an optimal resonant network design for an 11.1 kW wireless power transfer (WPT) system with a double-sided LCC compensation circuit, targeting 800 V class battery applications. Conventional WPT circuit topologies and design parameters specified in existing standards, such as SAE [...] Read more.
This study proposes an optimal resonant network design for an 11.1 kW wireless power transfer (WPT) system with a double-sided LCC compensation circuit, targeting 800 V class battery applications. Conventional WPT circuit topologies and design parameters specified in existing standards, such as SAE J2954, are unsuitable for 800 V class battery systems because they impose excessive voltage and current stresses on the resonant network components. To address this, the proposed design focuses on minimizing component stresses while ensuring compliance with the output voltage requirements for 800 V battery charging. A switched capacitor technique is integrated into the resonant network to dynamically adjust the compensation capacitance, enabling seamless adaptation to the constant current–constant voltage charging profile. The feasibility of the WPT system is validated through simulations and experiments, demonstrating an input voltage of 400 VDC, an output voltage range of 560–820 VDC, and a rated power capacity of 11.1 kW. Under rated conditions, the system achieves a peak efficiency of 95%, underscoring its practicality for high-voltage electric vehicle charging applications. Full article
(This article belongs to the Special Issue Resonant Converter in Power Electronics)
Show Figures

Figure 1

22 pages, 6398 KiB  
Article
A Novel Optimization Method of the DS-LCC Compensation Topology to Reduce the Sensitivity of the Load-Independent Constant Current Output Characteristics to the Component Parametric Deviation
by Xuze Zhang, Jingang Li and Xiangqian Tong
Electronics 2025, 14(8), 1536; https://doi.org/10.3390/electronics14081536 - 10 Apr 2025
Viewed by 308
Abstract
For the double-sided inductor–capacitor–capacitor (DS-LCC) compensation topology, the parametric deviation of compensation elements results in the mismatch between the resonant frequency and operating frequency. Furthermore, this mismatch leads to the loss of the load-independent constant output characteristics. Therefore, an innovative design approach based [...] Read more.
For the double-sided inductor–capacitor–capacitor (DS-LCC) compensation topology, the parametric deviation of compensation elements results in the mismatch between the resonant frequency and operating frequency. Furthermore, this mismatch leads to the loss of the load-independent constant output characteristics. Therefore, an innovative design approach based on the reduction in the capacitance ratio is proposed to attain the load-independent constant current under the parametric deviation. With the presented method, simply by reducing the compensation capacitor ratio, the load-independent constant current output characteristics can be preserved, and fluctuations in the transmission gain caused by the parametric deviation are minimized. This implies that when the constant transmission gain is achieved by the frequency modulation (FM) control, the required FM range can be reduced. Finally, from the experimental results, in the load range of 3 Ω to 33 Ω, compared to the high capacitance ratio, the load-independent constant current characteristics can be maintained at the low capacitance ratio. In addition, without parametric deviation, the transmission efficiencies at different capacitance ratios are basically the same at 93.5% and 94.2%, respectively. However, the transmission efficiencies under different parametric deviations at the low capacitance ratio are 87.4% and 84.9%, but only 73.9% and 68.2% at the high capacitance ratio. Full article
Show Figures

Figure 1

17 pages, 18041 KiB  
Article
Coils Optimisation to Avoid Parasitic Capacitance Effects in an Inductive Wireless Charger for Underwater Vehicles
by Inmaculada Casaucao, Alejandro Linares and Alicia Triviño
Electronics 2025, 14(4), 654; https://doi.org/10.3390/electronics14040654 - 8 Feb 2025
Cited by 1 | Viewed by 1034
Abstract
The integration of inductive charging technology in electric vehicles has aroused the interest of researchers in recent years. Specifically, one of the growing areas is wireless charging in Autonomous Underwater Vehicles (AUVs). In this environment, the effects of seawater in wireless power transmission [...] Read more.
The integration of inductive charging technology in electric vehicles has aroused the interest of researchers in recent years. Specifically, one of the growing areas is wireless charging in Autonomous Underwater Vehicles (AUVs). In this environment, the effects of seawater in wireless power transmission should be carefully studied. Specifically, one of the effects that should be analysed is the appearance of parasitic capacitances (Ce) between the power coils due to the high conductivity of seawater. The parasitic capacitance, together with the power converters switching losses and the resistive and inductive losses, can lead to a drop in efficiency during the charging process. The main objective of this contribution is to find the optimal solution to avoid the effects of Ce during the coils design, thus simplifying the process and making it equivalent to an air-based solution. To do so, different design criteria have been defined with a comparative analysis among different topologies proposed. Specifically, we have studied the variations of voltage, current, and efficiency caused by the Ce. Additionally, a comparison between Series-Series (SS) and LCC–Series (LCC–S) compensation systems has been considered, studying the system efficiency and maximum current values found on the circuit. The results of these studies have been verified through experimental validations, where the design and implementation of the elements that constitute the inductive charger have been performed. This validation has demonstrated the possibility of neglecting the effects of Ce by optimising the coil’s design. Full article
Show Figures

Figure 1

23 pages, 6918 KiB  
Article
A Study of 500 W/250 mm Inductive Power Transfer System for Television Appliance
by Sang-Hoon Hwang, Junchen Xie, Seungjin Jo, Gang-Yoon Lee and Dong-Hee Kim
Electronics 2025, 14(2), 270; https://doi.org/10.3390/electronics14020270 - 10 Jan 2025
Viewed by 738
Abstract
This study presents the design, analysis, and experimental validation of a 500 W inductive power transfer (IPT) system with a transmission distance of 250 mm for television applications. The proposed system incorporates an innovative wireless pad design featuring a four-teeth magnetic structure and [...] Read more.
This study presents the design, analysis, and experimental validation of a 500 W inductive power transfer (IPT) system with a transmission distance of 250 mm for television applications. The proposed system incorporates an innovative wireless pad design featuring a four-teeth magnetic structure and an LCC-S compensation topology to optimize coupling coefficients, reduce copper losses, and improve overall efficiency. The system’s robustness under misalignment and load fluctuations was validated, with experimental results confirming over 80% efficiency for optimal configurations. The findings also highlight the sensitivity of the system to switching frequency variations, emphasizing the need to maintain resonance conditions for maximum power transfer. Compared to existing designs, the proposed system demonstrates superior performance in long-distance wireless power transfer, making it a promising solution for high-power applications in home appliances. Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

25 pages, 17981 KiB  
Article
Misalignment Tolerance Improvement of a Wireless Power Supply System for Drones Based on Transmitter Design with Multiple Annular-Sector-Shaped Coils
by Han Liu, Dengjie Huang, Lin Wang and Rong Wang
Drones 2024, 8(12), 773; https://doi.org/10.3390/drones8120773 - 19 Dec 2024
Cited by 1 | Viewed by 941
Abstract
The application of wireless power transfer (WPT) technology in power replenishment for drones can help to solve problems such as the frequent manual plugging and unplugging of cables. A wireless power replenishment system for drones based on the transmitter design with multiple annular-sector-shaped [...] Read more.
The application of wireless power transfer (WPT) technology in power replenishment for drones can help to solve problems such as the frequent manual plugging and unplugging of cables. A wireless power replenishment system for drones based on the transmitter design with multiple annular-sector-shaped coils is proposed in this paper, which improves the misalignment tolerance of couplers, enlarges the drone landing area, and reduces the control requirements of drone landing accuracy further. The general analysis model of the proposed transmitter and the numerical calculation method for mutual inductance between energy transceivers are established. Then, the effect of multiple parameters of the proposed transmitter on the variation in mutual inductance is studied. The misalignment tolerance improvement strategy based on the optimization of multiple parameters of the transmitter is investigated. Finally, an experimental prototype of a wireless power replenishment system for drones based on LCC-S compensation topology is designed to validate the theoretical research. Under the same maximum outer radius of 0.20 m and the same mutual inductance fluctuation rate of 5%, compared to single circular transmitter mode, the maximum offset distance of all directions (360 degrees) in the x-y plane is increased from 0.08 m to 0.12 m. As the receiving side position changes, the maximum receiving power and efficiency are 141.07 W and 93.79%, respectively. At the maximum offset position of 0.12 m, the received power and efficiency are still 132.13 W and 91.25%, respectively. Full article
Show Figures

Figure 1

12 pages, 5022 KiB  
Article
Dual-Loop Constant Voltage Regulation in Wireless Power Transfer Systems Using Phase-Shift and Duty Cycle Modulation
by Zhiheng Zhao and Jinhong Sun
Electronics 2024, 13(24), 4920; https://doi.org/10.3390/electronics13244920 - 13 Dec 2024
Viewed by 855
Abstract
This study investigates the single transmitter and single receiver (STSR) with dual-output capability. This methodology utilizes dual half-wave rectification. Initially, the system topology of the STSR multi-channel voltage output is presented with the inductor-capacitor-capacitor-series (LCC-S) compensation topology, followed by an in-depth analysis of [...] Read more.
This study investigates the single transmitter and single receiver (STSR) with dual-output capability. This methodology utilizes dual half-wave rectification. Initially, the system topology of the STSR multi-channel voltage output is presented with the inductor-capacitor-capacitor-series (LCC-S) compensation topology, followed by an in-depth analysis of its double-channel voltage output characteristics. Through detailed analysis and empirical validation, the system is shown to maintain high efficiency and stable performance, making it well-suited for applications demanding reliable dual-voltage outputs under dynamic conditions. Full article
(This article belongs to the Special Issue Advanced DC-DC Converter Topology Design, Control, Application)
Show Figures

Figure 1

20 pages, 8715 KiB  
Article
A New Magnetic Coupler with High Misalignment Tolerance and Inherent Constant Current–Constant Voltage for Underground Wireless Charging
by Kai Yan, Ruirong Dang, Xudong Feng and Wenzhen Wang
Energies 2024, 17(20), 5130; https://doi.org/10.3390/en17205130 - 15 Oct 2024
Cited by 2 | Viewed by 996
Abstract
In an underground inductive power transfer (IPT), it is inevitable to produce the phenomenon of misalignment between the transmitter and the receiver, which will reduce the output current, voltage and output efficiency of the whole IPT system. Aiming to solve this problem, a [...] Read more.
In an underground inductive power transfer (IPT), it is inevitable to produce the phenomenon of misalignment between the transmitter and the receiver, which will reduce the output current, voltage and output efficiency of the whole IPT system. Aiming to solve this problem, a universal hybrid coupler is proposed, which can still stabilize the output in the expected range and has the ability of anti-misalignment when the X and Z directions are misaligned. The coupler is composed of a BP coupler and Γ type network. The secondary edge of the coupler introduces a Γ network, which decouples the two main coils on the same side of the receiver from the auxiliary coil and reduces the complexity of the system. The coupler can effectively reduce the coupling fluctuation caused by physical movement between the downhole transmitting end and the receiving end, thereby ensuring the stable output of the coupler. As a widely used IPT system, it can access the rest of the circuit topology whose output is independent of the load and achieve misalignment-tolerant output. Finally, based on the proposed hybrid IPT coupler theory, a 500 W misalignment-tolerant coupler prototype was built, and the compensation topologies were configured as series–series (SS) and series/inductance/capacitance/capacitor (S/LCC) structures. When the X and Z direction is misaligned, the constant current and voltage independent of the load can be output by switching the compensation topology. The experimental results are the same as the theoretical analysis. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

15 pages, 12753 KiB  
Article
An Integrated Double-Sided LCC Compensation Based Dual-Frequency Compatible WPT System with Constant-Current Output and ZVS Operation
by Yafei Chen, Yijia Liu, Zhiliang Yang, Pengfei Gao and Jie Wu
Electronics 2024, 13(18), 3714; https://doi.org/10.3390/electronics13183714 - 19 Sep 2024
Viewed by 1200
Abstract
This article presents an integrated double-sided inductance and double capacitances (DS-LCC) compensation based dual-frequency compatible wireless power transfer (WPT) system. A cascaded single-phase multi-frequency inverter (CSMI) is constructed to generate the independent dual-frequency power transfer signals. In order to achieve the [...] Read more.
This article presents an integrated double-sided inductance and double capacitances (DS-LCC) compensation based dual-frequency compatible wireless power transfer (WPT) system. A cascaded single-phase multi-frequency inverter (CSMI) is constructed to generate the independent dual-frequency power transfer signals. In order to achieve the load-independent constant-current output (CCO) at two frequencies, an integrated DS-LCC compensated topology is reconstructed. By configuring the frequency-selective resonating compensation (FSRC) network in the primary side, the power transfer signals at two frequencies can be superimposed into a single transmitting coil, reducing the cost and volume of the system. Furthermore, to implement zero-voltage switching (ZVS) of the CSMI throughout the entire power range, a general parameter design method of the proposed system is also introduced. A 1.5-kW experimental prototype is built to validate the practicability of the presented dual-frequency compatible WPT System. The system can supply power to different loads at two frequencies simultaneously with CCO and ZVS properties. The peak efficiency reaches 91.75% at a 1.2-kW output power. Full article
Show Figures

Figure 1

15 pages, 6140 KiB  
Article
DAB-Based Bidirectional Wireless Power Transfer System with LCC-S Compensation Network under Grid-Connected Application
by Guocun Li, Zhouchi Cai, Chen Feng, Zeyu Sun and Xuewei Pan
Energies 2024, 17(17), 4519; https://doi.org/10.3390/en17174519 - 9 Sep 2024
Cited by 1 | Viewed by 1520
Abstract
To realize two-way power transfer without physical connections under a grid-connected application, bidirectional wireless power transfer (BDWPT) is introduced. This paper proposes an LCC-S compensated BDWPT system based on dual-active-bridge (DAB) topology with the minimum component counts. LCC-S is designed to [...] Read more.
To realize two-way power transfer without physical connections under a grid-connected application, bidirectional wireless power transfer (BDWPT) is introduced. This paper proposes an LCC-S compensated BDWPT system based on dual-active-bridge (DAB) topology with the minimum component counts. LCC-S is designed to be a constant voltage (CV) network. To obtain the power transmission characteristics of the system, a mathematical model based on the fundamental harmonic approximation (FHA) method is established, and the result shows that the direction and amount of transfer power can be controlled by changing the magnitude of output voltages of either/both side of H-bridges. The reactive power of the system can be controlled to be zero when the output voltages of two H-bridges are in the same phase. Compared with DAB-based BDWPT systems with constant current (CC) compensation networks, the proposed structure has better transfer power regulation capability and easier control of the direction of power flow. A 1.1 kW experimental prototype is built in the laboratory to verify the characteristics of the proposed system. The results indicate that the power transfer characteristics of the proposed BDWPT system match its mathematical derivation results based on the FHA model. Full article
(This article belongs to the Special Issue Progress and Challenges in Grid-Connected Inverters and Converters)
Show Figures

Figure 1

17 pages, 6557 KiB  
Article
A Novel Hill Climbing-Golden Section Search Maximum Energy Efficiency Tracking Method for Wireless Power Transfer Systems in Unmanned Underwater Vehicles
by Yayu Ma, Bo Liang, Jiale Wang, Bo Cheng, Zhengchao Yan, Moyan Dong and Zhaoyong Mao
J. Mar. Sci. Eng. 2024, 12(8), 1336; https://doi.org/10.3390/jmse12081336 - 6 Aug 2024
Cited by 1 | Viewed by 1562
Abstract
Efficiency has always been one of the most critical indicators for evaluating wireless power transfer (WPT) systems. To achieve fast maximum energy efficiency tracking (MEET), this paper provides an innovative control method utilizing the hill climbing-golden section search (HC-GSS) method of an LCC-S [...] Read more.
Efficiency has always been one of the most critical indicators for evaluating wireless power transfer (WPT) systems. To achieve fast maximum energy efficiency tracking (MEET), this paper provides an innovative control method utilizing the hill climbing-golden section search (HC-GSS) method of an LCC-S compensated WPT system. The receiver side includes a buck-boost converter that regulates the output current or voltage to meet output requirements. In the meantime, the buck-boost converter on the transmitter side is managed by the HC-GSS approach for MEET by minimizing the input power under the premise of output stability. Compared with the conventional P&O method, the HC-GSS method can eliminate the trade-off between the oscillation and convergence rate because it is designed for different system stages. In this WPT system, there is no need for direct communication between the transmitter and receiver. Therefore, the system is potentially cheaper to implement and does not suffer from annoying communication delays, which are prevalent in underwater environments for unmanned underwater vehicles’ (UUV) WPT systems. Both the simulation and experiment results show that this method can improve the efficiency of the WPT system without communication. The proposed method remains valid with coupler displacement as it does not include the mutual inductance of the system. Full article
(This article belongs to the Special Issue Advancements in New Concepts of Underwater Robotics)
Show Figures

Figure 1

13 pages, 4241 KiB  
Article
Design of Inductive Power Transfer Charging System with Weak Coupling Coefficient
by Yuhang Chen, Shichun Yang, Mengchao Zheng and Xiaoyu Yan
Energies 2024, 17(15), 3836; https://doi.org/10.3390/en17153836 - 3 Aug 2024
Viewed by 1239
Abstract
Inductive power transfer (IPT) technology is used in various applications owing to its safety features, robust environmental adaptability, and convenience. In some special applications, the charging pads are required to be as compact as possible to accommodate practical spatial requirements, and even size [...] Read more.
Inductive power transfer (IPT) technology is used in various applications owing to its safety features, robust environmental adaptability, and convenience. In some special applications, the charging pads are required to be as compact as possible to accommodate practical spatial requirements, and even size requirements dictate that the diameter of the charging pad matches the air gap. However, such requirements bring about a decrease in the transmission efficiency, power, and tolerance to misalignment of the system. In this paper, by comparing a double-sided inductor–capacitor–capacitor (LCC), double-sided inductor–capacitor–inductor (LCL), series–series (SS), and inductor–capacitor–capacitor–series (LCC-S) compensation topologies in IPT systems, we identified a double-sided LCC compensation topology that is suitable for weak coupling coefficients. Furthermore, this study modeled and simulated the typical parameters of coreless coils in circular power pads, such as the number of coil layers, turns, wire diameter, and wire spacing, to enhance the mutual inductance of the magnetic coupler during misalignment and long-distance transmission. A wireless charging system with 640 W output power was built, and the experimental results show that a maximum dc-dc efficiency of over 86% is achieved across a 200 mm air gap when the circular power pad with a diameter of 200 mm is well aligned. The experimental results show that using a suitable compensation topology and optimizing the charging pad parameters enables efficient IPT system operation when the coupling coefficient is 0.02. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

17 pages, 5504 KiB  
Article
Analysis of Leakage Current in Dynamic Wireless Power Transfer Systems Based on LCC-S Architecture
by Siyu Hou, Benhui Zhang, Yanjin Hou, Xuenan Sun, Tongkun Zhang, Xiaoyu Zhang and Qianfang Sun
World Electr. Veh. J. 2024, 15(6), 225; https://doi.org/10.3390/wevj15060225 - 22 May 2024
Cited by 1 | Viewed by 1331
Abstract
This paper investigates the issue of leakage current at the transmitter in the Dynamic Wireless Power Transfer (DWPT) system for electric vehicles and puts forward a novel bilateral resonant compensation topology structure based on the conventional LCC-S architecture. Based on the LCC-S framework, [...] Read more.
This paper investigates the issue of leakage current at the transmitter in the Dynamic Wireless Power Transfer (DWPT) system for electric vehicles and puts forward a novel bilateral resonant compensation topology structure based on the conventional LCC-S architecture. Based on the LCC-S framework, a circuit model was developed for traditional (unilateral)/bilateral resonant compensation topologies. The Fourier series voltage-to-earth expansions for the power supply rail were deduced for both topologies. Subsequently, the voltage-to-earth waveforms for the power supply rail were obtained by utilizing the Fourier series expansions of the voltage-to-earth and the corresponding circuit simulation models. The results demonstrate the efficacy of the bilateral resonant compensation topology in mitigating higher-order harmonics of the voltage to earth on the power supply rail by effectively suppressing the distortion in the leakage current and minimizing its conduction. The effectiveness of the double-ended resonant compensation topology in suppressing leakage current conduction has been verified through experimental tests and waveform comparisons of the voltage to earth and leakage current on the power supply rail under two different topologies. Through experimental testing, during which the unilateral/bilateral resonant compensation topologies were compared, an analysis was conducted on the waveforms of the voltage to earth and leakage current of the power supply rail. The results verified the effectiveness of the bilateral resonant compensation topology in mitigating the conduction of leakage current. This study provides empirical evidence supporting the use of the bilateral resonant compensation topology for suppressing leakage current in power rail applications. Full article
Show Figures

Figure 1

Back to TopTop