Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = L-Histidine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18888 KiB  
Article
Effects of Lactobacillus plantarum-Fermented Feed on Growth and Intestinal Health in Haliotis discus hannai
by Ling Ke, Chenyu Huang, Song Peng, Mengshi Zhao, Fengqiang Lin and Zhaolong Li
Microorganisms 2025, 13(7), 1603; https://doi.org/10.3390/microorganisms13071603 - 8 Jul 2025
Viewed by 413
Abstract
This study multidimensionally investigates the comprehensive effects of Lactobacillus plantarum (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (Haliotis discus hannai). The results demonstrate that LP fermentation significantly alters feed’s physical properties and nutritional profile, softening [...] Read more.
This study multidimensionally investigates the comprehensive effects of Lactobacillus plantarum (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (Haliotis discus hannai). The results demonstrate that LP fermentation significantly alters feed’s physical properties and nutritional profile, softening texture, increasing viscosity, and emitting an acidic aroma. Notably, it enhanced contents of cis-9-palmitoleic acid, α-linolenic acid (ALA), and functional amino acids (GABA, L-histidine, and L-asparagine), indicating that fermentation optimized ω-3 fatty acid accumulation and amino acid profiles through the modulation of fatty acid metabolic pathways, thereby improving feed biofunctionality and stress-resistant potential. Further analyses revealed that fermented feed markedly improved intestinal morphology in abalone, promoting villus integrity and upregulating tight junction proteins (ZO-1, Claudin) to reinforce intestinal barrier function. Concurrently, it downregulated inflammatory cytokines (TNF-α, NF-κB, IL-16) while upregulating anti-inflammatory factors (TLR4) and antioxidant-related genes (NRF2/KEAP1 pathway), synergistically mitigating intestinal inflammation and enhancing antioxidant capacity. Sequencing and untargeted metabolomics unveiled that fermented feed substantially remodeled gut microbiota structure, increasing Firmicutes abundance while reducing Bacteroidetes, with the notable enrichment of beneficial genera such as Mycoplasma. Metabolite profiling highlighted the significant activation of lipid metabolism, tryptophan pathway, and coenzyme A biosynthesis. A Spearman correlation analysis identified microbiota–metabolite interactions (such as Halomonas’ association with isethionic acid) potentially driving growth performance via metabolic microenvironment regulation. In conclusion, LP-fermented feed enhances abalone growth, immune response, and aquaculture efficiency through multi-dimensional synergistic mechanisms (nutritional optimization, intestinal homeostasis regulation, microbiota–metabolome crosstalk), providing critical theoretical foundations for aquafeed development and probiotic applications in aquaculture. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

18 pages, 8398 KiB  
Article
Application of Predictive Modeling and Molecular Simulations to Elucidate the Mechanisms Underlying the Antimicrobial Activity of Sage (Salvia officinalis L.) Components in Fresh Cheese Production
by Dajana Vukić, Biljana Lončar, Lato Pezo and Vladimir Vukić
Foods 2025, 14(13), 2164; https://doi.org/10.3390/foods14132164 - 20 Jun 2025
Viewed by 462
Abstract
Plant-derived materials from Salvia officinalis L. (sage) have demonstrated significant antimicrobial potential when applied during fresh cheese production. In this study, the mechanism of action of sage components against Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus was investigated through the development of [...] Read more.
Plant-derived materials from Salvia officinalis L. (sage) have demonstrated significant antimicrobial potential when applied during fresh cheese production. In this study, the mechanism of action of sage components against Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus was investigated through the development of predictive models that describe the influence of key parameters on antimicrobial efficacy. Molecular modeling techniques were employed to identify the major constituents responsible for the observed inhibitory activity. Epirosmanol, carvacrol, limonene, and thymol were identified as the primary compounds contributing to the antimicrobial effects during cheese production. The highest weighted predicted binding energy was observed for thymol against the KdpD histidine kinase from Staphylococcus aureus, with a value of −33.93 kcal/mol. To predict the binding affinity per unit mass of these sage-derived compounds against the target pathogens, machine learning models—including Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Boosted Trees Regression (BTR)—were developed and evaluated. Among these, the ANN model demonstrated the highest predictive accuracy and robustness, showing minimal bias and a strong coefficient of determination (R2 = 0.934). These findings underscore the value of integrating molecular modeling and machine learning approaches for the identification of bioactive compounds in functional food systems. Full article
(This article belongs to the Special Issue Application of Bioinformatics in Food Science)
Show Figures

Figure 1

16 pages, 1145 KiB  
Article
Tissue-Specific Metabolic Changes During Postharvest Storage of Friariello Napoletano
by Giovanna Marta Fusco, Maria Grazia Annunziata, Laura Alberico, Rosalinda Nicastro, Pasqualina Woodrow and Petronia Carillo
Horticulturae 2025, 11(6), 673; https://doi.org/10.3390/horticulturae11060673 - 12 Jun 2025
Viewed by 344
Abstract
Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort., commonly known as Friariello Napoletano, is a traditional Italian landrace valued for its distinctive flavor, nutritional richness, and cultural relevance in Mediterranean cuisine. The present study investigates the biochemical changes during postharvest [...] Read more.
Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort., commonly known as Friariello Napoletano, is a traditional Italian landrace valued for its distinctive flavor, nutritional richness, and cultural relevance in Mediterranean cuisine. The present study investigates the biochemical changes during postharvest storage at two temperatures (4 °C and 10 °C) for 2 and 20 days in its inflorescences and leaves. The experiment aimed to evaluate the evolution of primary and secondary metabolites, with a focus on pigments, amino acids, antioxidants, and glucosinolates. Significant degradation of chlorophylls was observed, particularly in leaves, with reductions of over 90% after 20 days at both temperatures. Conversely, α-tocopherol content increased significantly, especially in inflorescences, indicating an antioxidant response to storage stress. Amino acid analysis revealed a sharp decline in glutamate (up to 79%) and glutamine (up to 83%) in leaves, while proline levels increased across both tissues, reflecting an osmoprotective response. Essential amino acids (EAAs) showed variable responses, with certain EAAs, such as histidine and phenylalanine, accumulating under specific storage conditions. Soluble sugars, starch, and glucosinolates also decreased significantly, with soluble sugars dropping by 87% in inflorescences and 90% in leaves after 20 days at 10 °C. Pathway analysis revealed distinct tissue-specific metabolic responses, with inflorescences exhibiting more stable antioxidant levels and greater resilience to oxidative stress compared to leaves. These findings provide insights into the metabolic adjustments during postharvest senescence and may support future strategies aimed at preserving shelf life and nutritional quality of this traditional Mediterranean vegetable. Full article
Show Figures

Graphical abstract

22 pages, 2482 KiB  
Review
Research on the Characteristics of Electrolytes in Integrated Carbon Capture and Utilization Systems: The Key to Promoting the Development of Green and Low-Carbon Technologies
by Guoqing You, Yunzhi Li, Lihan Dong, Yichun Li and Yu Zhang
Energies 2025, 18(12), 3039; https://doi.org/10.3390/en18123039 - 8 Jun 2025
Viewed by 635
Abstract
The core challenge of integrated carbon capture and utilization (ICCU) technology lies in developing electrolytes that combine efficient carbon dioxide (CO2) capture with electrocatalytic conversion capabilities. This review analyzes the structure–performance relationship between electrolyte properties and CO2 electrochemical reduction (eCO [...] Read more.
The core challenge of integrated carbon capture and utilization (ICCU) technology lies in developing electrolytes that combine efficient carbon dioxide (CO2) capture with electrocatalytic conversion capabilities. This review analyzes the structure–performance relationship between electrolyte properties and CO2 electrochemical reduction (eCO2RR), revealing the key regulatory mechanisms. Research shows that the performance of bicarbonate electrolytes heavily depends on the cation type, where Cs+ can achieve over 90% CO selectivity by suppressing the hydrogen evolution reaction (HER) and stabilizing reaction intermediates, though its strong corrosiveness limits practical applications. Although amine absorbents excel in carbon capture (efficiency > 90%), they tend to undergo competitive adsorption during electrocatalysis, making formic acid the primary product (FE = 15%); modifying electrodes with ionomers can enhance their activity by 1.15 times. Ionic liquids (ILs) demonstrate unique advantages due to their tunability: imidazolium-based ILs improve formate selectivity to 85% via carboxylate intermediate formation, while amino-functionalized task-specific ILs (TSILs) achieve a 1:1 stoichiometric CO2 absorption ratio. Recent breakthroughs reveal that ternary IL hybrid electrolytes can achieve nearly 100% CO Faradaic efficiency (FE) through microenvironment modulation, while L-histidine additives boost CH4 selectivity by 23% via interface modification. Notably, constructing a “bulk acidic–interfacial neutral” pH gradient system addresses carbonate deposition issues in traditional alkaline conditions, increasing C2+ product efficiency to 50%. Studies also highlight that cation–anion synergy (e.g., K+/I) significantly enhances C-C coupling through electrostatic interactions, achieving 97% C2+ selectivity on Ag electrodes. These findings provide new insights for ICCU electrolyte design, with future research focusing on machine learning-assisted material optimization and reactor engineering to advance industrial applications. Full article
Show Figures

Figure 1

17 pages, 5458 KiB  
Article
Integrated Metabolome and Microbiome Analysis Reveals the Regulatory Effects of Fermented Soybean Meal on the Gut Microbiota of Late Gestation
by Yantao Li, Lele Fu, Yushi Chen, Hua Yang, Yingping Xiao, Ying Ren and Cheng Wang
Fermentation 2025, 11(6), 315; https://doi.org/10.3390/fermentation11060315 - 31 May 2025
Viewed by 768
Abstract
Late gestation is a critical period for regulating maternal peripartum physiological metabolism and gut microbiota balance. Fermented diets have been widely recognized as effective exogenous nutritional interventions capable of modulating the maintenance of gut microbiota homeostasis. However, the mechanism through which fermented diets [...] Read more.
Late gestation is a critical period for regulating maternal peripartum physiological metabolism and gut microbiota balance. Fermented diets have been widely recognized as effective exogenous nutritional interventions capable of modulating the maintenance of gut microbiota homeostasis. However, the mechanism through which fermented diets modulate the gut microbiota in late-gestation remains poorly understood. In this study, an in vitro fermentation model combined with chemical composition analysis, untargeted metabolomics, and high-throughput sequencing was employed to investigate the metabolic alterations during soybean meal (SBM) fermentation and the regulatory effects of fermented soybean meal (FSBM) on gut microbiota of late-gestation sows. The findings revealed that fermentation significantly increased the levels of crude protein, lactic acid, acid-soluble protein, lysine, histidine, and total amino acids of SBM. Conversely, the levels of crude fiber, NDF, ADF, starch, and non-starch polysaccharides were markedly reduced, compared to the unfermented group. A total of 941 differentially expressed metabolites were identified between SBM and FSBM. Specifically, FSBM elevated the levels of lactic acid, L-pyroglutamic acid, 2-aminoisobutyric acid, and tyrosine, while substantially decreasing the levels of raffinose, sucrose, and stachyose. Metabolic pathway analysis identified glutathione metabolism, tyrosine metabolism, and pantothenate and coenzyme A (CoA) biosynthesis as the key pathways involved in SBM fermentation. In vitro fermentation experiments demonstrated that FSBM substantially increased the production of short-chain fatty acids (SCFAs) and notably increased the relative abundance of sows gut commensal Lactobacillus and Limosilactobacillus in late gestation. In summary, this study demonstrated that co-fermentation with bacteria and enzymes pretreatment of soybean meal reduced fiber components and enriched bioactive metabolites, optimizing intestinal microbial composition and increasing SCFA production in late-pregnant period. The present study provides novel insights into the regulatory effects of fermented diets on gut microbiota in late-gestation period from the perspectives of nutritional composition and metabolites. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

16 pages, 2228 KiB  
Article
Dietary Supplementation of Lactobacillus reuteri Modulates Amino Acid Metabolism and Extracellular Matrix in the Gut–Liver Axis of Weaned Piglets
by Yiyi He, Yangyang Wei, Shihui Ruan, Qiwen Wu, Yunxia Xiong, Li Wang, Zongyong Jiang, E Xu and Hongbo Yi
Animals 2025, 15(11), 1567; https://doi.org/10.3390/ani15111567 - 27 May 2025
Viewed by 695
Abstract
Weaning stress leads to intestinal dysfunction and impaired growth performance and intestinal development in piglets. This study aims to investigate the effects of Lactobacillus reuteri LR1 on growth performance and amino acid metabolism in the gut–liver axis of weaned piglets. A total of [...] Read more.
Weaning stress leads to intestinal dysfunction and impaired growth performance and intestinal development in piglets. This study aims to investigate the effects of Lactobacillus reuteri LR1 on growth performance and amino acid metabolism in the gut–liver axis of weaned piglets. A total of 48 weaned piglets (Duroc × Landrace × Yorkshire, 21 days old) were randomly assigned to the CON group (fed a basal diet) and the LR1 group (fed the basal diet supplemented with 5 × 1010 CFU/kg of Lactobacillus reuteri LR1) with six pens per group and 4 piglets each pen. The results demonstrated that LR1 significantly increased average daily gain (ADG), average daily feed intake (ADFI), and final body weight (p < 0.05). Additionally, LR1 significantly enhanced the villus height of the ileum (p < 0.05) and upregulated the expression of SLC6A19 in the jejunum, as well as SLC6A19, SLC7A1, and SLC38A9 in the ileum (p < 0.05). Amino acid analysis revealed that LR1 elevated the serum concentrations of glycine and hydroxyproline, along with increased taurine in the liver. Masson staining indicated LR1 reduced ileum fiber deposition, with COL3A1 identified as a key component. Furthermore, untargeted metabolomic analysis identified 27 amino acid-related differential metabolites and 11 significantly up-regulated in the plasma of the hepatic portal vein, including L-asparagine, L-citrulline, His-Cys, N-acetyltryptophan, 4-hydroxy-l-isoleucine, Gly-Arg, creatine, ornithine, ectoine, 3-methyl-l-histidine, and stachydrine. Correlation analysis suggested that COL1A2 and COL3A1 were closely associated with these metabolic changes. Overall, these findings suggest that LR1 supplementation promotes growth, improves intestinal morphology, reduces fiber deposition, and enhances amino acid metabolism in the gut–liver axis of weaned piglets. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

20 pages, 5008 KiB  
Article
Integration of Transcriptomics and Metabolomics Reveals Mechanisms of High-Temperature Stress Tolerance in the Hepatopancreas of Penaeus monodon
by Li Liu, Peng Zhao, Lishi Yang, Yundong Li, Zhong Huang, Qibin Yang, Yukai Yang, Jianzhi Shi, Yibiao Chen and Jianhua Huang
Biology 2025, 14(6), 591; https://doi.org/10.3390/biology14060591 - 23 May 2025
Viewed by 506
Abstract
High temperatures in summer often trigger disease outbreaks in shrimp, resulting in significant economic losses. To investigate the heat tolerance mechanisms of Penaeus monodon, juvenile tiger shrimp were subjected to a high-temperature stress of 38 °C for 144 h. The cumulative survival [...] Read more.
High temperatures in summer often trigger disease outbreaks in shrimp, resulting in significant economic losses. To investigate the heat tolerance mechanisms of Penaeus monodon, juvenile tiger shrimp were subjected to a high-temperature stress of 38 °C for 144 h. The cumulative survival rate of shrimp sharply decreased to 5.29% in the later 144 h. The heat-sensitive shrimps (S group) were collected in the first 24 h, while those that survived beyond 120 h were collected as the heat-tolerant group (T group). The hepatopancreas of two groups was subjected to transcriptomic and metabolomic analysis. The results revealed that, compared to the S group, the T group exhibited a total of 3527 DEGs, including 2199 upregulated and 1328 downregulated genes. Additionally, 353 DAMs were identified in the T group, with 75 metabolites showing increased levels and 278 metabolites displaying decreased levels. The results revealed that the mechanisms of heat tolerance involve energy supply strategies, immune system regulation, amino acid metabolism, and glutathione metabolism. Energy supply strategies include the digestion and absorption of carbohydrates and proteins, glycolysis/gluconeogenesis, fructose and mannose metabolism, and pyruvate metabolism, all of which collectively meet energy demands in high-temperature environments. The immune system is regulated by C-type lectin receptor pathways and IL-17 signaling pathways, which together coordinate innate immunity to prevent pathogen invasion. In amino acid metabolism, various glycogenic amino acids, such as histidine, phenylalanine, valine, and serine, are metabolized for energy, while excess ammonia is converted to γ-glutamyl-glutamate and L-glutamate to mitigate ammonia accumulation. Combined transcriptomic and metabolomic analyses further indicate that glutathione metabolism plays a crucial role in the adaptation of P. monodon to high-temperature environments. This study explains the high-temperature tolerance mechanism of P. monodon from the aspects of gene expression regulation and material metabolism regulation and also provides a scientific basis and basic data for the selection and breeding of new varieties of P. monodon with a high-temperature tolerance. Full article
Show Figures

Figure 1

16 pages, 15048 KiB  
Article
Comparative Global Metabolome Profile and Transcriptome Sequence Analysis of the Rough and Smooth Peel of the Orah Mandarin (Citrus reticulata)
by Hongming Liu, Chunrui Long, Xiaomeng Fu, Shaohua Wang, Yuqiang Lou, Jianmei Dong, Meichao Dong, Jiamei Mao, Jiandong Yang, Hongxia Yang, Yuxia Du and Xianyan Zhou
Horticulturae 2025, 11(5), 496; https://doi.org/10.3390/horticulturae11050496 - 4 May 2025
Viewed by 469
Abstract
Background: The Orah mandarin is an economically important variety of Citrus reticulata for citrus growers in Yunnan Province, China. Generally, the fruit peel is smooth, an attractive feature for consumer preferences. Recently, rough peels have been observed in several orchards, making the fruit [...] Read more.
Background: The Orah mandarin is an economically important variety of Citrus reticulata for citrus growers in Yunnan Province, China. Generally, the fruit peel is smooth, an attractive feature for consumer preferences. Recently, rough peels have been observed in several orchards, making the fruit aesthetically less desirable. Little is known about the mechanism of rough skin development. Methods: In this study, we used global metabolomics and a comparative transcriptomic approach to characterize the differences between smooth (CK) and rough (CP) Orah mandarin peels. Results: Our results indicate that CP fruits have a significantly larger diameter, peel weight and thickness, total soluble solids, and titratable acid content compared to CK. Metabolomic analysis detected 810 metabolites, of which 192 were differentially accumulated in CP and CK. CP is characterized by higher levels of flavonoids, amino acids and derivatives, terpenoids, and alkaloids. We also report nine compounds detected exclusively in CP, including dambonitol, 3-methyl-L-histidine, deacetylnomilinic acid, obacunoic acid, and 6-O-acetylarbutin. The transcriptome results showed that the expression of genes enriched in flavonoids, lipid, and amino acid metabolism and related pathways were consistent with the metabolome profiles. We also discuss the possible involvement of phytohormones in peel roughening. Conclusions: Overall, we present, for the first time, a detailed comparative metabolome and transcriptome profile in smooth and rough Orah mandarin peels. Our data and discussion highlight the potential mechanisms and provide a theoretical basis for the improvement of rough peel Orah mandarins. Full article
Show Figures

Figure 1

25 pages, 10560 KiB  
Article
Effects of Lactobacillus paracei JY062 Postbiotic on Intestinal Barrier, Immunity, and Gut Microbiota
by Jinfeng Guo, Ying Zhao, Wenqian Guo, Yilin Sun, Wei Zhang, Qianyu Zhao, Yu Zhang and Yujun Jiang
Nutrients 2025, 17(7), 1272; https://doi.org/10.3390/nu17071272 - 5 Apr 2025
Viewed by 1319
Abstract
Background/Objectives: Research on postbiotics derived from probiotic fermented milk bases require further expansion, and the mechanisms through which they exert their effects have yet to be fully elucidated. This study utilized in vitro cell co-culture, digestion, and fermentation experiments, combined with targeted T500 [...] Read more.
Background/Objectives: Research on postbiotics derived from probiotic fermented milk bases require further expansion, and the mechanisms through which they exert their effects have yet to be fully elucidated. This study utilized in vitro cell co-culture, digestion, and fermentation experiments, combined with targeted T500 technology, to elucidate the mechanism by which postbiotic Pa JY062 safeguards intestinal health. Compared to the LPS group, Pa JY062 boosted phagocytic ability in RAW264.7 macrophages, decreased NO levels, and alleviated LPS-induced excessive inflammation. Pa JY062 suppressed pro-inflammatory cytokines (IL-6, IL-17α, and TNF-α) while elevating anti-inflammatory IL-10. It prevented LPS-induced TEER reduction in Caco-2 monolayers, decreased FITC-dextran permeability, restored intestinal microvilli integrity, and upregulated tight junction genes (ZO-1, occludin, claudin-1, and E-cadherin). The hydrolysis rate of Pa JY062 progressively rose in gastrointestinal fluids in 0–120 min. At 5 mg/mL, it enriched gut microbiota diversity and elevated proportions of Limosilactobacillus, Lactobacillus, Pediococcus, and Lacticaseibacillus while augmenting the microbial production of acetic acid (120.2 ± 8.08 μg/mL), propionic acid (9.9 ± 0.35 μg/mL), and butyric acid (10.55 ± 0.13 μg/mL). Pa JY062 incorporated αs-casein/β-lactoglobulin hydrolysate (L-glutamic acid, alanine, lysine, tyrosine, phenylalanine, histidine, and arginine) to mitigate protein allergenic potential while harboring bioactive components, including tryptophan metabolites, vitamin B6 (VB6), and γ-aminobutyric acid (GABA). Pa JY062 represented a novel postbiotic with demonstrated intestinal health-promoting properties. These findings advance the current knowledge on postbiotic-mediated gut homeostasis regulation and expedite the translational development of dairy-derived postbiotic formulations. Full article
(This article belongs to the Special Issue The Role of Functional Ingredients in Regulating Health Effects)
Show Figures

Figure 1

15 pages, 7629 KiB  
Article
Effect of Harvest Time on Non-Volatile Metabolites in Japonica Rice
by Mengnan Teng, Xiaoting Xing, Pengli Jiang, Xiaoliang Duan, Dong Zhang, Hui Sun, Chunfang Zhao, Xingquan Liu, Zhigang Yao and Motonobu Kawano
Foods 2025, 14(7), 1224; https://doi.org/10.3390/foods14071224 - 31 Mar 2025
Viewed by 501
Abstract
A large number of non-volatile metabolites are produced during the growth of rice; however, few studies have focused on the changes in these metabolites at different harvest times. In this study, Nangeng 5718 (a rice variety) was taken as the research object to [...] Read more.
A large number of non-volatile metabolites are produced during the growth of rice; however, few studies have focused on the changes in these metabolites at different harvest times. In this study, Nangeng 5718 (a rice variety) was taken as the research object to study the changes in rice metabolites at different harvest times. Liquid chromatography mass spectrometry (LC-MS) was used to analyze the non-targeted metabolomics of rice at different harvest times in Nanjing, Huai’an, and Lianyungang in the Jiangsu Province of China. The results showed that 2111 metabolites were annotated by the human metabolome database (HMDB), accounting for 94.96% of the total number of metabolites. Rice metabolites included one categories, including 312 fatty acyls, 275 organooxygen compounds, 261 carboxylic acids and derivatives, etc. The results of the Kyoto encyclopedia of genes and genomes (KEGG) pathway showed that autophagy–other, ABC transporters, and glycerophospholipid metabolism had a great effect on rice heading to harvest. The experiments showed that L-histidine in Nangeng 5718 was upregulated. These results provide comprehensive insights into the relationship between rice harvest time and changes in metabolites. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

18 pages, 280 KiB  
Article
Optimizing Ergothioneine Biosynthesis and Antioxidant Activity in Agaricus spp. Through Amino Acid Supplementation and Yeast–Peptone Mixtures
by Hojat Ghahremani-majd, Hasan Mumivand, Parisa Khanizadeh, Fatemeh Bakhshipoor and Sergio Argento
Horticulturae 2025, 11(4), 348; https://doi.org/10.3390/horticulturae11040348 - 23 Mar 2025
Viewed by 1490
Abstract
With increasing demand for antioxidant-rich foods, research has focused on cost-effective methods to produce natural antioxidants. Mushrooms, especially Agaricus species, are rich in bioactive compounds like ergothioneine, a potent antioxidant. Ergothioneine has been shown to offer significant health benefits, such as protecting against [...] Read more.
With increasing demand for antioxidant-rich foods, research has focused on cost-effective methods to produce natural antioxidants. Mushrooms, especially Agaricus species, are rich in bioactive compounds like ergothioneine, a potent antioxidant. Ergothioneine has been shown to offer significant health benefits, such as protecting against oxidative stress, cardiovascular diseases, and premature aging. This study explores the effects of amino acid supplementation (methionine, cysteine, and histidine) and yeast–peptone mixtures on ergothioneine production, antioxidant activity, total phenolic content, and growth rate in various Agaricus species; this was conducted through two distinct experiments within a completely randomized design. In the first experiment, 13 treatment combinations were tested, involving varying concentrations of individual amino acids (methionine, cysteine, and histidine) at 0.5, 1, and 2 mM, as well as their combined concentrations (0.5 + 0.5 + 0.5, 1 + 1 + 1, and 2 + 2 + 2 mM), compared to a control (no amino acids). The second experiment tested yeast extract and peptone mixtures at seven concentrations: control (no supplementation), yeast (2 and 4 g/L), peptone (2 and 4 g/L), and combinations of yeast and peptone (2 + 2 and 4 + 4 g/L). Results revealed that supplementation with amino acids at 1 + 1 + 1 mM significantly enhanced ergothioneine content and antioxidant activity, though it resulted in decreased growth rates. In contrast, lower concentrations of amino acids (0.5 + 0.5 + 0.5 mM) increased ergothioneine production, with minimal impact on growth. Yeast and peptone supplementation at 2 + 2 g/L yielded the highest ergothioneine content, antioxidant activity, and growth rates across all Agaricus species tested. The most effective combination for maximizing ergothioneine production, antioxidant activity, and growth was found to be 0.5 mM of methionine, cysteine, and histidine, combined with 2 g/L of yeast extract and 2 g/L of peptone. Agaricus bitorquis (Quél.) Sacc. emerged as a promising candidate for ergothioneine production due to its genetic potential and metabolic efficiency. However, the strong responsiveness of Agaricus bisporus (white) to optimized culture conditions offers a viable alternative to A. bitorquis, which may require more complex and costly cultivation strategies. Full article
(This article belongs to the Special Issue Horticultural Production in Controlled Environment)
Show Figures

Graphical abstract

16 pages, 4630 KiB  
Article
Metabolomic Analysis of the Responses of Bryophyte Tortella tortuosa (Hedw.) Limpr. to Cadmium (Cd) Stress
by Yongqi Zhu, Dongmei Lin, Qiuge Li, Mengjie An and Jie Lv
Int. J. Mol. Sci. 2025, 26(7), 2856; https://doi.org/10.3390/ijms26072856 - 21 Mar 2025
Viewed by 393
Abstract
In recent years, there have been many studies on the response of plants to heavy metal stress, but the metabolic changes in bryophytes, pioneer plants quickly responding to environmental changes, under exogenous cadmium (Cd) stress have yet to be explored. In this indoor [...] Read more.
In recent years, there have been many studies on the response of plants to heavy metal stress, but the metabolic changes in bryophytes, pioneer plants quickly responding to environmental changes, under exogenous cadmium (Cd) stress have yet to be explored. In this indoor experiment, the responses in the metabolome of bryophyte Tortella tortuosa (Hedw.) Limpr. to different Cd exposure levels (0 (CK), 5 (T1), and 10 (T2) mg·L−1) were analyzed. The results showed that the number of differentially accumulated metabolites (DAMs) secreted by T. tortuosa increased with the increase in the Cd concentration, and the biosynthesis of cofactors, D-Amino acid metabolism, Arginine biosynthesis, ATP-binding cassette transporters (ABC transporters), and biosynthesis of alkaloids derived from shikimate pathway were the main pathways enriched by DAMs. The relative abundances of malic acid, N-Formylkynurenine, L-Glutamine, L-Histidine, LL-2,6-Diaminopimelic acid, and fusaric acid in the T2 treatment increased by 16.06%, 62.51%, 14.51%, 11.92%, 21.37%, and 35.79%, respectively (p < 0.05), compared with those of the CK, and the correlation analysis results showed that the above DAMs were closely related to the changes in plant antioxidant enzyme activity and Cd concentration. These results indicate that the secretion of amino acid (N-Formylkynurenine, L-Histidine) and organic acids (isocitric acid, LL-2,6-Diaminopimelic acid, malic acid) through the metabolic pathways, including biosynthesis of amino acids, biosynthesis of cofactors, glyoxylate and dicarboxylate metabolism, and ABC transporters, is the metabolic mechanism of T. tortuosa to resist exogenous Cd stress. This study will provide a reference for the monitoring and remediation of heavy metal pollution. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant)
Show Figures

Figure 1

12 pages, 1237 KiB  
Article
Metabolic Disruptions and Non-Communicable Disease Risks Associated with Long-Term Particulate Matter Exposure in Northern Thailand: An NMR-Based Metabolomics Study
by Churdsak Jaikang, Giatgong Konguthaithip, Yutti Amornlertwatana, Narongchai Autsavapromporn, Sirichet Rattanachitthawat, Nitip Liampongsabuddhi and Tawachai Monum
Biomedicines 2025, 13(3), 742; https://doi.org/10.3390/biomedicines13030742 - 18 Mar 2025
Cited by 1 | Viewed by 664
Abstract
Background/Objectives: Particulate matter (PM) is a primary health hazard associated with metabolic pathway disruption. Population characteristics, topography, sources, and PM components contribute to health impacts. Methods: In this study, NMR-based metabolomics was used to evaluate the health impacts of prolonged exposure [...] Read more.
Background/Objectives: Particulate matter (PM) is a primary health hazard associated with metabolic pathway disruption. Population characteristics, topography, sources, and PM components contribute to health impacts. Methods: In this study, NMR-based metabolomics was used to evaluate the health impacts of prolonged exposure to PM. Blood samples (n = 197) were collected from healthy volunteers in low- (control; CG) and high-exposure areas (exposure; EG) in Northern Thailand. Non-targeted metabolite analysis was performed using proton nuclear magnetic resonance spectroscopy (1H-NMR). Results: Compared to CG, EG showed significantly increased levels of dopamine, N6-methyladenosine, 3-hydroxyproline, 5-carboxylcytosine, and cytidine (p < 0.05), while biopterin, adenosine, L-Histidine, epinephrine, and norepinephrine were significantly higher in CG (p < 0.05). These metabolic disturbances suggest that chronic exposure to particulate matter (PM) impairs energy and amino acid metabolism while enhancing oxidative stress, potentially contributing to the onset of non-communicable diseases (NCDs) such as cancer and neurodegenerative conditions. Conclusions: This study highlighted the connection between sub-chronic PM2.5 exposure, metabolic disturbances, and an increased risk of non-communicable diseases (NCDs), stressing the critical need for effective PM2.5 reduction strategies in Northern Thailand. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

8 pages, 2691 KiB  
Proceeding Paper
An In Silico Approach for Comparative Characterization of Imidazolonepropionase from Agrobacterium fabrum & Bacillus subtilis: An Imperative Enzyme for Histidine Degradation
by Ishita Biswas, Trishanjan Biswas and Debanjan Mitra
Biol. Life Sci. Forum 2025, 41(1), 3; https://doi.org/10.3390/blsf2025041003 - 13 Mar 2025
Viewed by 377
Abstract
Introduction: The third step in histidine degradation is catalysed by imidazolonepropionase. It catalyses the conversion of 4-imidazolone-5-propionic acid to produce N-formimino-L-glutamic acid by hydrolyzing the carbon-nitrogen bonds. The histidine is a very expensive amino acid inside the cell and its degradation is a [...] Read more.
Introduction: The third step in histidine degradation is catalysed by imidazolonepropionase. It catalyses the conversion of 4-imidazolone-5-propionic acid to produce N-formimino-L-glutamic acid by hydrolyzing the carbon-nitrogen bonds. The histidine is a very expensive amino acid inside the cell and its degradation is a very conserved process. To date, very few reports are there regarding the structure of bacterial imidazolonepropionase but no reports have been published regarding the comparative structure and sequence analysis of this enzyme from bacterial sources. Methods: An in-silico study has been done to characterize the imidazolonepropionase from gram-positive Bacillus subtilis and gram-negative Agrobacterium fabrum. Results: The sequence analysis revealed that a higher amount of charged residues are present in Bacillus subtilis. These charged residues help in the increment of polarity and hydrophilicity of Bacillus subtilis. The formation of intra-protein interactions was also high in gram-positive species. Interestingly, both species have almost equal abundance of aromatic amino acids in their sequences, but the formation of aromatic-aromatic interactions was high in Bacillus subtilis. Finally, the molecular dynamics simulation study revealed that imidazolonepropionase from Bacillus subtilis was more stable and compact than Agrobacterium fabrum. Conclusions: The imidazolonepropionase from Bacillus subtilis was more stable than Agrobacterium fabrum. Due to the presence of higher stable imidazolonepropionase in Bacillus subtilis, it can use histidine more efficiently. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Agronomy)
Show Figures

Figure 1

13 pages, 2763 KiB  
Article
Enhanced Protein Digestibility and Amino Acid Profile of a Novel Legume (Inga paterno) Seed Flours: Evaluation of Proximal Composition Changes by Sprouting
by Lizbeth Rosas-Ordoñez, Milena M. Ramírez-Rodrigues, Melissa A. Ramírez-Rodrigues and Taisa S. S. Pereira
Appl. Biosci. 2025, 4(1), 15; https://doi.org/10.3390/applbiosci4010015 - 5 Mar 2025
Cited by 1 | Viewed by 1435
Abstract
The nutritional value of Inga paterno seeds remains largely unexplored. Given the global protein deficiency, underutilized legumes like I. paterno could serve as alternative protein sources. This study evaluated the effect of sprouting on the composition, protein digestibility (PD) as soluble protein (SP), [...] Read more.
The nutritional value of Inga paterno seeds remains largely unexplored. Given the global protein deficiency, underutilized legumes like I. paterno could serve as alternative protein sources. This study evaluated the effect of sprouting on the composition, protein digestibility (PD) as soluble protein (SP), amino acid profile, free amino acids by UHPLC, and nutritional indicators of I. paterno seed flour. Seeds were sprouted for 0, 2, 4, 6, 8, or 10 days, then dried, milled, and analyzed. The seeds reached 100% sprouting after six days. Sprouting led to a 54.36% decrease in protein content but a 109% increase in the lipid fraction by day six. PD doubled after 8–10 days of sprouting. Additionally, total amino acid content significantly increased and the chemical score of majority essential amino acids tripled. After in vitro digestion, sprouted flour released higher amounts of free amino acids, particularly aspartic acid (from 9.10 ± 0.18 to 19.65 ± 0.97 mg/L), histidine (from 33.48 ± 0.61 to 46.29 ± 2.34 mg/L), alanine (from 16.32 ± 0.40 to 23.74 ± 0.07 mg/L), and lysine (from no detected to 7.12 ± 0.36 m/L). These findings suggest that sprouted I. paterno seeds could be a valuable, digestible protein source with enhanced nutritional quality, making them a promising ingredient for the food industry. Full article
(This article belongs to the Special Issue Plant Natural Compounds: From Discovery to Application)
Show Figures

Graphical abstract

Back to TopTop