Testing Pyrrhotite Trace Element Chemistry as a Vector Towards the Mineralization in the Sullivan Deposit, B.C.
Abstract
:1. Introduction
1.1. Regional Geology
1.1.1. The Belt-Purcell Basin
1.1.2. Tectonics and Metamorphism
1.2. The Sullivan SHMS Zn-Pb-Ag Deposit
2. Materials and Methods
2.1. Drill Core Logging and Petrographic Analysis
2.2. Electron Microprobe Analysis
2.3. Laser Ablation Inductively Coupled Plasma Mass Spectrometry
2.4. Statistical Analysis of Pyrrhotite Trace Element Compositional Data
2.4.1. K-Means Clustering Analysis
2.4.2. Random Forests
3. Results
3.1. Summary of Drill Logs
3.2. Pyrrhotite Textures
3.3. EPMA Spot and Map Analyses
3.4. LA-ICPMS
3.5. Cluster Analysis
3.5.1. Three Clusters
3.5.2. Five Clusters
3.6. Random Forests
3.6.1. Identification of Stratigraphic Position Based on Trace Element Content
3.6.2. Trace Element vs. Distance
4. Discussion
4.1. Pyrrhotite Trace Elements
4.2. K-Means Clustering Analysis
4.3. Random Forests
4.4. Caveats and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EPMA | Electron Probe Microanalyzer |
LA-ICPMS | Laser Ablation Inductively Coupled Mass Spectrometry |
MAD | Median Absolute Deviation |
References
- Belousov, I.; Danyushevsky, L.; Goemann, K.; Gilbert, S.; Olin, P.; Thompson, J.; Lounejeva, E.; Garbe-Schönberg, D. STDGL3, a reference material for analysis of sulfide minerals by laser ablation ICP-MS: An assessment of matrix effects and the impact of laser wavelengths and pulse widths. Geostand. Geoanalytical Res. 2023, 47, 493–508. [Google Scholar] [CrossRef]
- Owens, O.E. Sullivan Ore Mineralization. In The Geological Environment of the Sullivan Deposit, British Columbia; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2000; pp. 523–533. [Google Scholar]
- Lydon, J.W. Geology and metallogeny of the Belt-Purcell basin. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; Volume 5, pp. 581–607. [Google Scholar]
- Goodfellow, W.D. Anoxic Conditions in the Aldridge Basin During Formation of the Sullivan Zn-Pb Deposit: Implications for the Genesis of Massive Sulphides and Distal Hydrothermal Sediments; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2000; Special Publication 1; Volume 1, pp. 218–250. [Google Scholar]
- Campbell, F.A.; Ethier, V.G. Environment of deposition of the Sullivan orebody. Miner. Depos. 1983, 18, 39–55. [Google Scholar] [CrossRef]
- Leitch, C.H.B. Preliminary Fluid Inclusions in Barite from the Middle Valley Sulphide Mounds, Northern Juan de Fuca Ridge; Geological Survey of Canada: Ottawa, ON, Canada, 1991; Volume Paper 91-1, pp. 27–30.
- Stanton, R.L. Ore Petrology; McGraw Hill: New York, NY, USA, 1972; 713p. [Google Scholar]
- De Paoli, G.R.; Pattison, D.R.M. Constraints on temperature-pressure conditions and fluid composition during metamorphism of the Sullivan orebody, Kimberley, British Columbia, from silicate-carbonate equilibria. Can. J. Earth Sci. 1995, 32, 1937–1949. [Google Scholar] [CrossRef]
- Hoffman, P.F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 1991, 252, 1409–1412. [Google Scholar] [CrossRef]
- Sears, J.; Alt, D. Impact origin of the Belt sedimentary basin. Geol. Soc. Am. Abstr. Programs 1989, 21, 142. [Google Scholar]
- Ross, G.M.; Parrish, R.R.; Winston, D. Provenance and UPb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): Implications for age of deposition and pre-Panthalassa plate reconstructions. Earth Planet. Sci. Lett. 1992, 113, 57–76. [Google Scholar] [CrossRef]
- Price, R.A.; Sears, J.W. A Preliminary Palinspastic Map of the Mesoproterozoic Belt-Purcell Supergroup, Canada and USA: Implications for the Tectonic Setting and Structural Evolution of the Purcell Anticlinorium and the Sullivan Deposit. In The Geological Environment of the Sullivan Deposit, British Columbia; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2000; pp. 61–81. [Google Scholar]
- Hoy, T. The age, chemistry, and tectonic setting of the Middle Proterozoic Moyie sills, Purcell Supergroup, southeastern British Columbia. Can. J. Earth Sci. 1989, 26, 2305–2317. [Google Scholar] [CrossRef]
- Anderson, H.E.; Goodfellow, W.D. Geochemistry and Isotope Chemistry of the Moyie Sills: Implications for the Early Tectonic Setting of the Mesoproterozoic Purcell Basin. In The Geological Environment of the Sullivan Deposit, British Columbia; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2000; pp. 302–321. [Google Scholar]
- Höy, T.; Anderson, D.; Turner, R.J.W.; Leitch, C.H.B.; Lydon, J.W.; Slack, J.F.; Knapp, M.E. Tectonic, Magmatic, and Metallogenic History of the Early Synrift Phase of the Purcell Basin, Southeastern British Columbia; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2000; pp. 32–60. [Google Scholar]
- McMechan, M.E.; Price, R.A. Superimposed low-grade metamorphism in the Mount Fisher area, southeastern British Columbia—implications for the East Kootenay orogeny. Can. J. Earth Sci. 1982, 19, 476–489. [Google Scholar] [CrossRef]
- Zirakparvar, N.; Vervoort, J.; McClelland, W.; Lewis, R. Insights into the metamorphic evolution of the Belt–Purcell basin; evidence from Lu–Hf garnet geochronology. Can. J. Earth Sci. 2010, 47, 161–179. [Google Scholar] [CrossRef]
- Maxwell, D.T.; Hower, J. High-grade diagenesis and low-grade metamor-phism of illite in the precambrian belt series. Am. Mineral. 1967, 52, 843–857. [Google Scholar]
- Reesor, J. Geology of the Lardeau Map-Area, East-Half, British Columbia; Department of Energy, Mines and Resources: East Perth, Australia, 1973; Volume Memoir 369.
- Eslinger, E.; Sellars, B. Evidence for the formation of illite from smectite during burial metamorphism in the Belt Supergroup, Clark Fork, Idaho. J. Sediment. Petrol. 1981, 51, 203–216. [Google Scholar]
- Doughty, P.T.; Chamberlain, K.R. Salmon River Arch revisited: New evidence for 1370 Ma rifting near the end of deposition in the Middle Proterozoic Belt basin. Can. J. Earth Sci. 1996, 33, 1037–1052. [Google Scholar] [CrossRef]
- Anderson, H.E.; Davis, D.W. U–Pb geochronology of the Moyie sills, Purcell Supergroup, southeastern British Columbia: Implications for the Mesoproterozoic geological history of the Purcell (Belt) basin. Can. J. Earth Sci. 1995, 32, 1180–1193. [Google Scholar] [CrossRef]
- Rioseco, N.A.; Pattison, D.R.; Camacho, A. Structure, metamorphism, and mica 40Ar/39Ar thermochronology of the southern Purcell anticlinorium and its transition into the central Kootenay arc, Omineca belt, southeastern British Columbia. Can. J. Earth Sci. 2022, 59, 660–707. [Google Scholar] [CrossRef]
- Ransom, P.; Lydon, J.W.; Höy, T.; Slack, J.; Knapp, M. Geology, sedimentology and evolution of the Sullivan sub-basin. In The Geological Environment of the Sullivan Deposit, British Columbia; Geological Association of Canada, Mineral Deposits Division Special Publication: St. John’s, NL, Canada, 2000; Volume 1, pp. 440–469. [Google Scholar]
- Ransom, P.W.; Merber, D. Low-angle thrusts in the southeast fringe of the Sullivan mine. In The Geological Environment of the Sullivan Pb-Zn-Ag Deposit, British Columbia; Mineral Deposits Division of the Geological Association of Canada: St. John’s, NL, Canada, 2000; Special Publication 1; pp. 534–540. [Google Scholar]
- Shaw, D.R.; Hodgson, C.J. Wall-rock alteration at the Sullivan mine, Kimberley, British Columbia. In The Genesis of Stratiform Sediment-Hosted Lead and Zinc Deposits; Turner, R.J.W., Einaudi, M.T., Eds.; Stanford University Publications, School of Earth Sciences: Redwood City, CA, USA, 1986; pp. 13–21. [Google Scholar]
- Shaw, D.R.; Hodgson, C.J.; Leitch, C.H.B.; Turner, R.J.W. Geochemistry of albite-chlorite-pyrite and chlorite-pyrrhotite alteration, Sullivan Zn-Pb deposit, British Columbia. Curr. Res. Part A 1993, 93-1A, 109–118. [Google Scholar]
- Shaw, D.R.; Hodgson, C.J.; Leitch, C.H.B.; Turner, R.J.W. Geochemistry of tourmaline, muscovite, and chlorite-garnet-biotite alteration, Sullivan Zn-Pb deposit, British Columbia. Curr. Res. Part A: Geol. Surv. Can. 1993, 93-1, 97–107. [Google Scholar]
- Turner, R.J.W.; Leitch, C.H.B.; Ross, K.V.; Hoy, T. District-scale alteration associated with the Sullivan deposit, British Columbia, Canada. In The geological Environment of the Sullivan Deposit, British Columbia; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2000; pp. 408–439. [Google Scholar]
- Leitch, C.H.B.; Turner, R.J.W.; Ross, K.V.; Shaw, D.R. Wallrock alteration at the Sullivan deposit, British Columbia, Canada. In The Geological Environment of the Sullivan Deposit, British Columbia; Lydon, J.W., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2000; pp. 633–652. [Google Scholar]
- Gregory, D.; Mukherjee, I.; Olson, S.L.; Large, R.R.; Danyushevsky, L.V.; Stepanov, A.S.; Avila, J.N.; Cliff, J.; Ireland, T.R.; Raiswell, R. The formation mechanisms of sedimentary pyrite nodules determined by trace element and sulfur isotope microanalysis. Geochimica et Cosmochimica Acta. 2019, 259, 53–68. [Google Scholar] [CrossRef]
- Turner, R.J.W.; Leitch; Delaney, G.D. Syn-rift structural controls on the paleoenvironmental setting and evolution of the Sullivan orebody. In The Geological Environment of the Sullivan Pb-Zn-Ag Deposit, British ColumbiaLydon; Lydon, J.W., Hoy, T., Slack, J.F., Knapp, M.E., Eds.; Mineral Deposits Division of the Geological Association of Canada: St. John’s, NL, Canada, 2000; pp. 582–616. [Google Scholar]
- Höy, T.; Jackaman, W. Geology of the St. Mary map sheet (NTS 82F/09), B.C. Ministry of Energy and Mines, Geoscience Map 2004-1. 2004. Available online: https://cmscontent.nrs.gov.bc.ca/geoscience/publicationcatalogue/GeoscienceMap/BCGS_GM2004-01.pdf (accessed on 24 February 2025).
- Hoy, T.; Price, R.A.; Legun, A.S.; Grant, B.; Brown, D. Purcell Supergroup, Southeastern British Columbia, Geological Compilation Map (NTS 82G, F, E, 82J/SW, 82K/SE). 1995. Available online: http://webmap.em.gov.bc.ca/mapplace/minpot/bedrock_publications.asp?NTS=082G (accessed on 24 February 2025).
- Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Günther, D. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostand. Geoanalytical Res. 2005, 29, 315–331. [Google Scholar] [CrossRef]
- Gilbert, S.E.; Danyushevsky, L.V.; Goemann, K.; Death, D. Fractionation of sulphur relative to iron during laser ablation-ICP-MS analyses of sulphide minerals: Implications for quantification. J. Anal. At. Spectrom. 2014, 29, 1024–1033. [Google Scholar] [CrossRef]
- Gilbert, S.E.; Danyushevsky, L.V.; Rodemann, T.; Shimizu, N.; Gurenko, A.; Meffre, S.; Thomas, H.; Large, R.R.; Death, D. Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS. J. Anal. At. Spectrom. 2014, 29, 1042–1051. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Guillong, M.; Meier, D.L.; Allan, M.M.; Heinrich, C.A.; Yardley, B.W. Appendix A6: SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineral. Assoc. Can. Short Course 2008, 40, 328–333. [Google Scholar]
- Pettke, T.; Oberli, F.; Audétat, A.; Guillong, M.; Simon, A.C.; Hanley, J.J.; Klemm, L.M. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol. Rev. 2012, 44, 10–38. [Google Scholar]
- Lubbe, S.; Filzmoser, P.; Templ, M. Comparison of Zero Replacement Strategies for Compositional Data with Large Numbers of Zeros. Chemom. Intell. Lab. Syst. 2021, 210, 104248. [Google Scholar] [CrossRef]
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Gahegan, M. On the application of inductive machine learning tools to geographical analysis. Geogr. Anal. 2000, 32, 113–139. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The elements of statistical learning. In Data Mining, Inference and Prediction, 2nd ed.; Springer series in statistics; Springer: New York, NY, USA, 2009; 745p. [Google Scholar]
- Kovacevic, M.; Bajat, B.; Trivic, B.; Pavlovic, R. Geological units classification of multispectral images by using support vector machines. In Proceedings of the International Conference on Intelligent Networking and Collaborative Systems, Institute of Electrical and Electronics Engineers (IEEE), Barcelona, Spain, 4–6 November 2009; pp. 267–272. [Google Scholar]
- Cracknell, M.J.; Reading, A.M.; McNeill, A.W. Mapping geology and volcanic-hosted massive sulfide alteration in the Hellyer-Mt. Charter region, Tasmania, using Random ForestsTM and self-organising maps. Aust. J. Earth Sci. 2014, 61, 287–304. [Google Scholar] [CrossRef]
- Guyon, I. Practical feature selection: From correlation to causality. In Mining Massive Data Sets for Security—Advances in Data Mining, Search, Social Networks and Text Mining, and Their Applications to Security: NATO Science for Peace and Security Series—D: Information and Communication Security; Fogelman-Soulié, F., Perrotta, D., Piskorski, J., Steinberger, R., Eds.; IOS Press: Amsterdam, The Netherlands, 2008; pp. 27–43. [Google Scholar]
- Guyon, I. A practical guide to model selection. In Proceedings of the Machine Learning Summer School, Canberra, Australia, 26 January–6 February 2009; p. 37. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the accuracy of remotely sensed data. In Principles and Practices, 1st ed.; Lewis Publications: Boca Raton, FL, USA, 1998; 179p. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Routledge: New York, NY, USA, 1984; 368p. [Google Scholar]
- Waske, B.; Benediktsson, J.A.; Árnason, K.; Sveinsson, J.R. Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Can. J. Remote Sens. 2009, 35, 106–116. [Google Scholar] [CrossRef]
- Lydon, J.W. A synopsis of the current understanding of the geological environment of the Sullivan deposit. In The Geological Environment of the Sullivan Pb-Zn-Ag Deposit, British Columbia; Lydon, J.W., Höy, T., Slack, J.F., Knapp, M.E., Eds.; Mineral Deposits Division of the Geological Association of Canada: St. John’s, NL, Canada, 2000; pp. 12–31. [Google Scholar]
- Cave, B.; Lilly, R.; Barovich, K. Textural and geochemical analysis of chalcopyrite, galena and sphalerite across the Mount Isa Cu to Pb-Zn transition: Implications for a zoned Cu-Pb-Zn system. Ore Geol. Rev. 2020, 124, 103647. [Google Scholar] [CrossRef]
- Gregory, D.D.; Cracknell, M.J.; Large, R.R.; McGoldrick, P.; Kuhn, S.; Maslennikov, V.V.; Baker, M.J.; Fox, N.; Belousov, I.; Figueroa, M.C.; et al. Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets. Econ. Geol. 2019, 114, 771–786. [Google Scholar] [CrossRef]
- Grant, H.L.; Hannington, M.D.; Petersen, S.; Frische, M.; Fuchs, S.H. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chem. Geol. 2018, 498, 45–71. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Jenkin, G.R.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Amcoff, Ö. Distribution of silver in massive sulfide ores. Miner. Depos. 1984, 19, 63–69. [Google Scholar] [CrossRef]
- Lueth, V.W.; Megaw, P.K.M.; Pingitore, N.; Goodell, P. Systematic Variation in Galena Solid-Solution Compositions at santa Eulalia, Chihuahua, Mexico. Econ. Geol. 2000, 95, 1673–1688. [Google Scholar] [CrossRef]
- George, L.; Cook, N.J.; Cristiana, C.; Wade, B.P. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am. Mineral. 2015, 100, 548–569. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoo, B.C.; Yang, Y.S.; Lee, T.H.; Seo, J.H. Sphalerite geochemistry of the Zn-Pb orebodies in the Taebaeksan metallogenic province, Korea. Ore Geol. Rev. 2019, 107, 1046–1067. [Google Scholar] [CrossRef]
- Slotznick, S.P.; Winston, D.; Webb, S.M.; Kirschvink, J.L.; Fischer, W.W. Iron mineralogy and redox conditions during deposition of the mid-Proterozoic Appekunny Formation, Belt Supergroup, Glacier National Park. In Belt Basin: Window to Mesoproterozoic Earth; MacLean, J.S., Sears, J.W., Eds.; The Geological Society of America: Boulder, CO, USA, 2016. [Google Scholar]
- Hall, A.J. Gypsum as a precursor to pyrrhotite in metamorphic rocks—Evidence from the Ballachulish State, Scotland. Miner. Depos. 1982, 17, 401–409. [Google Scholar] [CrossRef]
- Hall, A.J. Pyrite-pyrrhotine redox reactions in nature. Mineral. Mag. 1986, 50, 223–229. [Google Scholar] [CrossRef]
- Finlow-Bates, T.; Croxford, N.; Allan, J. Evidence for, and implications of, a primary FeS phase in the lead-zinc bearing sediments at Mount Isa. Miner. Depos. 1977, 12, 143–149. [Google Scholar] [CrossRef]
- Larrasoaña, J.C.; Roberts, A.P.; Musgrave, R.J.; Gràcia, E.; Piñero, E.; Vega, M.; Martínez-Ruiz, F. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet. Sci. Lett. 2007, 261, 350–366. [Google Scholar] [CrossRef]
- Tomkins, A.G. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochim. Cosmochim. Acta 2010, 74, 3246–3259. [Google Scholar] [CrossRef]
- Large, R.R.; Bull, S.W.; Maslennikov, V.V. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ. Geol. 2011, 106, 331–358. [Google Scholar] [CrossRef]
- Thomas, H.V.; Large, R.R.; Bull, S.W.; Maslennikov, V.; Berry, R.F.; Fraser, R.; Froud, S.; Moye, R. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Econ. Geol. 2011, 106, 1–31. [Google Scholar] [CrossRef]
- Conn, C.D.; Spry, P.G.; Layton-Matthews, D.; Voinot, A.; Koenig, A. The effects of amphibolite facies metamorphism on the trace element composition of pyrite and pyrrhotite in the Cambrian Nairne Pyrite Member, Kanmantoo Group, South Australia. Ore Geol. 2019, 114, 103128. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V. Trace Element Content of Sedimentary Pyrite in Black Shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
Number of Analyses | |
---|---|
Random forest training (total) | 250 |
Random forest training (hanging wall) | 68 |
Random forest training (host horizon) | 124 |
Random forest training (footwall) | 58 |
Number of analyses for training from each horizon | 50 |
Number of analyses for blind test | 140 |
Stratigraphic Position | Proximity to Mineralization | Disseminated | Blebby | Massive |
---|---|---|---|---|
Hanging wall | Proximal | 20 | 10 | |
Distal | 18 | 40 | 10 | |
Host horizon | Proximal | 1 | 76 | |
Distal | 10 | 97 | ||
Footwall | Proximal | 9 | 23 | 6 |
Distal | 51 | 19 |
Stratigraphic Horizon | V | Mn | Fe | Co | Ni | Zn | Se |
---|---|---|---|---|---|---|---|
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Hanging wall (median) | 0.5 | 6.8 | 602,000 | 338 | 697 | 1.2 | 8.7 |
Host horizon (median) | 0.1 | 5.2 | 607,000 | 28.8 | 130 | 1.1 | 4.4 |
Footwall (median) | 1.7 | 6.7 | 603,000 | 364 | 739 | 1.1 | 9.2 |
Ag | Sn | Sb | W | Tl | Pb | Bi | |
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Hanging wall (median) | 0.28 | 0.64 | 3.1 | 0.05 | 0.1 | 14.7 | 2.2 |
Host horizon (median) | 0.45 | 0.59 | 3.7 | 0.02 | 0.1 | 15.8 | 0.1 |
Footwall (median) | 0.34 | 0.79 | 3.5 | 0.13 | 0.1 | 21.4 | 6.2 |
V | Mn | Fe | Co | Ni | Zn | Se | |
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Hanging wall (MAD) | 0.4 | 6.3 | 3500 | 128 | 258 | 0.8 | 2.7 |
Host horizon (MAD) | 0.03 | 5.0 | 3200 | 29.1 | 93.5 | 0.7 | 2.0 |
Footwall (MAD) | 1.6 | 5.1 | 5200 | 43.6 | 180 | 0.8 | 1.8 |
Ag | Sn | Sb | W | Tl | Pb | Bi | |
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Hanging wall (MAD) | 0.15 | 0.19 | 2.4 | 0.04 | 0.07 | 10.2 | 2.1 |
Host horizon (MAD) | 0.32 | 0.13 | 3.4 | 0.01 | 0.06 | 14.9 | 0.1 |
Footwall (MAD) | 0.21 | 0.23 | 2.3 | 0.12 | 0.10 | 12.9 | 3.7 |
Stratigraphic Horizon | V | Mn | Fe | Co | Ni | Zn | Se |
---|---|---|---|---|---|---|---|
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Proximal (median) | 0.05 | 4.7 | 604,000 | 1.1 | 35 | 1.2 | 2.4 |
Distal (median) | 0.09 | 5.6 | 609,000 | 67.1 | 187 | 1.1 | 5.6 |
Ag | Sn | Sb | W | Tl | Pb | Bi | |
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Proximal (median) | 0.63 | 0.58 | 4.3 | 0.02 | 0.06 | 26.9 | 0.06 |
Distal (median) | 0.38 | 0.60 | 3.3 | 0.04 | 0.08 | 10.5 | 0.08 |
V | Mn | Fe | Co | Ni | Zn | Se | |
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Proximal (MAD) | 0.02 | 4.2 | 2720 | 1.0 | 21 | 0.9 | 0.5 |
Distal (MAD) | 0.06 | 5.5 | 2750 | 43 | 69 | 0.5 | 1.8 |
Ag | Sn | Sb | W | Tl | Pb | Bi | |
(ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |
Proximal (MAD) | 0.41 | 0.10 | 3.9 | 0.01 | 0.04 | 27.3 | 0.05 |
Distal (MAD) | 0.26 | 0.23 | 3.2 | 0.03 | 0.06 | 10.5 | 0.07 |
Stratigraphic Position | Distance to Mineralization | Texture | V (ppm) | Mn (ppm) | Co (ppm) | Ni (ppm) | Zn (ppm) | Se (ppm) |
---|---|---|---|---|---|---|---|---|
Footwall | Distal | Blebby | 0.82 | 9.12 | 363 | 741 | 1.22 | 8.70 |
Massive | 2.39 | 4.94 | 361 | 810 | 2.35 | 8.62 | ||
Proximal | Blebby | 3.23 | 8.60 | 380 | 748 | 2.16 | 9.55 | |
Disseminated | 2.50 | 3.52 | 373 | 482 | 1.07 | 9.29 | ||
Massive | 1.78 | 2.07 | 372 | 734 | 0.94 | 10.1 | ||
Hanging wall | Distal | Blebby | 1.28 | 10.7 | 435 | 736 | 1.10 | 9.66 |
Disseminated | 0.58 | 4.45 | 430 | 606 | 0.85 | 10.4 | ||
Massive | 0.03 | 21.8 | 348 | 1070 | 4.07 | 4.34 | ||
Proximal | Blebby | 0.20 | 3.33 | 62.2 | 76.6 | 0.70 | 4.99 | |
Disseminated | 0.59 | 1.14 | 405 | 674 | 0.70 | 8.34 | ||
Host horizon | Distal | Blebby | 0.03 | 78.2 | 98.6 | 260 | 0.63 | 5.01 |
Massive | 0.11 | 4.68 | 55.0 | 176 | 1.15 | 5.71 | ||
Proximal | Disseminated | 0.04 | 0.12 | 0.02 | 10.1 | 0.47 | 2.06 | |
Massive | 0.05 | 4.88 | 1.13 | 35.1 | 1.30 | 2.40 | ||
Ag (ppm) | Sb (ppm) | W (ppm) | Tl (ppm) | Pb (ppm) | Bi (ppm) | |||
Footwall | Distal | Blebby | 0.30 | 2.37 | 0.09 | 0.06 | 17.5 | 5.31 |
Massive | 0.37 | 3.52 | 0.21 | 0.12 | 21.3 | 7.79 | ||
Proximal | Blebby | 0.32 | 4.22 | 0.30 | 0.42 | 31.2 | 4.19 | |
Disseminated | 0.66 | 4.48 | 0.13 | 0.32 | 24.1 | 6.71 | ||
Massive | 0.35 | 3.95 | 0.09 | 0.17 | 24.4 | 5.14 | ||
Hanging wall | Distal | blebby | 0.28 | 2.56 | 0.08 | 0.08 | 13.5 | 1.77 |
Disseminated | 0.18 | 3.97 | 0.06 | 0.07 | 23.0 | 5.26 | ||
Massive | 0.21 | 4.82 | 0.04 | 0.32 | 34.2 | 0.84 | ||
Proximal | Blebby | 0.21 | 1.42 | 0.02 | 0.05 | 10.1 | 0.01 | |
Disseminated | 0.45 | 3.01 | 0.04 | 0.08 | 15.0 | 4.37 | ||
Host horizon | Distal | Blebby | 0.59 | 0.40 | 0.02 | 0.02 | 6.04 | 0.01 |
Massive | 0.36 | 3.65 | 0.04 | 0.09 | 13.5 | 0.12 | ||
Proximal | Disseminated | 0.11 | 0.24 | 0.01 | 0.01 | 1.08 | 0.01 | |
Massive | 0.64 | 4.32 | 0.02 | 0.06 | 27.4 | 0.06 |
Cluster 1 | Distal (% of Total Analyses in Cluster) | Proximal (% of Total Analyses in Cluster) |
---|---|---|
Hanging wall | 20 (17%) | 13 (11%) |
Host horizon | 53 (45%) | 14 (12%) |
Footwall | 15 (13%) | 4 (3%) |
Cluster 2 | ||
Hanging wall | 0 | 4 (5%) |
Host horizon | 29 (33%) | 55 (63%) |
Footwall | 0 | 0 |
Cluster 3 | ||
Hanging wall | 48 (26%) | 13 (7%) |
Host horizon | 25 (14%) | 8 (4%) |
Footwall | 55 (30%) | 34 (19%) |
Cluster 1 | Distal (% of Total Analyses in Cluster) | Proximal (% of Total Analyses in Cluster) |
---|---|---|
Hanging wall | 0 | 0 |
Host horizon | 7 (15%) | 39 (85%) |
Footwall | 0 | 0 |
Cluster 2 | ||
Hanging wall | 1 (1%) | 3 (4%) |
Host horizon | 42 (63%) | 18 (27%) |
Footwall | 2 (3%) | 1 (1%) |
Cluster 3 | ||
Hanging wall | 2 (3%) | 7 (11%) |
Host horizon | 39 (63%) | 12 (19%) |
Footwall | 1 (2%) | 1 (2%) |
Cluster 4 | ||
Hanging wall | 32 (25%) | 10 (8%) |
Host horizon | 8 (6%) | 5 (4%) |
Footwall | 40 (32%) | 31 (25%) |
Cluster 5 | ||
Hanging wall | 33 (37%) | 10 (11%) |
Host horizon | 11 (12%) | 3 (3%) |
Footwall | 27 (30%) | 5 (6%) |
Predicted | Total | Recall | ||||
---|---|---|---|---|---|---|
Hanging Wall | Host Horizon | Footwall | ||||
Actual | Hanging wall | 12 | 2 | 4 | 18 | 66.7% |
Host horizon | 0 | 73 | 1 | 74 | 98.6% | |
Footwall | 2 | 1 | 5 | 8 | 62.5% | |
Total | 14 | 76 | 10 | 100 | ||
Precision | 85.7% | 96.1% | 50% |
Predicted | Total | Recall | ||||
---|---|---|---|---|---|---|
Hanging Wall | Host Horizon | Footwall | ||||
Actual | Hanging wall | 6 | 0 | 24 | 30 | 20.0% |
Host horizon | 2 | 54 | 4 | 60 | 90.0% | |
Footwall | 15 | 3 | 32 | 50 | 64.0% | |
Total | 23 | 57 | 60 | 140 | ||
Precision | 65.2% | 94.7% | 53.3% |
Large et al., 2011 Averages [68] | Co (ppm) | Ni (ppm) | Zn (ppm) | As (ppm) | Cu (ppm) |
---|---|---|---|---|---|
Sedimentary pyrite | 223 | 431 | 57.4 | 1900 | 155 |
Pyrrhotite | 41.3 | 593 | 1.28 | 0.18 | 4.64 |
Pyrite/pyrrhotite | 5.40 | 0.73 | 44.9 | 10,600 | 33.5 |
Sullivan mean hanging wall pyrrhotite trace element content | 429 | 832 | 5.7 | 1.7 | 1.2 |
Sullivan mean footwall pyrrhotite trace element content | 371 | 794 | 2.4 | 48 | 41 |
Calculated potential hanging wall pyrite trace element content prior to metamorphism | 2320 | 607 | 256 | 18,000 | 40.2 |
Calculated potential footwall pyrite trace element content prior to metamorphism | 2000 | 580 | 108 | 509,000 | 1350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senol, N.S.; Gregory, D.D.; Mukherjee, I.; Román, N.; Kyne, R.; Boucher, K.S. Testing Pyrrhotite Trace Element Chemistry as a Vector Towards the Mineralization in the Sullivan Deposit, B.C. Minerals 2025, 15, 534. https://doi.org/10.3390/min15050534
Senol NS, Gregory DD, Mukherjee I, Román N, Kyne R, Boucher KS. Testing Pyrrhotite Trace Element Chemistry as a Vector Towards the Mineralization in the Sullivan Deposit, B.C. Minerals. 2025; 15(5):534. https://doi.org/10.3390/min15050534
Chicago/Turabian StyleSenol, Naci Sertug, Daniel David Gregory, Indrani Mukherjee, Nelson Román, Roisin Kyne, and Kaleb S. Boucher. 2025. "Testing Pyrrhotite Trace Element Chemistry as a Vector Towards the Mineralization in the Sullivan Deposit, B.C." Minerals 15, no. 5: 534. https://doi.org/10.3390/min15050534
APA StyleSenol, N. S., Gregory, D. D., Mukherjee, I., Román, N., Kyne, R., & Boucher, K. S. (2025). Testing Pyrrhotite Trace Element Chemistry as a Vector Towards the Mineralization in the Sullivan Deposit, B.C. Minerals, 15(5), 534. https://doi.org/10.3390/min15050534