Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = LA-ICP-MS trace element

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8845 KB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 - 31 Jul 2025
Viewed by 306
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

29 pages, 21967 KB  
Article
Ore Genesis Based on Microtextural and Geochemical Evidence from the Hydrothermal As–Sb Mineralization of the Matra Deposit (Alpine Corsica, France)
by Danis Ionut Filimon, John A. Groff, Emilio Saccani and Maria Di Rosa
Minerals 2025, 15(8), 814; https://doi.org/10.3390/min15080814 - 31 Jul 2025
Viewed by 344
Abstract
The Matra As–Sb deposit (Alpine Corsica, France) is hosted in the normal N–S trending Matra Fault. Sulfide minerals in ore consist of realgar, stibnite, and pyrite with minor orpiment and hörnesite. The gangue includes quartz, dolomite, and calcite. In this study, the microstructural [...] Read more.
The Matra As–Sb deposit (Alpine Corsica, France) is hosted in the normal N–S trending Matra Fault. Sulfide minerals in ore consist of realgar, stibnite, and pyrite with minor orpiment and hörnesite. The gangue includes quartz, dolomite, and calcite. In this study, the microstructural analysis of selected ore samples has been combined with the geochemical characterization of the sulfides. The results depict a succession of events that record the evolution of the ore deposit related to fault movement. In the pre–ore stage, plumose, crustiform, jigsaw, and feathery textures of quartz testify to a short–lived boiling event. The mineral assemblage of the main–ore stage includes an Fe(–Zn) substage dominated by the formation of different textures of pyrite. In general, pyrite samples contain significant concentrations of As (≤32,231 ppm) and Sb (≤10,684 ppm), with lesser amounts of by Tl (≤1257 ppm) and Ni (≤174 ppm). This is followed by an Sb–As–Fe substage of pyrite–stibnite–realgar ±orpiment. The precipitation of the sulfides was mainly driven by changes in ƒS2. The increasing level of oxidation is attributed to a progressive influx of meteoric water resulting from reactivation of the Matra Fault. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Graphical abstract

16 pages, 5933 KB  
Article
Chemical Peculiarities of Quartz from Peralkaline Granitoids
by Karel Breiter, Jindřich Kynický, Michaela Vašinová Galiová and Michaela Hložková
Minerals 2025, 15(8), 790; https://doi.org/10.3390/min15080790 - 28 Jul 2025
Viewed by 338
Abstract
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends [...] Read more.
Quartz from four typical but contrasting peralkaline quartz-saturated granite systems (Khan Bogd and Khalzan Buregte plutons (Mongolia), Ivigtut stock (Greenland), Europa and Madeira plutons (Pitinga magmatic province, Brazil)) was analyzed using LA-ICP-MS to define the range of selected trace element content and trends in their evolution and to compare this content with published data from granitoids of other geochemical types. The evaluation of about 1100 analyses found the studied trace elements mostly in ranges <0.01–18 ppm Li (median 2.41 ppm), 1.2–77 ppm Ti (median 8.2 ppm), 8.3–163 ppm Al (median 42 ppm) and 0.05–5.7 ppm Ge (median 0.98 ppm) (in all cases 5% of the lowest and 5% of the highest values were omitted). Quartz from geochemically less evolved riebeckite-bearing granite plutons shows no Ti/Ge fractionation and displays either a positive Ti–Al correlation or no Ti–Al correlation. More fractionated and potentially mineralized peralkaline magmatic systems were formed within two distinct magmatic episodes: quartz from the older phases is relatively Ti-rich and evolved via Ti decrease with no possible Ge enrichment, while quartz from younger phases is Ti-poor from the beginning and has the ability of enrichment in Al and Ge. Relative enrichment in Al and increase in Ge/Ti value of quartz can serve as a supporting method for the identification of potentially ore-bearing magmatic systems. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

23 pages, 15718 KB  
Article
Trace and Rare-Earth-Element Chemistry of Quartz from the Tuztaşı Low-Sulfidation Epithermal Au-Ag Deposit, Western Türkiye: Implications for Gold Exploration from Quartz Mineral Chemistry
by Fatih Özbaş, Essaid Bilal and Ahmed Touil
Minerals 2025, 15(7), 758; https://doi.org/10.3390/min15070758 - 19 Jul 2025
Viewed by 611
Abstract
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two [...] Read more.
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two fluid stages. Early fluids were cold, dilute meteoric waters (δ18O₍H2O₎ ≈ −6.8 to +0.7‰), whereas later fluids circulated deeper, interacted with felsic basement rocks, and evolved in composition. Mineralized quartz displays marked enrichment in As (raw mean = 2854 ± 6821 ppm; filtered mean = 70 ± 93 ppm; one spot 16,775 ppm), K (498 ± 179 ppm), and Sb (57.8 ± 113 ppm), coupled with low Ti/Al (<0.005) and elevated Ge/Si (0.14–0.65 µmol mol−1). Chondrite-normalized REE patterns show pronounced but variable LREE enrichment ((La/Yb)n ≤ 45.3; ΣLREE/ΣHREE up to 10.8) and strongly positive Eu anomalies (δEu ≤ 9.3) with slightly negative Ce anomalies (δCe ≈ 0.29); negligible Ce–Eu covariance (r2 ≈ 0.05) indicates discrete redox pulses. These signatures indicate chemically evolved, reducing fluids conducive to Au–Ag deposition. By contrast, barren quartz is characterized by lower pathfinder-element contents, less fractionated REE profiles, higher Ti/Al, and weaker Eu anomalies. A composite exploration toolkit emerges: As > 700 ppm, As/Sb > 25, Ti/Al < 0.005, Ge/Si > 0.15 µmol mol−1, and δEu ≫ 1 reliably identify ore-bearing zones when integrated with δ18O data and fluid-inclusion microthermometry from earlier studies on the same vein system. This study provides one of the first systematic applications of integrated trace-element and REE analysis of quartz to a Turkish low-sulfidation epithermal system, offering an applicable model for vectoring mineralization in analogous settings worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

26 pages, 690 KB  
Review
Modern Bioimaging Techniques for Elemental Tissue Analysis: Key Parameters, Challenges and Medical Impact
by Jan Sawicki, Marcin Feldo, Agnieszka Skalska-Kamińska and Ireneusz Sowa
Molecules 2025, 30(13), 2864; https://doi.org/10.3390/molecules30132864 - 5 Jul 2025
Viewed by 468
Abstract
(1) Background: Elemental imaging methods such as XRF, SEM/TEM-EDS, LIBS and LA-ICP-MS are widely used in clinical diagnostics. Based on the results obtained, it is possible to assess the safety of both standard and innovative therapies, diagnose diseases, detect pathogens or determine intracellular [...] Read more.
(1) Background: Elemental imaging methods such as XRF, SEM/TEM-EDS, LIBS and LA-ICP-MS are widely used in clinical diagnostics. Based on the results obtained, it is possible to assess the safety of both standard and innovative therapies, diagnose diseases, detect pathogens or determine intracellular processes. In addition to bioimaging, these techniques are used for semi-quantitative and quantitative analyses. Some of them also enable highly valuable speciation of analytes. However, the quality of information about elemental tissue composition depends on a number of different factors. Although the crucial parameters of quantitative analysis are the same for each technique, their impact varies depending on the bioimaging method. Due to the fact that imaging results are often crucial in clinical decision-making, it is important to clearly indicate and describe the parameters affecting the quality of results in each technique. Therefore, the aim of this review is to describe the influence of these crucial parameters on bioimaging results based on the methodology and results of studies published in the last ten years. (2) Methods: In order to collect relevant publications, the Scopus database was searched using the keywords “element AND imaging AND human tissue”. Next, studies were selected in which methodological aspects allowed relevant conclusions to be made regarding the quality of the results obtained. (3) Results: One of the most important parameters for all techniques is measurement selectivity resulting from the complexity of human tissue. Quantitative analyses using bioimaging techniques are difficult due to the lack of suitable calibration materials. For the same reason, it is challenging to assess the accuracy of the results obtained. Particular attention should be paid to the results obtained for trace elements. (4) Conclusions: The discussed bioimaging techniques are a powerful tool in the elemental analysis of human tissues. Nevertheless, in order to obtain reliable results, a number of factors influencing the measurements must be taken into account. Full article
Show Figures

Figure 1

18 pages, 3113 KB  
Article
Chemical Composition of Wolframite from the Porokhovskoe and Yugo-Konevskoe W Deposits (Central Urals): Implications for Fluid Evolution and Ore Genesis
by Konstantin Novoselov, Danil Rogov and Dmitry A. Artemyev
Minerals 2025, 15(6), 661; https://doi.org/10.3390/min15060661 - 19 Jun 2025
Viewed by 316
Abstract
The composition of wolframite from ores of the Porokhovskoe and Yugo-Konevskoe W greisen deposits in the Central Urals is studied using SEM-EDS and LA-ICP-MS analyses. The Porokhovskoe deposit is localized in a metamorphosed volcanosedimentary sequence of Lower Silurian age, and the Yugo-Konevskoe is [...] Read more.
The composition of wolframite from ores of the Porokhovskoe and Yugo-Konevskoe W greisen deposits in the Central Urals is studied using SEM-EDS and LA-ICP-MS analyses. The Porokhovskoe deposit is localized in a metamorphosed volcanosedimentary sequence of Lower Silurian age, and the Yugo-Konevskoe is enclosed in an eponymous granite pluton of Middle Permian–Lower Triassic age. Most studied wolframite grains belong to hűbnerite. The Fe/(Fe + Mn) value of wolframite varies in a range of 0.02–0.50. Wolframite from both deposits is enriched in Zn, Nb, and Mg. The wolframite from the Porokhovskoe deposit is enriched in V, Sc, Zn, and Mg and is depleted in Mo, U, rare earth elements (REEs), Nb, and Ta, compared to wolframite from the Yugo-Konevskoe deposit. It is suggested that this difference is due to the occurrence of ore veins in different rocks at different distance from the source of the ore-forming fluid, which cools down as it moves away from the source, leading to a decrease in the incorporation of trace elements by the lower-temperature wolframite. The predominance of heavy REEs over light REEs in all the studied wolframite is explained by the close ionic radii of heavy REEs to the main mineral-forming elements Fe and Mn. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

18 pages, 5653 KB  
Article
Effect of Dual-Site Co-Cultivation on Spectral Characteristics and Trace Element Enrichment in Akoya Pearls
by Peiqi Zhou, Geng Li and Fabian Schmitz
Minerals 2025, 15(6), 654; https://doi.org/10.3390/min15060654 - 18 Jun 2025
Viewed by 465
Abstract
This study systematically investigates for the first time the effects of dual-site co-cultivation on spectral characteristics and trace element enrichment in marine-cultured Akoya pearls from Beihai, China. Akoya pearls were cultured over a one-year period, with the final 40-day stage designated as the [...] Read more.
This study systematically investigates for the first time the effects of dual-site co-cultivation on spectral characteristics and trace element enrichment in marine-cultured Akoya pearls from Beihai, China. Akoya pearls were cultured over a one-year period, with the final 40-day stage designated as the terminal phase. During this period, two experimental groups of pearl oysters were established: Group Y remained in Beihai for continued local cultivation and harvest, while Group B was transferred to Weihai, Shandong Province, for terminal-stage farming under different thermal conditions. A series of comparative analyses were performed using Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, Raman spectroscopy, X-ray fluorescence (XRF), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The FTIR results revealed distinct differences between the two groups in the distribution of amide and polysaccharide functional groups, particularly around 1643 cm−1 and 1100 cm−1. The UV-Vis spectra of Group B displayed characteristic absorption bands at 430 nm and 460 nm, associated with the organic matrix of the nacre. Raman spectroscopy further indicated a higher abundance of organic-related vibrational features in Group B. Additionally, both XRF and LA-ICP-MS analyses consistently showed significant differences in the concentrations and distributions of trace elements, particularly copper (Cu), cobalt (Co), and zinc (Zn). The findings demonstrate that the dual-site co-cultivation mode significantly impacts both the organic composition and trace element enrichment patterns in seawater Akoya pearls. This research provides valuable references for optimizing environmental parameters in pearl cultivation processes. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

24 pages, 70177 KB  
Article
Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran
by Abdorrahman Rajabi, Reza Nozaem, Sara Momenipour, Shojaedin Niroomand, Shahrokh Rajabpour, Somaye Rezaei, Pura Alfonso, Carles Canet, Ahmad Kazemi Mehrnia, Pouria Mahmoodi, Amir Mahdavi, Mansoor Kazemirad, Omid Laghari Firouzjaei and Mohammad Amini
Minerals 2025, 15(6), 590; https://doi.org/10.3390/min15060590 - 30 May 2025
Viewed by 962
Abstract
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a [...] Read more.
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a NW–SE oriented ductile shear zone, parallel to the Zagros thrust zone, experienced significant deformation. Detailed structural studies indicate that the iron mineralization is primarily stratiform to stratabound and hosted in late Triassic to early Jurassic silicified dolomites and schists. These ore deposits consist of lenticular iron oxide orebodies and exhibit various structures and textures, including banded, laminated, folded, disseminated, and massive forms of magnetite and hematite. The Fe2O3 content in the mineralized layers varies from 30 to 91 wt%, whereas MnO has an average of 3.9 wt%. The trace elements are generally low, except for elevated concentrations of Cu (up to 4350 ppm) and Zn (up to 3270 ppm). Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis of magnetite reveals high concentrations of Mg, Al, Si, Mn, Ti, Cu, and Zn, with significant depletion of elements such as Ga, Ge, As, and Nb. This study refutes the hypothesis of vein-like or hydrothermal genesis, providing evidence for a sedimentary origin based on the trace element geochemistry of magnetite and LA-ICP-MS geochemical data. The Dehbid banded iron ores (BIOs) are thought to have formed under geodynamic conditions similar to those of BIOs in back-arc tectonic settings. The combination of anoxic conditions, submarine hydrothermal iron fluxes, and redox fluctuations is essential for the formation of these deposits, suggesting that similar iron–manganese deposits can form during the Phanerozoic under specific geodynamic and oceanographic conditions, particularly in tectonically active back-arc environments. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Polymetallic Ore Deposits)
Show Figures

Figure 1

22 pages, 12129 KB  
Article
Metallogenic Age and Tectonic Setting of the Haigou Gold Deposit in Southeast Jilin Province, NE China: Constraints from Magmatic Chronology and Geochemistry
by Zhongjie Yang, Yuandong Zhao, Cangjiang Zhang, Chuantao Ren, Qun Yang and Long Zhang
Minerals 2025, 15(6), 582; https://doi.org/10.3390/min15060582 - 29 May 2025
Viewed by 418
Abstract
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily [...] Read more.
Haigou deposit, located in Dunhua City, southeast Jilin Province, NE China, is a large-scale gold deposit. The gold ore body is categorized into two types: quartz-vein type and altered rock type, with the quartz-vein type being predominant. The vein gold ore body primarily occurs within the monzonite granite and monzonite rock mass in the Haigou area and is controlled by fault structures trending northeast, northwest, and near north-south. In order to constrain the age and tectonic setting of quartz vein-type gold mineralization, we conducted a detailed underground investigation and collected samples of monzonite granite and pyroxene diorite porphyrite veins related to quartz-vein-type gold mineralization for LA-ICP-MS zircon U-Pb dating and whole-rock main trace element data testing to confirm that monzonite granite is closely related to gold mineralization. Pyroxene diorite porphyry and gold mineralization were found in parallel veins. The zircon U-Pb weighted mean ages of monzonite and pyroxene diorite porphyrite veins are 317.1 ± 3.5 Ma and 308.8 ± 3.0 Ma, respectively, indicating that gold mineralization in monzonite, pyroxene diorite porphyrite veins, and quartz veins occurred in the Late Carboniferous. The monzonite granite and pyroxene diorite porphyrite veins associated with quartz vein-type gold mineralization have high SiO2, high K, and high Al2O3 and are all metaluminous high-potassium calc-alkaline rock series. Both of them are relatively enriched in light rare earth elements (LREE) and macroionic lithophile elements (LILE: Rb, Ba, K, etc.), but deficient in heavy rare earth elements (HREE) and high field strength elements (HFSE: Nb, Ta, P, Ti, etc.), the monzonitic granite Eu is a weak positive anomaly (δEu = 1.15–1.46), the pyroxene diorite porphyre dyke Eu is a weak positive anomaly (δEu = 1.09–1.13), and the Nb and Ta are negative anomalies. The Th/Nb values are 0.28–0.73 and 1.48–2.05, and La/Nb are 2.61–4.74 and 4.59–5.43, respectively, suggesting that diagenetic mineralization is the product of subduction in an active continental margin environment. In recent years, scholarly research on Sr, Nd, and Pb isotopes in Haigou rock masses has indicated that the magmatic source region in the Haigou mining areas is complex. It is neither a singular crustal source nor a mantle source but rather a mixed crust-mantle source, primarily resulting from the partial melting of lower crustal materials, with additional contributions from mantle-derived materials. In summary, the metallogenic characteristics, chronology data, geochemical characteristics, and regional tectonic interpretation indicate that at least one phase of magmatic-hydrothermal gold mineralization was established in the Late Carboniferous as a result of the subduction of the Paleo-Asian ocean plate at the northern margin of the North China Craton. Full article
Show Figures

Figure 1

26 pages, 32475 KB  
Article
Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China
by Wenhua Mei, Chunfang Cai, Xinyu Ming, Zichen Wang and Lei Jiang
Minerals 2025, 15(6), 581; https://doi.org/10.3390/min15060581 - 29 May 2025
Viewed by 619
Abstract
The South China Block hosts extensive sedimentary phosphorites that offer valuable insights into both paleoenvironmental reconstruction and rare earth element (REE) resource potential. However, the mechanisms governing REE enrichment in these deposits remain poorly understood. This study investigates two distinct phosphorite layers from [...] Read more.
The South China Block hosts extensive sedimentary phosphorites that offer valuable insights into both paleoenvironmental reconstruction and rare earth element (REE) resource potential. However, the mechanisms governing REE enrichment in these deposits remain poorly understood. This study investigates two distinct phosphorite layers from the Lower Cambrian Zhujiaqing (ZJQ) Formation in the Bailongtan (BLT) area of the Yangtze Platform using integrated analyses including petrology, XRD, major and trace elements, δ13C and δ18O isotopes, and LA-ICP-MS. The lower thin-bedded phosphorite, composed of finer phosphatic grains (<300 μm), exhibits significantly higher REE concentrations (883.6 ± 160.9 ppm; n = 48) compared to the upper thick-bedded phosphorite (303.2 ± 82.7 ppm; n = 64), which is dominated by larger, reworked grains (300–600 μm). Intervening strata consist of laminated phosphate-bearing carbonates interbedded with quartz, dolomite, and pyrite. PAAS-normalized REE patterns display MREE–HREE enrichment, negative Ce anomalies (avg. 0.60 ± 0.18; n = 18), and positive Y anomalies—indicative of oxic depositional conditions. The elevated REE content in the lower layer, coupled with the lowest δ13C values (−4.59‰), suggests enrichment linked to organic matter degradation. A proposed two-stage depositional model links REE enrichment to proximity with REE-rich deep-shelf waters, underscoring the critical role of redox and depositional dynamics in phosphorite-hosted REE accumulation. Full article
Show Figures

Figure 1

23 pages, 5217 KB  
Article
Constraints from Geochemistry of Mineralization-Hosting Sandstone and Sulfur Isotopes of Pyrite on Uranium Mineralization in the Liuhuanggou Area, Southern Junggar Basin
by Junyang Li, Yu Zhou, Chunji Xue, Shizhong Chen, Guoxiong Ma, Zuohuai Yang, Min Liu, Le Yang and Jie Gong
Minerals 2025, 15(6), 575; https://doi.org/10.3390/min15060575 - 28 May 2025
Viewed by 459
Abstract
A combination of microstructural, fluid inclusion, and in situ sulfur isotopic analyses of pyrite, along with major and trace element studies of the mineralization-hosting sandstone, reveals the complexity of its genesis from the Jurassic Toutunhe Formation in the Liuhuanggou sandstone-hosted uranium deposit, Southern [...] Read more.
A combination of microstructural, fluid inclusion, and in situ sulfur isotopic analyses of pyrite, along with major and trace element studies of the mineralization-hosting sandstone, reveals the complexity of its genesis from the Jurassic Toutunhe Formation in the Liuhuanggou sandstone-hosted uranium deposit, Southern Junggar Basin. Based on field geological investigations and the geochemical characteristics, it is concluded that the source of the ore-bearing sandstones originates from felsic igneous rocks in the Northern Tianshan and Central Tianshan regions. Through optical microscopy and scanning electron microscopy (SEM), three generations of pyrite were identified: framboidal pyrite, concentric overgrown pyrite, and sub-idiomorphic to idiomorphic cement pyrite. The sulfur isotopes of the pyrite were analyzed using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). The results indicate that each type of pyrite has distinct sulfur isotope compositions (the framboidal pyrite: −16.85‰ to +2.16‰, the concentric overgrown pyrite: −7.86‰ to +10.32‰, the sub-idiomorphic to idiomorphic cement pyrite: +9.16‰ to +16.77‰). The framboidal pyrite and the sub-idiomorphic to idiomorphic cement pyrite were formed through bacterial sulfate reduction (BSR), while the concentric overgrown pyrite was formed through thermochemical sulfate reduction (TSR) triggered by the upward migration of hydrocarbons. The discovery of hydrocarbon inclusions provides evidence for the involvement of deep-seated reducing fluids in uranium mineralization. Uranium mineralization occurred in two distinct stages: (1) The early stage involved the interaction of uranium-bearing fluids with reductants in the mineralization-hosting strata under the influence of groundwater dynamics, leading to initial uranium enrichment. (2) The later stage involved the upward migration of deep-seated hydrocarbons along faults, which enhanced the reducing capacity of the sandstone and resulted in further uranium enrichment and mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 4251 KB  
Article
Testing Pyrrhotite Trace Element Chemistry as a Vector Towards the Mineralization in the Sullivan Deposit, B.C.
by Naci Sertug Senol, Daniel David Gregory, Indrani Mukherjee, Nelson Román, Roisin Kyne and Kaleb S. Boucher
Minerals 2025, 15(5), 534; https://doi.org/10.3390/min15050534 - 17 May 2025
Viewed by 476
Abstract
Mineral exploration methods are expensive and time-consuming, especially in recent times, where many near-surface deposits have been found and exploited. To overcome these challenges, new strategies must be developed. Here, we test whether the trace element chemistry of pyrrhotite changes systematically with distance [...] Read more.
Mineral exploration methods are expensive and time-consuming, especially in recent times, where many near-surface deposits have been found and exploited. To overcome these challenges, new strategies must be developed. Here, we test whether the trace element chemistry of pyrrhotite changes systematically with distance from mineralization at the Sullivan deposit, British Columbia. If so, this could provide an additional tool to search for new ore bodies. Forty samples of the hanging wall, footwall, and mineralization hosting stratigraphy (host horizon) were collected from seven drill holes, both proximal and distal to the Sullivan deposit. These samples were analyzed using reflected light microscopy, an electron microprobe, and LA-ICPMS (laser ablation, inductively coupled plasma mass spectrometry). A total of three hundred and ninety LA-ICPMS analyses were used to build machine learning classifiers (cluster analysis and random forests) to determine whether an unknown pyrrhotite sample was from the mineralized horizon and, if so, whether it was proximal or distal to the mineralization. Our study found that the trace element abundance in pyrrhotite was higher in the footwall and hanging wall compared to the host horizon, and within the host horizon, was higher distal to the mineralization. Full article
(This article belongs to the Special Issue Mineral Chemistry: Tool for Vectoring towards Mineral Deposits)
Show Figures

Figure 1

17 pages, 8037 KB  
Article
Evolution of the Ore-Bearing Fluid of Alin Sb–Au Orebodies in Shuixie Cu–Co Orefield, SW China: Constraints on the Rare Earth Element and Trace Element Components of Auriferous Pyrite and Host Rock
by Guo Li, Shanshan Ru, Chuandong Xue and Wei Wang
Minerals 2025, 15(5), 491; https://doi.org/10.3390/min15050491 - 6 May 2025
Viewed by 336
Abstract
The Shuixie Cu–Co polymetallic orefield, located in western Yunnan Province (southeastern margin of the Qinghai–Tibet Plateau), is renowned for its Cu–Co mineralization. A recent resource reassessment identified Sb–Au and Cu–Co–Bi (Sb–Au) orebodies as genetically associated with primary Cu–Co mineralization. The mineralization characteristics and [...] Read more.
The Shuixie Cu–Co polymetallic orefield, located in western Yunnan Province (southeastern margin of the Qinghai–Tibet Plateau), is renowned for its Cu–Co mineralization. A recent resource reassessment identified Sb–Au and Cu–Co–Bi (Sb–Au) orebodies as genetically associated with primary Cu–Co mineralization. The mineralization characteristics and microscopic observations indicate that gold mineralization in the Sb–Au orebodies follow a pulsating fluid injection model. The model includes four pulses: (1) euhedral gold-poor pyrite (PyI1) precipitation; (2) margin-parallel growth of gold-rich pyrite (PyI2) on PyI1; (3) continued growth of gold-rich pyrite (PyI3) along PyI2; and (4) outermost concentric gold-rich pyrite (PyI4) formation. This study examined gold-bearing pyrite in orebodies and host rocks. In situ laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analysis of pyrite and inductively coupled plasma mass spectrometry (ICP–MS) whole-rock trace element analysis were conducted to track the ore-forming fluid evolution. Compared with CI chondrite, pyrites from all pulses were enriched in LREEs over HREEs. The pyrite REE distribution curves exhibited right-skewed patterns, reflecting LREE enrichment. The Hf/Sm, Nb/La, and Th/La ratios were generally below 1, indicating high-field-strength element depletion. These results suggest a Cl-rich, F-poor ore-forming fluid. The pyrite trace elements showed enrichment in the chalcophile elements (e.g., Cu and Pb) and exceptionally high Bi levels compared with the continental crust. The chalcophile elements (e.g., Zn and Cd) were depleted, whereas iron-group elements (e.g., Co) were enriched and Ni was depleted. The pyrite δCe values (0.87–1.28, mean = 1.01) showed weak anomalies, indicating a reducing ore-forming environment. The δEu values of pyrite during pulses 1 to 4 ranged widely, from 0.2–3.01 (mean of 1.17), 0.27–1.39 (0.6), and 0.41–1.40 (0.96) to 0.4–1.36 (0.84), respectively, suggesting an initial temperature decline and subsequent increase in the ore-forming fluid. Significant variations were found in the Y/Ho, Zr/Hf, and Nb/Ta ratios across pulses, indicating the potential involvement of high-temperature hydrothermal fluids or late-stage alteration during ore formation. The Y/Ho ratio of pyrite overlapped most closely with that of the continental crust of China, indicating a close relationship between the ore-forming fluids and the crust. Full article
Show Figures

Figure 1

17 pages, 5076 KB  
Article
Axinite, a Borosilicate with Extensive Fe-Mn Substitutions at the Scale of Monocrystal Revealed by Micro-XRF Imaging and In Situ Analysis: An Example from the Type Locality at Oisans (France)
by Michel Cathelineau, Olivier Gerbeaud and Chantal Peiffert
Crystals 2025, 15(5), 402; https://doi.org/10.3390/cryst15050402 - 25 Apr 2025
Viewed by 481
Abstract
Axinite crystals from the type locality (Oisans, French Alps) are considered among the more remarkable specimens known for their quality (lustre, colour, size, and purity) and crystalline forms. However, they have been the subject of only a few in-depth studies. This lack of [...] Read more.
Axinite crystals from the type locality (Oisans, French Alps) are considered among the more remarkable specimens known for their quality (lustre, colour, size, and purity) and crystalline forms. However, they have been the subject of only a few in-depth studies. This lack of knowledge provided the opportunity for a systematic survey of axinites from Saint-Christophe-en-Oisans, where crystals appear to cover an extensive range of Fe-Mn substitution from an Fe-rich (axinite-Fe) to a Mn-rich field (axinite-Mn) in a same crystal, with compositional variations much more significant than initially described. An in-depth characterisation of the chemical zonation of the crystals using EPMA, Raman spectroscopy, X-ray micro-fluorescence, and LA-ICP-MS was carried out on the crystals showing the most significant variability. The micro-XRF method appeared extremely useful for describing spatial variations in chemical composition at the centimetre scale and preparing other in situ methods. Fe(Mg)-Mn substitution covers a large range but the Mn-enriched growth zones are relatively thin and localised at the periphery of crystals. In addition, chemical zonations highlighted in this study also reveal contrasted incorporation of trace elements as a function of the Fe/Mn ratio (in particular, Be, HREE, Sc, Ga, In, and Co), indicating changes in fluid chemistry during the crystal growth. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

19 pages, 10570 KB  
Article
Gemological Characteristics and Trace Chemical Element Analysis of Emerald in Kafubu, Zambia
by Yiwei Jiang, Siyi Zhao, Zhiyi Zhang and Bo Xu
Crystals 2025, 15(5), 385; https://doi.org/10.3390/cryst15050385 - 22 Apr 2025
Viewed by 620
Abstract
This study systematically analyzed the color characteristics, microscopic inclusions (including fluid and mineral inclusions), spectral properties, and chemical composition of emerald samples from Kafubu, Zambia using infrared spectroscopy, UV–visible spectroscopy, Raman spectroscopy, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results [...] Read more.
This study systematically analyzed the color characteristics, microscopic inclusions (including fluid and mineral inclusions), spectral properties, and chemical composition of emerald samples from Kafubu, Zambia using infrared spectroscopy, UV–visible spectroscopy, Raman spectroscopy, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results were then compared with research data on emeralds from Afghanistan, Brazil, China, Colombia, Ethiopia, Madagascar, Russia, and the United States. The result establishes a global classification framework for emerald origins based on chromophores (Cr, V, Fe), categorizing deposits into two distinct groups: low-Fe regions and high-Fe regions. For high-Fe type IA emeralds, particularly those from Zambia and Madagascar exhibiting exceptionally similar Fe and Mg concentrations, a multi-element discrimination approach was developed. Using microscopic infrared testing to magnify and analyze the characteristic peaks related to OD in the range of 2550–2800 cm⁻1, it can be classified as HDO-dominant, and the high alkali metal element content in Zambian emeralds can be reflected by the absence of the HDO vOD absorption peak at 2685 cm⁻1. A further in-depth analysis of the trace elements in Zambian emeralds can provide a basis for inferring the possible rich ore geology for subsequent mining and provide more effective reference data for the identification of the origin of emeralds. Full article
(This article belongs to the Special Issue Laser–Material Interaction: Principles, Phenomena, and Applications)
Show Figures

Figure 1

Back to TopTop