Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (735)

Search Parameters:
Keywords = L-FC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2268 KiB  
Article
Potential for Drought Stress Alleviation in Lettuce (Lactuca sativa L.) with Humic Substance-Based Biostimulant Applications
by Santiago Atero-Calvo, Francesco Magro, Giacomo Masetti, Eloy Navarro-León, Begoña Blasco and Juan Manuel Ruiz
Plants 2025, 14(15), 2386; https://doi.org/10.3390/plants14152386 (registering DOI) - 2 Aug 2025
Abstract
In the present study, we evaluated the potential use of a humic substance (HS)-based biostimulant in mitigating drought stress in lettuce (Lactuca sativa L.) by comparing both root and foliar modes of application. To achieve this, lettuce plants were grown in a [...] Read more.
In the present study, we evaluated the potential use of a humic substance (HS)-based biostimulant in mitigating drought stress in lettuce (Lactuca sativa L.) by comparing both root and foliar modes of application. To achieve this, lettuce plants were grown in a growth chamber on a solid substrate composed of vermiculite and perlite (3:1). Plants were exposed to drought conditions (50% of Field Capacity, FC) and 50% FC + HS applied as radicular (‘R’) and foliar (‘F’) at concentrations: R-HS 0.40 and 0.60 mL/L, respectively, and 7.50 and 10.00 mL/L, respectively, along with a control (100% FC). HSs were applied three times at 10-day intervals. Plant growth, nutrient concentration, lipid peroxidation, reactive oxygen species (ROS), and enzymatic and non-enzymatic antioxidants were estimated. Various photosynthetic and chlorophyll fluorescence parameters were also analyzed. The results showed that HS applications alleviated drought stress, increased plant growth, and reduced lipid peroxidation and ROS accumulation. HSs also improved the net photosynthetic rate, carboxylation efficiency, electron transport flux, and water use efficiency. Although foliar HSs showed a greater tendency to enhance shoot growth and photosynthetic capacity, the differences between the application methods were not significant. Hence, in this preliminary work, the HS-based product evaluated in this study demonstrated potential for alleviating drought stress in lettuce plants at the applied doses, regardless of the mode of application. This study highlights HS-based biostimulants as an effective and sustainable tool to improve crop resilience and support sustainable agriculture under climate change. However, further studies under controlled growth chamber conditions are needed to confirm these results before field trials. Full article
(This article belongs to the Special Issue Biostimulation for Abiotic Stress Tolerance in Plants)
Show Figures

Figure 1

29 pages, 4169 KiB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 (registering DOI) - 31 Jul 2025
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

19 pages, 2442 KiB  
Article
Monitoring C. vulgaris Cultivations Grown on Winery Wastewater Using Flow Cytometry
by Teresa Lopes da Silva, Thiago Abrantes Silva, Bruna Thomazinho França, Belina Ribeiro and Alberto Reis
Fermentation 2025, 11(8), 442; https://doi.org/10.3390/fermentation11080442 (registering DOI) - 31 Jul 2025
Viewed by 39
Abstract
Winery wastewater (WWW), if released untreated, poses a serious environmental threat due to its high organic load. In this study, Chlorella vulgaris was cultivated in diluted WWW to assess its suitability as a culture medium. Two outdoor cultivation systems—a 270 L raceway and [...] Read more.
Winery wastewater (WWW), if released untreated, poses a serious environmental threat due to its high organic load. In this study, Chlorella vulgaris was cultivated in diluted WWW to assess its suitability as a culture medium. Two outdoor cultivation systems—a 270 L raceway and a 40 L bubble column—were operated over 33 days using synthetic medium (control) and WWW. A flow cytometry (FC) protocol was implemented to monitor key physiological parameters in near-real time, including cell concentration, membrane integrity, chlorophyll content, cell size, and internal complexity. At the end of cultivation, the bubble column yielded the highest cell concentrations: 2.85 × 106 cells/mL (control) and 2.30 × 106 cells/mL (WWW), though with lower proportions of intact cells (25% and 31%, respectively). Raceway cultures showed lower cell concentrations: 1.64 × 106 (control) and 1.54 × 106 cells/mL (WWW), but higher membrane integrity (76% and 36% for control and WWW cultures, respectively). On average, cells grown in the bubble column had a 22% larger radius than those in the raceway, favouring sedimentation. Heterotrophic cells were more abundant in WWW cultures, due to the presence of organic carbon, indicating its potential for use as animal feed. This study demonstrates that FC is a powerful, real-time tool for monitoring microalgae physiology and optimising cultivation in complex effluents like WWW. Full article
Show Figures

Figure 1

13 pages, 8639 KiB  
Article
In-Depth Characterization of L1CAM+ Extracellular Vesicles as Potential Biomarkers for Anti-CD20 Therapy Response in Relapsing–Remitting Multiple Sclerosis
by Shamundeeswari Anandan, Karina Maciak, Regina Breinbauer, Laura Otero-Ortega, Giancarlo Feliciello, Nataša Stojanović Gužvić, Oivind Torkildsen and Kjell-Morten Myhr
Int. J. Mol. Sci. 2025, 26(15), 7213; https://doi.org/10.3390/ijms26157213 - 25 Jul 2025
Viewed by 591
Abstract
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, [...] Read more.
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, prolonged use increases the risk of infections and other immune-mediated side effects. The unique ability of brain-derived blood extracellular vesicles (EVs) to cross the blood–brain barrier and reflect the central nervous system (CNS) immune status has sparked interest in their potential as biomarkers. This study aimed to assess whether blood-derived L1CAM+ EVs could serve as biomarkers of treatment response to rituximab (RTX) in patients with relapsing-remitting MS (RRMS). Serum samples (n = 25) from the baseline (month 0) and after 6 months were analyzed from the RTX arm of the ongoing randomized clinical trial OVERLORD-MS (comparing anti-CD20 therapies in RRMS patients) and were compared with serum samples from healthy controls (n = 15). Baseline cerebrospinal fluid (CSF) samples from the same study cohort were also included. EVs from both serum and CSF samples were characterized, considering morphology, size, and concentration, using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The immunophenotyping of EV surface receptors was performed using flow cytometry with the MACSPlex exosome kit, while label-free quantitative proteomics of EV protein cargo was conducted using a proximity extension assay (PEA). TEM confirmed the presence of EVs with the expected round morphology with a diameter of 50–150 nm. NTA showed significantly higher concentrations of L1CAM+ EVs (p < 0.0001) in serum total EVs and EBNA1+ EVs (p < 0.01) in serum L1CAM+ EVs at baseline (untreated) compared to in healthy controls. After six months of RTX therapy, there was a significant reduction in L1CAM+ EV concentration (p < 0.0001) and the downregulation of TNFRSF13B (p = 0.0004; FC = −0.49) in serum total EVs. Additionally, non-significant changes were observed in CD79B and CCL2 levels in serum L1CAM+ EVs at baseline compared to in controls and after six months of RTX therapy. In conclusion, L1CAM+ EVs in serum showed distinct immunological profiles before and after rituximab treatment, underscoring their potential as dynamic biomarkers for individualized anti-CD20 therapy in MS. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

10 pages, 498 KiB  
Article
Binary Sex Input Has No Effect on Metabolic or Pulmonary Variables: A Within-Subjects Observational Study
by Olivia R. Perez, Michael W. H. Wong, Dustin W. Davis and James W. Navalta
Sports 2025, 13(8), 241; https://doi.org/10.3390/sports13080241 - 23 Jul 2025
Viewed by 460
Abstract
Metabolic analysis systems require binary sex input, conflating biological sex with gender, limiting inclusivity. This study aimed to determine whether sex input altered metabolic or pulmonary variables during self-paced walking and running. Twenty adults completed two 5-min walking and running trials under both [...] Read more.
Metabolic analysis systems require binary sex input, conflating biological sex with gender, limiting inclusivity. This study aimed to determine whether sex input altered metabolic or pulmonary variables during self-paced walking and running. Twenty adults completed two 5-min walking and running trials under both female (FC) and male (MC) input conditions in randomized order. Dependent t-tests determined differences between conditions; p-values < 0.05 were considered significant, and effect sizes were calculated. No significant within-participant differences were found between FC and MC for any variable. During walking, mean relative VO2 (mL/kg/min) was 11.13 ± 2.73 (FC) and 10.81 ± 2.39 (MC), p = 0.08, R2 = 0.93; mean energy expenditure (kcal) was 18.28 ± 4.74 (FC) and 17.86 ± 4.33 (MC), p = 0.12, R2 = 0.94. During running, mean relative VO2 was 28.80 ± 5.89 (FC) and 28.82 ± 6.06 (MC), p = 0.90, R2 = 0.98; mean energy expenditure was 45.79 ± 13.08 (FC) and 45.55 ± 12.26 (MC), p = 0.99, R2 = 0.98. Binary sex input in the TrueOne 2400 system did not affect variables, supporting inclusive sex and gender data collection to improve research ethics, accuracy, and representation of gender-diverse people without compromising integrity. Full article
(This article belongs to the Special Issue Women's Special Issue Series: Sports)
Show Figures

Figure 1

18 pages, 7477 KiB  
Article
A Three-Layer Sequential Model Predictive Current Control for NNPC Four-Level Inverters with Low Common-Mode Voltage
by Liyu Dai, Wujie Chao, Chaoping Deng, Junwei Huang, Yihan Wang, Minxin Lin and Tao Jin
Electronics 2025, 14(14), 2910; https://doi.org/10.3390/electronics14142910 - 21 Jul 2025
Viewed by 273
Abstract
The four-level nested neutral point clamped (4L-NNPC) inverter has recently become a promising solution for renewable energy generation, e.g., wind and photovoltaic power. The NNPC inverter can stabilize the flying capacitor (FC) voltages of each bridge through redundant switch states (RSSs). This paper [...] Read more.
The four-level nested neutral point clamped (4L-NNPC) inverter has recently become a promising solution for renewable energy generation, e.g., wind and photovoltaic power. The NNPC inverter can stabilize the flying capacitor (FC) voltages of each bridge through redundant switch states (RSSs). This paper presents an improved three-layer sequential model predictive control (3LS-MPC) method for 4L-NNPCs. This method eliminates weighting factors and removes the switch states that generate high common-mode voltage (CMV). Before selecting the optimal vector, we disable certain switch states which affect the FC voltages, continuing to deviate from the desired value. Then, adopting a two-stage optimal vector selection method, we select the optimal sector based on six specific vectors and choose the optimal vector from the seven vectors in the optimal sector. The feasibility of this method was verified in Matlab/Simulink and the prototype. The experimental results show that compared with classical FCS-MPC, the proposed 3LS-MPC method reduces the common-mode voltage and has better harmonic quality and more stable FCs voltages. Full article
Show Figures

Figure 1

18 pages, 3585 KiB  
Article
Dynamic Event-Triggered Switching of LFC Scheme Under DoS Attacks Based on a Predictive Model
by De-Tao Guo, Yong-Xin Zhao, Kai-Bo Shi and Ming Zhu
Electronics 2025, 14(14), 2838; https://doi.org/10.3390/electronics14142838 - 15 Jul 2025
Viewed by 200
Abstract
In this paper, a dynamic event-triggering mechanism (DETM) for load frequency control (LFC) of Denial-of-Service (DoS) attacks based on a predictive model is studied, which has important applications in discrete power systems. Firstly, the prediction model predicts subsequent signals based on observed system [...] Read more.
In this paper, a dynamic event-triggering mechanism (DETM) for load frequency control (LFC) of Denial-of-Service (DoS) attacks based on a predictive model is studied, which has important applications in discrete power systems. Firstly, the prediction model predicts subsequent signals based on observed system states. Secondly, by constructing an improved discrete signal event-triggering scheme, the influence of DoS attacks on the system is weakened. The dynamic trigger condition depends on the past few changes in the system state, rather than real-time sampling values. At the same time, the waiting time of DETM is set to avoid the Zeno phenomenon. Additionally, based on the update period and timestamp technology of the actuator, a control mechanism to resist DoS attacks is implemented in the actuator component. Furthermore, the method uses a double-loop open communication platform to improve reliability and flexibility. Full article
Show Figures

Figure 1

41 pages, 20897 KiB  
Article
Voltage and Frequency Regulation in Interconnected Power Systems via a (1+PDD2)-(1+TI) Cascade Controller Optimized by Mirage Search Optimizer
by Kareem M. AboRas, Ali M. Elkassas, Ashraf Ibrahim Megahed and Hossam Kotb
Mathematics 2025, 13(14), 2251; https://doi.org/10.3390/math13142251 - 11 Jul 2025
Viewed by 379
Abstract
The combined application of Load Frequency Control (LFC) and Automatic Voltage Regulation (AVR), known as Automatic Generation Control (AGC), manages active and reactive power to ensure system stability. This study presents a novel hybrid controller with a (1+PDD2)-(1+TI) structure, optimized using [...] Read more.
The combined application of Load Frequency Control (LFC) and Automatic Voltage Regulation (AVR), known as Automatic Generation Control (AGC), manages active and reactive power to ensure system stability. This study presents a novel hybrid controller with a (1+PDD2)-(1+TI) structure, optimized using the Mirage Search Optimization (MSO) algorithm. Designed for dual-area power systems, the controller enhances both LFC and AVR by coordinating voltage and frequency loops. MSO was chosen after outperforming five algorithms (ChOA, DOA, PSO, GTO, and GBO), achieving the lowest fitness value (ITSE = 0.028). The controller was tested under various challenging conditions: sudden load disturbances, stochastic variations, nonlinearities like Generation Rate Constraints (GRC) and Governor Dead Band (GDB), time-varying reference voltages, and ±20% to ±40% parameter deviations. Across all scenarios, the (1+PDD2)-(1+TI) controller consistently outperformed MSO-tuned TID, FOPID, FOPI-PIDD2, (1+PD)-PID, and conventional PID controllers. It demonstrated superior performance in regulating frequency, tie-line power, and voltage, achieving approximately a 50% improvement in dynamic response. MATLAB/SIMULINK results confirm its effectiveness in enhancing overall system stability. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

21 pages, 1434 KiB  
Article
Integrated Analysis of Olive Mill Wastewaters: Physicochemical Profiling, Antifungal Activity, and Biocontrol Potential Against Botryosphaeriaceae
by Elena Petrović, Karolina Vrandečić, Alen Albreht, Igor Gruntar, Nikola Major, Jasenka Ćosić, Zoran Užila, Smiljana Goreta Ban and Sara Godena
Horticulturae 2025, 11(7), 819; https://doi.org/10.3390/horticulturae11070819 - 10 Jul 2025
Viewed by 328
Abstract
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and [...] Read more.
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and Rosinjola) and assess its antifungal potential against phytopathogenic fungi from the Botryosphaeriaceae family. OMWW samples were analyzed for their physicochemical properties, phenolic composition via LC-MS/MS, and antifungal activity against Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not., Diplodia mutila (Fr.) Fr., D. seriata De Not., Dothiorella iberica A.J.L. Phillips, J. Luque & A. Alves, Do. sarmentorum (Fr.) A.J.L. Phillips, Alves & Luque, and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. Antifungal efficacy was tested at varying concentrations, alongside the phenolic compounds hydroxytyrosol and vanillic acid. Antifungal activity varied across fungal species and OMWW concentrations. Lower OMWW concentrations inhibited mycelial growth in some pathogens, while higher concentrations often had a stimulatory effect. Among the OMWW treatments, Leccino and Buža showed the most significant antifungal activity against species from the Botryosphaeriaceae family. The results demonstrated significant variability in OMWW composition, with Istarska bjelica exhibiting the highest concentrations of phenolic compounds, sugars, dry matter, and carbon and nitrogen content. The results also highlight the impact of acidification on the phenolic profile of OMWW. Treatment with HCl significantly altered the concentration of individual phenolic compounds, either enhancing their release or contributing to their degradation. Among the two compounds, vanillic acid showed greater efficacy than hydroxytyrosol. In addition, microorganisms isolated from OMWW, including Bacillus velezensis Ruiz-Garcia et al., Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison, Nakazawaea molendiniolei (N. Cadez, B. Turchetti & G. Peter) C. P. Kurtzman & C. J. Robnett, and Penicillium crustosum Thom, demonstrated antagonistic potential against fungal pathogens, with B. velezensis showing the strongest inhibitory effect. The greatest antagonistic effect against fungi was observed with the species Do. Iberica. The findings highlight the potential of OMWW as a sustainable alternative to chemical fungicides, simultaneously contributing to the management of waste and protection of plants through circular economy principles. Full article
(This article belongs to the Special Issue Driving Sustainable Agriculture Through Scientific Innovation)
Show Figures

Figure 1

20 pages, 3043 KiB  
Article
Functional Analysis of Zinc Finger Protein Transcription Factor ZmZFP69 Under Low-Temperature Stress at Maize Seedling Stage
by Si-Nan Li, Yan Sun, Yun-Long Li, Ming-Hao Sun, Shu-Jun Li, Yue Yin, Tao Yu, Xin Li, Quan Cai and Jian-Guo Zhang
Plants 2025, 14(14), 2114; https://doi.org/10.3390/plants14142114 - 9 Jul 2025
Viewed by 382
Abstract
Maize (Zea mays L.) seedlings are highly susceptible to low-temperature stress, which significantly impacts maize yield and quality. A zinc finger protein transcription factor (ZmZFP69) mutant and a control (B73) maize inbred line were subjected to low-temperature treatment, and changes [...] Read more.
Maize (Zea mays L.) seedlings are highly susceptible to low-temperature stress, which significantly impacts maize yield and quality. A zinc finger protein transcription factor (ZmZFP69) mutant and a control (B73) maize inbred line were subjected to low-temperature treatment, and changes in the phenotypic characteristics, hormone levels, and other indicators before and after the treatment were systematically identified. Subsequently, a combined RNA-seq and DAP-seq analysis was conducted to explore the influence of ZmZFP69 on the promoters of downstream genes. Finally, the proteins interacting with ZmZFP69 were examined using InterProDesign combined with BiFC and subcellular localization. The zmzfp69 homozygous mutant maize inbred line exhibited enhanced low-temperature tolerance compared to the control. RNA-seq and DAP-seq analyses revealed that ZmZFP69 binds to the ZmAOX2 gene promoter, significantly suppressing its expression. The interaction between ZmZFP69 and the downstream protein ZmBG6 was confirmed by InterProDesign, subcellular localization, and BiFC assays. ZmZFP69 negatively regulates maize seedling low-temperature tolerance by inhibiting ZmAOX2 expression and interacting with ZmBG6. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 8715 KiB  
Article
DDPG-ADRC-Based Load Frequency Control for Multi-Region Power Systems with Renewable Energy Sources and Energy Storage Equipment
by Zhenlan Dou, Chunyan Zhang, Xichao Zhou, Dan Gao and Xinghua Liu
Energies 2025, 18(14), 3610; https://doi.org/10.3390/en18143610 - 8 Jul 2025
Viewed by 254
Abstract
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region [...] Read more.
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region interconnected power systems are analyzed, which provides a basis for the subsequent RES access. Superconducting magnetic energy storage (SMES) and capacitor energy storage (CES) are adopted due to their rapid response capabilities and fast charge–discharge characteristics. To stabilize the frequency fluctuation, a first-order ADRC is designed, utilizing the anti-perturbation estimation capability of the first-order ADRC to achieve effective control. In addition, the system states are estimated using a linear expansion state observer. Based on the output of the observer, the appropriate feedback control law is selected. The DDPG-ADRC parameter optimization model is constructed to adaptively adjust the control parameters of ADRC based on the target frequency deviation and power deviation. The actor and critic networks are continuously updated according to the actual system response to ensure stable system operation. Finally, the experiment demonstrated that the proposed method outperforms traditional methods across all performance indicators, particularly excelling in reducing adjustment time (45.8% decrease) and overshoot (60% reduction). Full article
Show Figures

Figure 1

17 pages, 824 KiB  
Article
Resilient Event-Triggered H Control for a Class of LFC Systems Subject to Deception Attacks
by Yunfan Wang, Zesheng Xi, Bo Zhang, Tao Zhang and Chuan He
Electronics 2025, 14(13), 2713; https://doi.org/10.3390/electronics14132713 - 4 Jul 2025
Viewed by 200
Abstract
This paper explores an event-triggered load frequency control (LFC) strategy for smart grids incorporating electric vehicles (EVs) under the influence of random deception attacks. The aggressive attack signals are launched over the channels between the sensor and controller, compromising the integrity of transmitted [...] Read more.
This paper explores an event-triggered load frequency control (LFC) strategy for smart grids incorporating electric vehicles (EVs) under the influence of random deception attacks. The aggressive attack signals are launched over the channels between the sensor and controller, compromising the integrity of transmitted data and disrupting LFC commands. For the purpose of addressing bandwidth constraints, an event-triggered transmission scheme (ETTS) is developed to minimize communication frequency. Additionally, to mitigate the impact of random deception attacks in public environment, an integrated networked power grid model is proposed, where the joint impact of ETTS and deceptive interference is captured within a unified analytical structure. Based on this framework, a sufficient condition for stabilization is established, enabling the concurrent design of the H controller gain and the triggering condition. Finally, two case studies are offered to illustrate the effectiveness of the employed scheme. Full article
(This article belongs to the Special Issue Knowledge Information Extraction Research)
Show Figures

Figure 1

28 pages, 6139 KiB  
Article
A Study on the Transient Flow Characteristics of Pump Turbines Across the Full Operating Range in Turbine Mode
by Hongqiang Tang, Qifei Li, Xiangyu Chen, Zhanyong Li and Shiwei Li
Energies 2025, 18(13), 3517; https://doi.org/10.3390/en18133517 - 3 Jul 2025
Viewed by 235
Abstract
The transient operation of pump turbines generates significant flow-induced instabilities, prompting a comprehensive numerical investigation using the SST kω turbulence model to examine these instability effects throughout the complete operating range in turbine mode. This study specifically analyzes the evolutionary mechanisms [...] Read more.
The transient operation of pump turbines generates significant flow-induced instabilities, prompting a comprehensive numerical investigation using the SST kω turbulence model to examine these instability effects throughout the complete operating range in turbine mode. This study specifically analyzes the evolutionary mechanisms of unsteady flow dynamics under ten characteristic off-design conditions while simultaneously characterizing the pressure fluctuation behavior within the vaneless space (VS). The results demonstrate that under both low-speed conditions and near-zero-discharge conditions, the VS and its adjacent flow domains exhibit pronounced flow instabilities with highly turbulent flow structures, while the pressure fluctuation amplitudes remain relatively small due to insufficient rotational speed or flow rate. Across the entire turbine operating range, the blade passing frequency (BPF) dominates the VS pressure fluctuation spectrum. Significant variations are observed in both low-frequency components (LFCs) and high-frequency, low-amplitude components (HF-LACs) with changing operating conditions. The HF-LACs exhibit relatively stable amplitudes but demonstrate significant variation in the frequency spectrum distribution across different operating conditions, with notably broader frequency dispersion under runaway conditions and adjacent operating points. The LFCs demonstrate significantly higher spectral density and amplitude magnitudes under high-speed, low-discharge operating conditions while exhibiting markedly reduced occurrence and diminished amplitudes in the low-speed, high-flow regime. This systematic investigation provides fundamental insights into the flow physics governing pump-turbine performance under off-design conditions while offering practical implications for optimizing transient operational control methodologies in hydroelectric energy storage systems. Full article
Show Figures

Figure 1

40 pages, 4643 KiB  
Article
An Innovative LFC System Using a Fuzzy FOPID-Enhanced via PI Controller Tuned by the Catch Fish Optimization Algorithm Under Nonlinear Conditions
by Saleh Almutairi, Fatih Anayi, Michael Packianather and Mokhtar Shouran
Sustainability 2025, 17(13), 5966; https://doi.org/10.3390/su17135966 - 28 Jun 2025
Viewed by 427
Abstract
Load frequency control (LFC) remains a critical challenge in ensuring the stability of modern power grids. The integration of nonlinear dynamics into LFC design is paramount to achieving robust performance, which directly underpins grid reliability. This study introduces a novel hybrid control strategy—a [...] Read more.
Load frequency control (LFC) remains a critical challenge in ensuring the stability of modern power grids. The integration of nonlinear dynamics into LFC design is paramount to achieving robust performance, which directly underpins grid reliability. This study introduces a novel hybrid control strategy—a fuzzy fractional-order proportional–integral–derivative (Fuzzy FOPID) controller augmented with a proportional–integral (PI) compensator—for LFC applications in two distinct dual-area interconnected power systems. To optimize the controller’s parameters, the recently developed Catch Fish Optimization Algorithm (CFOA) is employed, leveraging the Integral Time Absolute Error (ITAE) as the primary cost function for precision tuning. A comprehensive comparative analysis is conducted to benchmark the proposed controller against the existing methodologies documented in the literature. Nonlinear elements’ impact on the system stability is also investigated. The investigation evaluates the impact of critical nonlinearities, including governor dead band (GDB) and generation rate constraints (GRCs), on system performance. The simulation results demonstrate that the CFOA-tuned Fuzzy FOPID + PI controller exhibits superior robustness and dynamic response compared to conventional approaches, effectively mitigating frequency deviations and maintaining grid stability under nonlinear operating conditions. Furthermore, the CFOA demonstrates marginally superior convergence and tuning accuracy relative to the widely adopted Particle Swarm Optimization (PSO) algorithm. These findings underscore the proposed controller’s potential as a high-performance solution for real-world LFC systems, particularly in scenarios characterized by nonlinearities and interconnected grid complexities. This study advances the field by bridging the gap between fractional-order fuzzy control theory and practical power system applications, offering a validated strategy for enhancing grid resilience in dynamic environments. Full article
Show Figures

Figure 1

21 pages, 10389 KiB  
Article
Functional Low-Fat Goat Feta Cheese Formulated with Dietary Fiber as a Fat Replacer: Physicochemical, Textural, and Sensory Interactions
by Malaiporn Wongkaew, Bow Tinpovong, Aekarin Inpramoon, Pikulthong Chaimongkol, Auengploy Chailangka, Sureerat Thomya and Nuttinee Salee
Dairy 2025, 6(4), 31; https://doi.org/10.3390/dairy6040031 - 28 Jun 2025
Viewed by 420
Abstract
Consumer scrutiny of fat content in foods is becoming a notable trend in health concerns. This study aims to develop a novel functional low-fat goat feta cheese by utilizing polydextrose (PDX) and inulin as dietary fiber-based fat replacers to improve its overall characteristics. [...] Read more.
Consumer scrutiny of fat content in foods is becoming a notable trend in health concerns. This study aims to develop a novel functional low-fat goat feta cheese by utilizing polydextrose (PDX) and inulin as dietary fiber-based fat replacers to improve its overall characteristics. The physicochemical and textural properties, along with consumer acceptance, of the feta cheese were evaluated across three fat levels (full-fat [FFC], reduced-fat [RFC], low-fat [LFC]) and three fibers: PDX, inulin, and their combination. The intercorrelation of all characteristics was assessed through principal component analysis and Pearson’s correlation. Fat reduction significantly altered the cheese’s visual properties, increasing lightness and the total color difference, which inversely correlated with a* and b* values. Lower-fat cheeses exhibited decreased pH and increased lactic acid, with salinity playing a crucial role in both lactic acid development and texture. Under Scanning Electron Microscopy (SEM), PDX yielded a cheese matrix with a finer pore structure than inulin or the combined fibers. Lower-fat cheeses exhibited greater hardness, with PDX resulting in the highest hardness among the fiber treatments. Crucially, the RFC with PDX was as well-received by consumers as the FFC. These findings not only empower goat farmers and cheese entrepreneurs to increase their product value for niche market but also contribute to sustainability by providing a healthier food option for functional benefits. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

Back to TopTop