Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = Kimchi probiotic bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 1231 KiB  
Review
Fermented Fruits, Vegetables, and Legumes in Metabolic Syndrome: From Traditional Use to Functional Foods and Medical Applications
by Karolina Bernacka, Tomasz Sozański and Alicja Z. Kucharska
Nutrients 2025, 17(12), 1989; https://doi.org/10.3390/nu17121989 - 12 Jun 2025
Viewed by 981
Abstract
Fermentation has been used for centuries to preserve food and to obtain products with new, attractive sensory characteristics. Fermented products are a source of dietary fiber, vitamins, bioactive compounds, and probiotic bacteria with health-promoting properties. This review provides a comprehensive overview of the [...] Read more.
Fermentation has been used for centuries to preserve food and to obtain products with new, attractive sensory characteristics. Fermented products are a source of dietary fiber, vitamins, bioactive compounds, and probiotic bacteria with health-promoting properties. This review provides a comprehensive overview of the effects of fermented fruits, vegetables, and legumes on metabolic disturbances characterizing metabolic syndrome (MetS). Furthermore, the chemical composition, microbial communities, and molecular mechanisms of action of fermented plant foods are discussed. Fermented fruits and vegetables, including table olives, caper fruits, and kimchi, contain polyphenols and probiotic bacteria, which are beneficial in terms of obesity and impaired glucose and lipid metabolism. Fermented legumes are a valuable source of bioactive peptides and isoflavone aglycones. Among fermented soybean products, natto stands out due to the presence of γ-polyglutamic acid, which improves glucose tolerance and the lipid profile, and nattokinase, an enzyme that acts as an angiotensin-converting enzyme inhibitor. Potential future studies focused on developing functional fermented foods and easy-to-use supplements based on fermented plant products are suggested. Full article
Show Figures

Graphical abstract

15 pages, 1323 KiB  
Article
Functional Kimchi Beverage Enhanced with γ-Aminobutyric Acid (GABA) Through Serial Co-Fermentation Using Leuconostoc citreum S5 and Lactiplantibacillus plantarum KS2020
by Min-Jeong Kwon, Ji-Eun Kim and Sam-Pin Lee
Fermentation 2025, 11(1), 44; https://doi.org/10.3390/fermentation11010044 - 19 Jan 2025
Cited by 1 | Viewed by 1810
Abstract
A plant-based beverage enhanced with GABA was developed through serial co-fermentation using Leuconostoc citreum S5 and Lactiplantibacillus plantarum KS2020. The first lactic acid fermentation was performed by Leu. citreum S5 with a vegetable mixture consisting of sliced radish, ginger, garlic, red pepper, bell [...] Read more.
A plant-based beverage enhanced with GABA was developed through serial co-fermentation using Leuconostoc citreum S5 and Lactiplantibacillus plantarum KS2020. The first lactic acid fermentation was performed by Leu. citreum S5 with a vegetable mixture consisting of sliced radish, ginger, garlic, red pepper, bell pepper, and sucrose. The viable cell count of Leu. citreum S5 increased to 9.11–9.42 log CFU/mL with higher sucrose contents, indicating the highest value of 9.42 log CFU/mL at 5% sucrose on day 1. Mannitol and dextran production levels in the first fermented vegetable mixture were 6.66–14.54 mg/mL and 0.44–2.26%, respectively. A higher sucrose content produced more dextran, resulting in a concomitant increase in viscosity of 49.4 mPa·s. The second co-fermentation for the kimchi beverage base was performed by Lb. plantarum KS2020 for 5 days, resulting in 8.22–9.60 log CFU/mL. The pH of the co-fermented kimchi beverage base increased to 6.19–9.57 with an increasing monosodium glutamate (MSG) content (3–7%), while titratable acidity significantly decreased to 0.0–0.8%. The final co-fermented kimchi beverage base was enriched with 2.6% GABA. Consequently, a GABA kimchi beverage base with probiotics, a red pigment, and a pleasant flavor was developed using only vegetable ingredients by serial co-fermentation using lactic acid bacteria. Full article
Show Figures

Figure 1

14 pages, 1054 KiB  
Article
Antioxidant Activity and Other Characteristics of Lactic Acid Bacteria Isolated from Korean Traditional Sweet Potato Stalk Kimchi
by Jung-Min Park, Ji-Woon Moon, Bo-Zheng Zhang and Byoung-Ki An
Foods 2024, 13(20), 3261; https://doi.org/10.3390/foods13203261 - 13 Oct 2024
Cited by 2 | Viewed by 2622
Abstract
The aim of this study was to examine the biological activity and probiotic properties of lactic acid bacteria (LAB) isolated from sweet potato stalk kimchi (SPK). Various LAB and Bacillus spp. are active in the early stages of the fermentation of kimchi made [...] Read more.
The aim of this study was to examine the biological activity and probiotic properties of lactic acid bacteria (LAB) isolated from sweet potato stalk kimchi (SPK). Various LAB and Bacillus spp. are active in the early stages of the fermentation of kimchi made from sweet potato stalk. Four strains of LAB were identified, including SPK2 (Levilactobacillus brevis ATCC 14869), SPK3 (Latilactobacillus sakei NBRC 15893), SPK8 and SPK9 (Leuconostoc mesenteroides subsp. dextranicum NCFB 529). SPK2, SPK3, SPK8, and SPK9 showed 64.64–94.23% bile acid resistance and 78.66–82.61% pH resistance. We identified over 106 CFU/mL after heat treatment at 75 °C. Four strains showed high antimicrobial activity to Escherichia coli and Salmonella Typhimurium with a clear zone of >11 mm. SPK2 had the highest antioxidative potentials, higher than the other three bacteria, with 44.96 μg of gallic acid equivalent/mg and 63.57% DPPH scavenging activity. These results demonstrate that the four strains isolated from sweet potato kimchi stalk show potential as probiotics with excellent antibacterial effects and may be useful in developing health-promoting products. Full article
(This article belongs to the Special Issue Natural Antimicrobial Agents Utilized in Food Preservation)
Show Figures

Figure 1

19 pages, 1035 KiB  
Review
Probiotic Functions in Fermented Foods: Anti-Viral, Immunomodulatory, and Anti-Cancer Benefits
by Yeonhee Pyo, Ki Han Kwon and Yeon Ja Jung
Foods 2024, 13(15), 2386; https://doi.org/10.3390/foods13152386 - 28 Jul 2024
Cited by 15 | Viewed by 5881
Abstract
Fermented foods can provide many benefits to our health. These foods are created by the action of microorganisms and help support our digestive health and immune system. Fermented foods include yogurt, kimchi, pickles, kefir, beer, wine, and more. Fermented foods contain probiotics, [...] Read more.
Fermented foods can provide many benefits to our health. These foods are created by the action of microorganisms and help support our digestive health and immune system. Fermented foods include yogurt, kimchi, pickles, kefir, beer, wine, and more. Fermented foods contain probiotics, lactic acid bacteria (LAB), yeast, organic acids, ethanol, or antimicrobial compounds, which help balance the gut microbiome and improve digestive health. Fermented foods can also benefit your overall health by increasing the diversity of your gut microbiome and reducing inflammation. By routinely consuming fermented foods with these benefits, we can continue to improve our health. Probiotics from fermented foods are beneficial strains of bacteria that are safe for human health and constitute an important component of human health, even for children and the elderly. Probiotics can have a positive impact on your health, especially by helping to balance your gut microbiome and improve digestive health. Probiotics can also boost your immune system and reduce inflammation, which can benefit your overall health. Probiotics, which can be consumed in the diet or in supplement form, are found in many different types of foods and beverages. Research is continuing to investigate the health effects of probiotics and how they can be utilized. The potential mechanisms of probiotics include anti-cancer activity, preventing and treating immune system-related diseases, and slowing the development of Alzheimer’s disease and Huntington’s disease. This is due to the gut–brain axis of probiotics, which provides a range of health benefits beyond the digestive and gastrointestinal systems. Probiotics reduce tumor necrosis factor-α and interleukins through the nuclear factor-kappa B and mitogen-activated protein kinase pathways. They have been shown to protect against colon cancer and colitis by interfering with the adhesion of harmful bacteria in the gut. This article is based on clinical and review studies identified in the electronic databases PubMed, Web of Science, Embase, and Google Scholar, and a systematic review of clinical studies was performed. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

12 pages, 3926 KiB  
Article
Antimicrobial and Antibiofilm Effect of Bacteriocin-Producing Pediococcus inopinatus K35 Isolated from Kimchi against Multidrug-Resistant Pseudomonas aeruginosa
by Eun-Ji Yi and Ae-Jung Kim
Antibiotics 2023, 12(4), 676; https://doi.org/10.3390/antibiotics12040676 - 30 Mar 2023
Cited by 18 | Viewed by 4127
Abstract
Background: Recently, the emergence of multidrug-resistant bacteria due to the misuse of antibiotics has attracted attention as a global public health problem. Many studies have found that fermented foods are good sources of probiotics that are beneficial to the human immune system. Therefore, [...] Read more.
Background: Recently, the emergence of multidrug-resistant bacteria due to the misuse of antibiotics has attracted attention as a global public health problem. Many studies have found that fermented foods are good sources of probiotics that are beneficial to the human immune system. Therefore, in this study, we tried to find a substance for the safe alternative treatment of multidrug-resistant bacterial infection in kimchi, a traditional fermented food from Korea. Method: Antimicrobial activity and antibiofilm activity were assessed against multidrug-resistant (MDR) Pseudomonas aeruginosa using cell-free supernatants of lactic acid bacteria (LAB) isolated from kimchi. Then, UPLC-QTOF-MS analysis was performed to detect the substances responsible for the antimicrobial effect. Results: The cell-free supernatant (CFS) of strain K35 isolated from kimchi effectively inhibited the growth of MDR P. aeruginosa. Similarly, CFS from strain K35 combined with P. aeruginosa co-cultures produced significant inhibition of biofilm formation upon testing. On the basis of 16s rRNA gene sequence similarity, strain K35 was identified as Pediococcus inopinatus. As a result of UPLC-QTOF-MS analysis of the CFS of P. inopinatus K35, curacin A and pediocin A were detected. Conclusion: As a result of this study, it was confirmed that P. inopinatus isolated from kimchi significantly reduced MDR P. aeruginosa growth and biofilm formation. Therefore, kimchi may emerge as a potential source of bacteria able to help manage diseases associated with antibiotic-resistant infections. Full article
Show Figures

Figure 1

21 pages, 1670 KiB  
Review
Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects
by Nadya Armenova, Lidia Tsigoriyna, Alexander Arsov, Kaloyan Petrov and Penka Petrova
Foods 2023, 12(6), 1163; https://doi.org/10.3390/foods12061163 - 9 Mar 2023
Cited by 28 | Viewed by 7838
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, [...] Read more.
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 2365 KiB  
Review
Are Fermented Foods Effective against Inflammatory Diseases?
by Alok K. Paul, Chooi Ling Lim, Md. Aminul Islam Apu, Karma G. Dolma, Madhu Gupta, Maria de Lourdes Pereira, Polrat Wilairatana, Mohammed Rahmatullah, Christophe Wiart and Veeranoot Nissapatorn
Int. J. Environ. Res. Public Health 2023, 20(3), 2481; https://doi.org/10.3390/ijerph20032481 - 30 Jan 2023
Cited by 19 | Viewed by 7326
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to [...] Read more.
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field. Full article
(This article belongs to the Special Issue Opioid Use, Pain Management, and Public Health)
Show Figures

Figure 1

13 pages, 2114 KiB  
Article
Screening and Probiotic Properties of Lactic Acid Bacteria with Potential Immunostimulatory Activity Isolated from Kimchi
by Jaekoo Lee, Seonyoung Kim and Chang-Ho Kang
Fermentation 2023, 9(1), 4; https://doi.org/10.3390/fermentation9010004 - 21 Dec 2022
Cited by 12 | Viewed by 5229
Abstract
The modulation of the immune system is a major mechanism through which probiotics exert beneficial effects on health. Probiotics, including lactic acid bacteria (LAB), have been reported to enhance innate immunity. The purpose of this study was to screen for LAB strains with [...] Read more.
The modulation of the immune system is a major mechanism through which probiotics exert beneficial effects on health. Probiotics, including lactic acid bacteria (LAB), have been reported to enhance innate immunity. The purpose of this study was to screen for LAB strains with excellent immunostimulatory activity isolated from kimchi. We selected five promising strains (Limosilactobacillus fermentum MG5489, Lactococcus lactis MG5542, Lacticaseibacillus paracasei MG5559, Latilactobacillus sakei MG5468, and Latilactobacillus curvatus MG5609) that exhibited immune-stimulating effects by inducing the production of nitric oxide (NO) and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in RAW264.7 cells. The selected strains significantly increased phagocytic activity of RAW264.7 cells and nuclear factor-κB (NF-κB) activation. Furthermore, the safety of the selected strains was determined using hemolysis and antibiotic susceptibility tests. The stabilities and adhesion abilities of these strains in the gastrointestinal tract (GIT) were also determined. Taken together, these findings suggest that the strains selected in this study have the potential to be novel probiotics to enhance immunity. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

18 pages, 388 KiB  
Review
The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer
by Sadia Ahmed, Sargun Singh, Vaidhvi Singh, Kyle D. Roberts, Arsalan Zaidi and Alexander Rodriguez-Palacios
Microorganisms 2022, 10(12), 2427; https://doi.org/10.3390/microorganisms10122427 - 7 Dec 2022
Cited by 52 | Viewed by 6564
Abstract
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and [...] Read more.
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and W. cibaria are the most representative. Other species within this genus include: W. paramesenteroides, W. viridescens, W. halotolerans, W. minor, W. kandleri, W. soli, W. ghanensis, W. hellenica, W. thailandensis, W. fabalis, W. cryptocerci, W. koreensis, W. beninensis, W. fabaria, W. oryzae, W. ceti, W. uvarum, W. bombi, W. sagaensis, W. kimchi, W. muntiaci, W. jogaejeotgali, W. coleopterorum, W. hanii, W. salipiscis, and W. diestrammenae. Weissella confusa, W. paramesenteroides, W. koreensis, and W. cibaria are among the few species that have been isolated from human samples, although the identification of these and other species is possible using metagenomics, as we have shown for inflammatory bowel disease (IBD) and healthy controls. We were able to isolate Weissella in gut-associated bacteria (post 24 h food deprivation and laxatives). Other sources of isolation include fermented food, soil, and skin/gut/saliva of insects/animals. With the potential for hospital and industrial applications, there is a concern about possible infections. Herein, we present the current applications of Weissella on its antimicrobial and anti-inflammatory mechanistic effects, the predisposing factors (e.g., vancomycin) for pathogenicity in humans, and the antimicrobials used in patients. To address the medical concerns, we examined 28 case reports focused on W. confusa and found that 78.5% of infections were bacteremia (of which 7 were fatal; 1 for lack of treatment), 8 were associated with underlying malignancies, and 8 with gastrointestinal procedures/diseases of which 2 were Crohn’s disease patients. In cases of a successful resolution, commonly administered antibiotics included: cephalosporin, ampicillin, piperacillin-tazobactam, and daptomycin. Despite reports of Weissella-related infections, the evolving mechanistic findings suggest that Weissella are clinically treatable bacteria with emerging antimicrobial and probiotic benefits ranging from oral health, skin care, obesity, and inflammatory diseases to cancer. Full article
(This article belongs to the Special Issue Probiotics and Antimicrobial Effect)
23 pages, 5352 KiB  
Article
Antibiofilm and Antivirulence Activities of Gold and Zinc Oxide Nanoparticles Synthesized from Kimchi-Isolated Leuconostoc sp. Strain C2
by Min-Gyun Kang, Fazlurrahman Khan, Du-Min Jo, DoKyung Oh, Nazia Tabassum and Young-Mog Kim
Antibiotics 2022, 11(11), 1524; https://doi.org/10.3390/antibiotics11111524 - 1 Nov 2022
Cited by 30 | Viewed by 4348
Abstract
The rapid emergence of antimicrobial resistance (AMR) among bacterial pathogens results in antimicrobial treatment failure and the high mortality rate associated with AMR. The application of nanoparticles synthesized from probiotics will be widely accepted due to their efficacy and biocompatibility in treating microbial [...] Read more.
The rapid emergence of antimicrobial resistance (AMR) among bacterial pathogens results in antimicrobial treatment failure and the high mortality rate associated with AMR. The application of nanoparticles synthesized from probiotics will be widely accepted due to their efficacy and biocompatibility in treating microbial infections in humans. The current work sought to isolate and identify lactic acid bacteria (LAB) from Kimchi. Based on 16S rRNA gene sequencing, the LAB isolate C2 was identified as a member of the genus Leuconostoc. The obtained supernatant from Leuconostoc sp. strain C2 was employed for the green synthesis of metal (AuNPs) and metal oxide (ZnONPs) nanoparticles. UV–vis absorption spectra, FTIR analysis, XRD, DLS, FE-TEM, and EDS mapping were used to fully characterize these C2-AuNPs and C2-ZnONPs. The C2-AuNPs were found to be spherical in shape, with a size of 47.77 ± 5.7 nm and zeta potential of −19.35 ± 0.67 mV. The C2-ZnONPs were observed to be rod-shaped and 173.77 ± 14.53 nm in size. The C2-ZnONPs zeta potential was determined to be 26.62 ± 0.35 mV. The C2-AuNPs and C2-ZnONPs were shown to have antimicrobial activity against different pathogens. Furthermore, these nanoparticles inhibited the growth of Candida albicans. The antibiofilm and antivirulence properties of these NPs against Pseudomonas aeruginosa and Staphylococcus aureus were thoroughly investigated. C2-AuNPs were reported to be antibiofilm and antivirulence against P. aeruginosa, whereas C2-ZnONPs were antibiofilm and antivirulence against both P. aeruginosa and S. aureus. Furthermore, these nanoparticles disrupted the preformed mature biofilm of P. aeruginosa and S. aureus. The inhibitory impact was discovered to be concentration-dependent. The current research demonstrated that C2-AuNPs and C2-ZnONPs exhibited potential inhibitory effects on the biofilm and virulence features of bacterial pathogens. Further studies are needed to unravel the molecular mechanism behind biofilm inhibition and virulence attenuation. Full article
(This article belongs to the Special Issue Microbial Natural Products as a Source of Novel Antimicrobials)
Show Figures

Graphical abstract

17 pages, 1863 KiB  
Article
Anti-Influenza Virus Potential of Probiotic Strain Lactoplantibacillus plantarum YML015 Isolated from Korean Fermented Vegetable
by Rajib Majumder, Md Badrul Alam, Keshav Raj Paudel, Khandaker Asif Ahmed, Hari Prasad Devkota, Sang-Han Lee, Philip M. Hansbro and Yong-Ha Park
Fermentation 2022, 8(11), 572; https://doi.org/10.3390/fermentation8110572 - 23 Oct 2022
Cited by 5 | Viewed by 3454
Abstract
Lactic acid bacteria are one of the potential natural remedies used worldwide, commonly known as probiotics. Here, the aim of this research investigation was to isolate a probiotic Lactobacilli strain, YLM015, from the popular Korean fermented vegetable “Kimchi” and to evaluate its anti-viral [...] Read more.
Lactic acid bacteria are one of the potential natural remedies used worldwide, commonly known as probiotics. Here, the aim of this research investigation was to isolate a probiotic Lactobacilli strain, YLM015, from the popular Korean fermented vegetable “Kimchi” and to evaluate its anti-viral potential against influenza virus A (IFVA) H1N1 using the MDCK cell line in vitro, and in embryonated eggs in ovo. The YML015 strain was selected from among the 1200 Lactobacilli isolates for further studies based on its potent anti-viral efficacy. YML015 was identified and characterized as Lactoplantibacillus plantarum YML015 based on the 16S rRNA gene sequencing and biochemically with an API 50 CHL Kit. In ovo assay experienced with embryonated eggs and the hemagglutination inhibition method, as well as cytopathogenic reduction assay, was performed individually to observe anti-influenza viral activity of YML015 against influenza virus A H1N1. Additionally, YML015 was classified for its non-resistance nature as safe for humans and animals as confirmed by the antibiotic susceptibility (MIC) test, cell viability, and hemolysis assay. The heat stability test was also experienced by using different heat-treated cell-free supernatant (CFS) samples of YML015. As a result, YML015 showed highly potent anti-viral activity against influenza virus A H1N1 in vitro in the MDCK cell line. Overall findings suggest that anti-influenza viral activity of L. plantarum YML015 makes it a potential candidate of choice for use as an influential probiotic in pharmacological preparations to protect humans and animals from flu and viral infection. Full article
(This article belongs to the Special Issue Recent Trends in Lactobacillus and Fermented Food)
Show Figures

Figure 1

16 pages, 2497 KiB  
Article
Immunomodulatory Activity of Extracellular Vesicles of Kimchi-Derived Lactic Acid Bacteria (Leuconostoc mesenteroides, Latilactobacillus curvatus, and Lactiplantibacillus plantarum)
by Sang-Hyun Kim, Ji Hee Lee, Eun Hae Kim, Martin J. T. Reaney, Youn Young Shim and Mi Ja Chung
Foods 2022, 11(3), 313; https://doi.org/10.3390/foods11030313 - 24 Jan 2022
Cited by 24 | Viewed by 4890
Abstract
Lactic acid bacteria present in Kimchi, such as Leuconostoc mesenteroides (Lm), Latilactobacillus curvatus (Lc), and Lactiplantibacillus plantarum (Lp) produce extracellular vesicles (ECVs) that modulate immune responses. The ECVs of probiotic Kimchi bacteria are abbreviated as LmV, LcV, and LpV. Treatment of macrophages (RAW264.7) [...] Read more.
Lactic acid bacteria present in Kimchi, such as Leuconostoc mesenteroides (Lm), Latilactobacillus curvatus (Lc), and Lactiplantibacillus plantarum (Lp) produce extracellular vesicles (ECVs) that modulate immune responses. The ECVs of probiotic Kimchi bacteria are abbreviated as LmV, LcV, and LpV. Treatment of macrophages (RAW264.7) with ECVs (LmV, LcV, and LpV) increased the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6). Immunostimulatory effects exerted on the RAW264.7 cells were stronger after treatments with LmV and LcV than with LpV. Treatment of mice with LcV (1 mg/kg, orally) induced splenocyte proliferation and subsequent production of both NO and cytokines (INF-γ, TNF-α, IL-4, and IL-10). Furthermore, pre-treatment of macrophages and microglial cells with ECVs prior to LPS stimulation significantly attenuated the production of NO and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Therefore, ECVs (LmV, LcV, and LpV) prevent inflammatory responses in the LPS-stimulated microglial cells by blocking the extracellular signal-regulated kinase (Erk) and p38 signaling pathways. These results showed that LmV, LcV, and LpV from Kimchi probiotic bacteria safely exert immunomodulatory effects. Full article
(This article belongs to the Special Issue Application of Lactobacillus Strains in the Food Industry)
Show Figures

Figure 1

18 pages, 4248 KiB  
Article
Characterization of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kimchi, Yogurt, and Baby Feces in Hong Kong and Their Performance in Soymilk Fermentation
by Haicui Wu, Tim-Fat Shum and Jiachi Chiou
Microorganisms 2021, 9(12), 2544; https://doi.org/10.3390/microorganisms9122544 - 9 Dec 2021
Cited by 14 | Viewed by 4616
Abstract
Background: There are several potential healthy or nutritional benefits from the use of lactic acid bacteria (LAB) in foods. This study aimed to characterize the LAB isolates from kimchi, yogurt, and baby feces in the Hong Kong area and evaluate their performance in [...] Read more.
Background: There are several potential healthy or nutritional benefits from the use of lactic acid bacteria (LAB) in foods. This study aimed to characterize the LAB isolates from kimchi, yogurt, and baby feces in the Hong Kong area and evaluate their performance in fermented soymilk, which allowed us to assess their potential use in future experiments. Methods: General characteristics including tolerance to acid, NaCl, bile salts and phenol, antimicrobial activity to various pathogens, and adhesive ability to Caco-2 cells were evaluated using 18 LAB in this study. To further demonstrate the influence of such isolates in soymilk fermentation, we measured viability by plating and noting changes in pH, amino acid content, aglyconic isoflavones content and antioxidant capacities in vitro, such as scavenging ability, and iron chelating ability. Results: In this study, various LAB isolates belonging to Lactobacillusrhamnosus, Lactobacillus sakei, Lactiplantibacillus plantarum, andLeuconostocmesenteroides isolated in Hong Kong were evaluated. L. plantarum isolates R7, AC12, and AC14.1, and L. rhamnosus AC1 showed higher tolerance to acid, NaCl, bile salts, and phenol as compared to the other isolates tested. L. plantarum isolates AC12, AC13 and AC14.1, and L. rhamnosus AC1 harbored strong antimicrobial activity. L. plantarum isolates R7, AC12, AC13 and AC14.1, and L. paracasei isolates R6 and R8 showed higher adhesive ability than the other tested isolates. In soymilk, the viable numbers of L. paracasei R5, L. plantarum R7, L. rhamnosus AC1, L. sakei AC2, and Leu. mesenteroides AC5 were much higher than the other tested isolates after 48 h of fermentation. The pH value measuring the lactic acid level in soymilk fermented by L. plantarum AC14.1 was the lowest in comparison to those in soymilk fermented by other isolates. In addition, the levels of free amino acids and isoflavones in the aglycone forms of L. rhamnosus AC1-fermented soymilk were the highest. L. rhamnosus AC1-fermented soymilk also showed the highest antioxidant potential, including DPPH scavenging ability and iron chelating ability. Conclusions: In general, L. plantarum isolates R7 and AC14.1 and L. rhamnosus AC1 exhibited higher tolerance to challenging conditions as compared to the other isolates. Moreover, L. rhamnosus AC1 exhibited superior performance in soymilk fermentation and potential as a starter and probiotic culture. Full article
(This article belongs to the Special Issue New Methods in Microbial Research 2.0)
Show Figures

Figure 1

13 pages, 2404 KiB  
Article
Safety Evaluation of Weissella cibaria JW15 by Phenotypic and Genotypic Property Analysis
by Ye-Ji Jang, Hee-Min Gwon, Woo-Soo Jeong, Soo-Hwan Yeo and So-Young Kim
Microorganisms 2021, 9(12), 2450; https://doi.org/10.3390/microorganisms9122450 - 27 Nov 2021
Cited by 22 | Viewed by 3345
Abstract
Weissella cibaria is one of the bacteria in charge of the initial fermentation of kimchi and has beneficial effects such as immune-modulating, antagonistic, and antioxidant activities. In our study, we aimed to estimate the safety of W. cibaria JW15 for the use of [...] Read more.
Weissella cibaria is one of the bacteria in charge of the initial fermentation of kimchi and has beneficial effects such as immune-modulating, antagonistic, and antioxidant activities. In our study, we aimed to estimate the safety of W. cibaria JW15 for the use of probiotics according to international standards based on phenotypic (antibiotic resistance, hemolysis, and toxic metabolite production) and genotypic analysis (virulence genes including antibiotic resistance genes). The results of the safety assessment on W. cibaria JW15 were as follows; (1) antibiotic resistance genes (ARGs) (kanamycin and vancomycin etc.) were intrinsic characteristics; (2) There were no acquired virulence genes including Cytolysin (cylA), aggregation substance (asa1), Hyaluronidase (hyl), and Gelatinase (gelE); (3) this strain also lacked β-hemolysis and the production of toxic metabolites (D-lactate and bile salt deconjugation). Consequently, W. cibaria JW15 is expected to be applied as a functional food ingredient in the food market. Full article
(This article belongs to the Special Issue Benefical Properties and Safety of Lactic Acid Bacteria)
Show Figures

Figure 1

13 pages, 1524 KiB  
Article
UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential
by Moeun Lee, Jung Hee Song, Eun Ji Choi, Ye-Rang Yun, Ki Won Lee and Ji Yoon Chang
Antioxidants 2021, 10(11), 1761; https://doi.org/10.3390/antiox10111761 - 4 Nov 2021
Cited by 33 | Viewed by 4738
Abstract
This study aims to investigate fermentative metabolites in probiotic vegetable juice from four crop varieties (Brassica oleracea var. capitata, B. oleracea var. italica, Daucus carota L., and Beta vulgaris) and their antioxidant properties. Vegetable juice was inoculated with two [...] Read more.
This study aims to investigate fermentative metabolites in probiotic vegetable juice from four crop varieties (Brassica oleracea var. capitata, B. oleracea var. italica, Daucus carota L., and Beta vulgaris) and their antioxidant properties. Vegetable juice was inoculated with two lactic acid bacteria (LAB) (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124) isolated from kimchi and their properties were evaluated using untargeted UPLC-QTOF-MS/MS and GC-MS. The samples were also evaluated for radical (DPPH and OH) scavenging activities, lipid peroxidation, and ferric-reducing antioxidant power. The fermented vegetable juices exhibited high antioxidant activities and increased amounts of total phenolic compounds. Fifteen compounds and thirty-two volatiles were identified using UPLC-QTOF-MS/MS and GC-MS, respectively. LAB fermentation significantly increased the contents of d-leucic acid, indole-3-lactic acid, 3-phenyllactic acid, pyroglutamic acid, γ-aminobutyric acid, and gluconic acid. These six metabolites showed a positive correlation with antioxidant properties. Thus, vegetable juices fermented with WiKim39 and WiKim0124 can be considered as novel bioactive health-promoting sources. Full article
(This article belongs to the Special Issue Advances in Natural Antioxidants for Food Improvement)
Show Figures

Figure 1

Back to TopTop