Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = Kerr noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 5558 KB  
Article
Towards Monolithically Integrated Optical Kerr Frequency Comb with Low Relative Intensity Noise
by Xiaoling Zhang, Qilin Yang, Zhengkai Li, Lilu Wang, Xinyu Li and Yong Geng
Photonics 2025, 12(12), 1180; https://doi.org/10.3390/photonics12121180 - 29 Nov 2025
Viewed by 405
Abstract
The dissipative Kerr soliton (DKS) microcomb has been regarded as a highly promising multi-wavelength laser source for optical fiber communication, due to its excellent frequency and phase stability. However, in some specific application scenarios, such as direct modulation and direct detection (DM/DD), the [...] Read more.
The dissipative Kerr soliton (DKS) microcomb has been regarded as a highly promising multi-wavelength laser source for optical fiber communication, due to its excellent frequency and phase stability. However, in some specific application scenarios, such as direct modulation and direct detection (DM/DD), the relative intensity noise (RIN) performance of Kerr optical combs still fails to meet the requirements. Here, we systematically investigate the key factors that contribute to the power fluctuations in DKS combs. By exploiting the gain saturation effect of the semiconductor optical amplifier (SOA), the RIN of an on-chip DKS microcomb is effectively suppressed, achieving a maximum reduction of about 30 dB (@600 kHz offset frequency) for all comb lines. Moreover, such DKS comb RIN suppression technology based on an SOA chip can eliminate the need for additional complex feedback control circuits, showcasing the potential for further chip integration of the ultra-low-RIN DKS microcomb system. Full article
Show Figures

Figure 1

17 pages, 8874 KB  
Article
Adaptive DBP System with Long-Term Memory for Low-Complexity and High-Robustness Fiber Nonlinearity Mitigation
by Mingqing Zuo, Huitong Yang, Yi Liu, Zhengyang Xie, Dong Wang, Shan Cao, Zheng Zheng and Han Li
Photonics 2025, 12(7), 704; https://doi.org/10.3390/photonics12070704 - 11 Jul 2025
Viewed by 728
Abstract
Adaptive digital back-propagation (A-DBP) is a promising candidate for mitigating Kerr nonlinearity due to its ability to estimate the optimal nonlinear scaling factor adaptively. However, the adaptive process relying on the gradient-dependent algorithm is prone to fluctuation, leading to extra iterations or even [...] Read more.
Adaptive digital back-propagation (A-DBP) is a promising candidate for mitigating Kerr nonlinearity due to its ability to estimate the optimal nonlinear scaling factor adaptively. However, the adaptive process relying on the gradient-dependent algorithm is prone to fluctuation, leading to extra iterations or even divergence and resulting in huge computational efforts in A-DBP. In this paper, an improved A-DBP algorithm with long-term memory (LTM) is proposed, employing root mean square propagation (RMSProp) to achieve low-complexity and high-robustness compensation performances. The A-DBP-LTM algorithm based on RMSProp was numerically validated through the simulated transmission of 69 Gbaud DP-16QAM over 2000 km and further verified through an experiment involving 26-λ 63 Gbaud DP-16QAM transmission over 1200 km. Compared with conventional digital back-propagation and A-DBP based on a gradient-descent algorithm, our proposed method allows substantial complexity reductions of 31.35% and 58.47%, respectively. Furthermore, high robustness in only a few iterations and a 0.33 dB improvement in the optical signal–noise ratio penalty were also experimentally demonstrated. Full article
(This article belongs to the Special Issue Next-Generation Optical Networks Communication)
Show Figures

Figure 1

11 pages, 2651 KB  
Article
m-QAM Receiver Based on Data Stream Spectral Clustering for Optical Channels Dominated by Nonlinear Phase Noise
by Miguel Solarte-Sanchez, David Marquez-Viloria, Andrés E. Castro-Ospina, Erick Reyes-Vera, Neil Guerrero-Gonzalez and Juan Botero-Valencia
Algorithms 2024, 17(12), 553; https://doi.org/10.3390/a17120553 - 3 Dec 2024
Cited by 2 | Viewed by 1077
Abstract
Optical communication systems face challenges like nonlinear noises, particularly Kerr-induced phase noise, which worsens with higher-order m-QAM formats due to their dense data-symbol sets. Advanced signal processing, including machine learning, is increasingly used to enhance signal integrity during demodulation. This paper explores the [...] Read more.
Optical communication systems face challenges like nonlinear noises, particularly Kerr-induced phase noise, which worsens with higher-order m-QAM formats due to their dense data-symbol sets. Advanced signal processing, including machine learning, is increasingly used to enhance signal integrity during demodulation. This paper explores the application of a spectral clustering algorithm adapted to deal with data streaming to mitigate nonlinear noise in long-haul optical channels dominated by nonlinear phase noise, offering a promising solution to a pressing issue. The spectral clustering algorithm was adapted to handle data streams, enabling potential real-time applications. Additionally, it was combined with a demapping process for m-QAM to resolve labeling inconsistencies when processing windowed data. We demonstrate that the spectral clustering algorithm outperforms the k-means algorithm in the face of nonlinear phase noise in −90, −100, and −110 dBc/Hz scenarios at 1 MHz in a simulated 10 GHz symbol rate channel. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

13 pages, 4553 KB  
Article
Obtaining Dissipative Kerr Solitons Deterministically Using Dual-Coupled Microresonators and a Simple Frequency Sweep
by Andrés F. Calvo-Salcedo, Neil Guerrero González and Jose A. Jaramillo-Villegas
Appl. Sci. 2024, 14(23), 10819; https://doi.org/10.3390/app142310819 - 22 Nov 2024
Cited by 1 | Viewed by 1580
Abstract
The reliable generation of dissipative Kerr solitons (DKSs) enables applications in communications, metrology, optical clocks, and, more recently, artificial intelligence. We show how single DKS can be generated by Si3N4 dual-coupled microring resonators (DCMs). We modeled this coupled structure using [...] Read more.
The reliable generation of dissipative Kerr solitons (DKSs) enables applications in communications, metrology, optical clocks, and, more recently, artificial intelligence. We show how single DKS can be generated by Si3N4 dual-coupled microring resonators (DCMs). We modeled this coupled structure using the Lugiato–Lefever equation (LLE), including mode interactions in the dispersion profile. We also characterized the pump power and detuning parameter space for several mode interaction strengths and frequencies, and we found parameters for which a DKS could be deterministically obtained using a single, adiabatic frequency sweep with a constant pump power. We demonstrated deterministic single DKS generation for this path by simulating 200 times with different random noise inputs. This result paves the way for reliable, inexpensive, and deterministic single DKS generation in a simple setup. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

13 pages, 5830 KB  
Article
Determination of Highly Transient Electric Field in Water Using the Kerr Effect with Picosecond Resolution
by Petr Hoffer, Václav Prukner, Garima Arora, Radek Mušálek and Milan Šimek
Plasma 2024, 7(2), 316-328; https://doi.org/10.3390/plasma7020018 - 22 Apr 2024
Cited by 2 | Viewed by 2739
Abstract
This study utilizes the Kerr effect in the analysis of a pulsed electric field (intensity ~108 V/m, limited by the liquid dielectric strength) in deionized water at the sub-nanosecond time scale. The results provide information about voltage waveforms at the field-producing anode [...] Read more.
This study utilizes the Kerr effect in the analysis of a pulsed electric field (intensity ~108 V/m, limited by the liquid dielectric strength) in deionized water at the sub-nanosecond time scale. The results provide information about voltage waveforms at the field-producing anode (160 kV peak, du/dt > 70 kV/ns). The analysis is based on detecting the phase shifts between measured and reference pulsed laser beams (pulse width, 35 ps; wavelength, 532 nm) using a Mach–Zehnder interferometer. The signal-to-noise ratio of the detected phase shift is maximized by an appropriate geometry of the field-producing anode, which creates a correctly oriented strong electric field along the interaction path and simultaneously does not electrically load the feeding transmission line. The described method has a spatial resolution of ~1 μm, and its time resolution is determined by the laser pulse duration. Full article
Show Figures

Figure 1

19 pages, 5655 KB  
Article
Deterministic Shaping of Quantum Light Statistics
by Garrett D. Compton and Mark G. Kuzyk
Photonics 2024, 11(4), 287; https://doi.org/10.3390/photonics11040287 - 22 Mar 2024
Cited by 2 | Viewed by 1969
Abstract
We propose a theoretical method for the deterministic shaping of quantum light via photon number state selective interactions. Nonclassical states of light are an essential resource for high-precision optical techniques that rely on photon correlations and noise reshaping. Notable techniques include quantum enhanced [...] Read more.
We propose a theoretical method for the deterministic shaping of quantum light via photon number state selective interactions. Nonclassical states of light are an essential resource for high-precision optical techniques that rely on photon correlations and noise reshaping. Notable techniques include quantum enhanced interferometry, ghost imaging, and generating fault-tolerant codes for continuous variable optical quantum computing. We show that a class of nonlinear-optical resonators can transform many-photon wavefunctions to produce structured states of light with nonclassical noise statistics. The devices, based on parametric down conversion, utilize the Kerr effect to tune photon-number-dependent frequency matching, inducing photon-number-selective interactions. With a high-amplitude coherent pump, the number-selective interaction shapes the noise of a two-mode squeezed cavity state with minimal dephasing, illustrated with simulations. We specify the requisite material properties to build the device and highlight the remaining material degrees of freedom which offer flexible material design. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
Show Figures

Figure 1

25 pages, 2497 KB  
Review
Self-Starting Soliton–Comb Regimes in χ(2) Microresonators
by Sergey Smirnov, Evgeni Podivilov and Boris Sturman
Photonics 2023, 10(6), 640; https://doi.org/10.3390/photonics10060640 - 1 Jun 2023
Cited by 2 | Viewed by 1982
Abstract
The discovery of stable and broad frequency combs in monochromatically pumped high-Q optical Kerr microresonators caused by the generation of temporal solitons can be regarded as one of the major breakthroughs in nonlinear optics during the last two decades. The transfer of the [...] Read more.
The discovery of stable and broad frequency combs in monochromatically pumped high-Q optical Kerr microresonators caused by the generation of temporal solitons can be regarded as one of the major breakthroughs in nonlinear optics during the last two decades. The transfer of the soliton–comb concept to χ(2) microresonators promises lowering of the pump power, new operation regimes, and entering of new spectral ranges; scientifically, it is a big challenge. Here we represent an overview of stable and accessible soliton–comb regimes in monochromatically pumped χ(2) microresonators discovered during the last several years. The main stress is made on lithium niobate-based resonators. This overview pretends to be rather simple, complete, and comprehensive: it incorporates the main factors affecting the soliton–comb generation, such as the choice of the pumping scheme (pumping to the first or second harmonic), the choice of the phase matching scheme (natural or artificial), the effects of the temporal walk off and dispersion coefficients, and also the influence of frequency detunings and Q-factors. Most of the discovered nonlinear regimes are self-starting—they can be accessed from noise upon a not very abrupt increase in the pump power. The soliton–comb generation scenarios are not universal—they can be realized only under proper combinations of the above-mentioned factors. We indicate what kind of restrictions on the experimental conditions have to be imposed to obtain the soliton–comb generation. Full article
(This article belongs to the Special Issue Advances in Optical Microresonators)
Show Figures

Figure 1

13 pages, 476 KB  
Article
Entanglement Purification for Logic-Qubit of Photon System Based on Parity Check Measurement Gate
by Chunyan Li, Rong Kong, Baocang Ren, Meiqiu Deng and Fuguo Deng
Entropy 2023, 25(5), 705; https://doi.org/10.3390/e25050705 - 24 Apr 2023
Viewed by 2566
Abstract
It has been found that logic-qubit entanglement has great potential for applications in quantum communication and quantum networks in recent years. However, along with the effects of noise and decoherence, the fidelity of the communication transmission can be greatly reduced. In this paper, [...] Read more.
It has been found that logic-qubit entanglement has great potential for applications in quantum communication and quantum networks in recent years. However, along with the effects of noise and decoherence, the fidelity of the communication transmission can be greatly reduced. In this paper, we investigate the entanglement purification of logic bit-flip error and phase-flip error in polarization logic-qubit entanglement based on the parity-check measurement (PCM) gate, which is constructed by the cross-Kerr nonlinearity and used to distinguish the parity information of two-photon polarization states. The probability of entanglement purification is higher than the scheme using the linear optical method. Moreover, the quality of logic-qubit entangled states can be improved by a cyclic purification process. This entanglement purification protocol will be useful in the future when faced with long-distance communication with logic-qubit entanglement states. Full article
(This article belongs to the Special Issue New Advances in Quantum Communication and Networks)
Show Figures

Figure 1

19 pages, 2175 KB  
Article
Measurement of the Central Galactic Black Hole by Extremely Large Mass-Ratio Inspirals
by Shu-Cheng Yang, Hui-Jiao Luo, Yuan-Hao Zhang and Chen Zhang
Symmetry 2022, 14(12), 2558; https://doi.org/10.3390/sym14122558 - 3 Dec 2022
Cited by 2 | Viewed by 2149
Abstract
In the galaxy, extremely large mass-ratio inspirals (X-MRIs) composed of brown dwarfs and the massive black hole at the galactic center are expected to be promising gravitational wave sources for space-borne detectors. In this work, we simulate the gravitational wave signals from twenty [...] Read more.
In the galaxy, extremely large mass-ratio inspirals (X-MRIs) composed of brown dwarfs and the massive black hole at the galactic center are expected to be promising gravitational wave sources for space-borne detectors. In this work, we simulate the gravitational wave signals from twenty X-MRI systems by an axisymmetric Konoplya–Rezzolla–Zhidenko metric with varied parameters. We find that the mass, spin, and deviation parameters of the Kerr black hole can be determined accurately (∼105106) with only one X-MRI event with a high signal-to-noise ratio. The measurement of the above parameters could be improved with more X-MRI observations. Full article
(This article belongs to the Special Issue Symmetry in Gravity Research)
Show Figures

Figure 1

29 pages, 8212 KB  
Article
Tuning the Nonlinear Optical Properties of Quantum Dot by Noise-Anharmonicity Interaction
by Debi Roy, Sk. Md. Arif, Swarnab Datta and Manas Ghosh
Atoms 2022, 10(4), 122; https://doi.org/10.3390/atoms10040122 - 25 Oct 2022
Cited by 2 | Viewed by 1913
Abstract
Current inspection rigorously explores the tuning of a few relevant nonlinear optical (NLO)properties of GaAs quantum dot (QD) under the stewardship of Gaussian noise-anharmonicity interplay. The NLO properties explored are total optical absorption coefficient (TOAC), total optical refractive index change (TORIC), nonlinear optical [...] Read more.
Current inspection rigorously explores the tuning of a few relevant nonlinear optical (NLO)properties of GaAs quantum dot (QD) under the stewardship of Gaussian noise-anharmonicity interplay. The NLO properties explored are total optical absorption coefficient (TOAC), total optical refractive index change (TORIC), nonlinear optical rectification (NOR), second harmonic generation (SHG), third harmonic generation (THG), DC-Kerr effect (DCKE), electro-absorption coefficient (EAC), group index (GI)and optical gain (OG). The route of application of noise (additive/multiplicative) to the QD, as well as the symmetry (odd/even) of the anharmonicity, influence the aforesaid NLO properties. These NLO properties exhibit steadfast growth, steadfast fall, maximization, minimization and saturation. The outcomes of the inspection appear to be quite pertinent in the context of the immense technological demand of QD, taking into account the combined impact of anharmonicity and noise. Full article
(This article belongs to the Special Issue Quantum Dynamics of Matter in Tailored Intense Fields)
Show Figures

Figure 1

11 pages, 2102 KB  
Article
Towards Quantum Noise Squeezing for 2-Micron Light with Tellurite and Chalcogenide Fibers with Large Kerr Nonlinearity
by Arseny A. Sorokin, Gerd Leuchs, Joel F. Corney, Nikolay A. Kalinin, Elena A. Anashkina and Alexey V. Andrianov
Mathematics 2022, 10(19), 3477; https://doi.org/10.3390/math10193477 - 23 Sep 2022
Cited by 6 | Viewed by 2577
Abstract
Squeezed light—nonclassical multiphoton states with fluctuations in one of the quadrature field components below the vacuum level—has found applications in quantum light spectroscopy, quantum telecommunications, quantum computing, precision quantum metrology, detecting gravitational waves, and biological measurements. At present, quantum noise squeezing with optical [...] Read more.
Squeezed light—nonclassical multiphoton states with fluctuations in one of the quadrature field components below the vacuum level—has found applications in quantum light spectroscopy, quantum telecommunications, quantum computing, precision quantum metrology, detecting gravitational waves, and biological measurements. At present, quantum noise squeezing with optical fiber systems operating in the range near 1.5 μm has been mastered relatively well, but there are no fiber sources of nonclassical squeezed light beyond this range. Silica fibers are not suitable for strong noise suppression for 2 µm continuous-wave (CW) light since their losses dramatically deteriorate the squeezed state of required lengths longer than 100 m. We propose the generation multiphoton states of 2-micron 10-W class CW light with squeezed quantum fluctuations stronger than −15 dB in chalcogenide and tellurite soft glass fibers with large Kerr nonlinearities. Using a realistic theoretical model, we numerically study squeezing for 2-micron light in step-index soft glass fibers by taking into account Kerr nonlinearity, distributed losses, and inelastic light scattering processes. Quantum noise squeezing stronger than −20 dB is numerically attained for a customized As2Se3 fibers with realistic parameters for the optimal fiber lengths shorter than 1 m. For commercial As2S3 and customized tellurite glass fibers, the expected squeezing in the −20–−15 dB range can be reached for fiber lengths of the order of 1 m. Full article
(This article belongs to the Special Issue Advances in Quantum Optics and Quantum Information)
Show Figures

Figure 1

13 pages, 3561 KB  
Article
Numerical Study of Mid-IR Ultrashort Pulse Reconstruction Based on Processing of Spectra Converted in Chalcogenide Fibers with High Kerr Nonlinearity
by Arseny A. Sorokin, Alexey V. Andrianov and Elena A. Anashkina
Fibers 2022, 10(10), 81; https://doi.org/10.3390/fib10100081 - 21 Sep 2022
Cited by 1 | Viewed by 2115
Abstract
Ultrashort optical pulses play an important role in fundamental research and applications. It is important to have reliable information about pulse parameters such as duration, intensity profile, and phase. Numerous methods for characterizing pulses in the near-IR range have been well developed by [...] Read more.
Ultrashort optical pulses play an important role in fundamental research and applications. It is important to have reliable information about pulse parameters such as duration, intensity profile, and phase. Numerous methods for characterizing pulses in the near-IR range have been well developed by now. However, there is a challenge with pulse measurement in the mid-IR, which is largely related to the underdeveloped component base in this spectral range. We investigate by means of numerical simulations a simple method of pulse reconstruction applicable in the mid-IR. The method is based on measuring and processing only the initial pulse spectrum and two converted spectra in elements with Kerr nonlinearity for different B-integrals characterizing nonlinear phase accumulation. The hardware implementation of the proposed method is very simple. This method requires only a one-dimensional data set, has no moving parts in the optical scheme, and allows for working with high-energy as well as low-energy pulses. We propose a novel simple, efficient, noise-tolerant algorithm for data processing that assumes spectral phase approximation by a polynomial function. We demonstrate numerically the reconstruction of mid-IR ultrashort pulses, namely 3 μm wavelength pulses, using commercial chalcogenide As2S3-based glass fibers as nonlinear elements. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

18 pages, 537 KB  
Article
Dispersive Optical Solitons to Stochastic Resonant NLSE with Both Spatio-Temporal and Inter-Modal Dispersions Having Multiplicative White Noise
by Elsayed M. E. Zayed, Mohamed E. M. Alngar and Reham M. A. Shohib
Mathematics 2022, 10(17), 3197; https://doi.org/10.3390/math10173197 - 4 Sep 2022
Cited by 42 | Viewed by 2379
Abstract
The current article studies optical solitons solutions for the dimensionless form of the stochastic resonant nonlinear Schrödinger equation (NLSE) with both spatio-temporal dispersion (STD) and inter-modal dispersion (IMD) having multiplicative noise in the itô sense. We will discuss seven laws of nonlinearities, namely, [...] Read more.
The current article studies optical solitons solutions for the dimensionless form of the stochastic resonant nonlinear Schrödinger equation (NLSE) with both spatio-temporal dispersion (STD) and inter-modal dispersion (IMD) having multiplicative noise in the itô sense. We will discuss seven laws of nonlinearities, namely, the Kerr law, power law, parabolic law, dual-power law, quadratic–cubic law, polynomial law, and triple-power law. The new auxiliary equation method is investigated. We secure the bright, dark, and singular soliton solutions for the model. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

22 pages, 8644 KB  
Review
Suppression Method of Optical Noises in Resonator-Integrated Optic Gyroscopes
by Xuebao Kuai, Lei Wei, Fuhua Yang, Wei Yan, Zhaofeng Li and Xiaodong Wang
Sensors 2022, 22(8), 2889; https://doi.org/10.3390/s22082889 - 9 Apr 2022
Cited by 9 | Viewed by 4992
Abstract
Resonator-integrated optical gyroscopes have advantages such as all-solid-state, on-chip integration, miniaturized structure, and high precision. However, many factors deteriorate the performance and push it far from the shot-noise limited theoretical sensitivity. This paper reviews the mechanisms of various noises and their corresponding suppression [...] Read more.
Resonator-integrated optical gyroscopes have advantages such as all-solid-state, on-chip integration, miniaturized structure, and high precision. However, many factors deteriorate the performance and push it far from the shot-noise limited theoretical sensitivity. This paper reviews the mechanisms of various noises and their corresponding suppression methods in resonator-integrated optical gyroscopes, including the backscattering, the back-reflection, the polarization error, the Kerr effect, and the laser frequency noise. Several main noise suppression methods are comprehensively expounded through inductive comparison and reasonable collation. The new noise suppression technology and digital signal processing system are also addressed. Full article
(This article belongs to the Special Issue MEMS and Ultra-Sensitive Sensors)
Show Figures

Figure 1

10 pages, 9160 KB  
Communication
A Hollow-Core Photonic-Crystal Fiber-Optic Gyroscope Based on a Parallel Double-Ring Resonator
by Heliang Shen, Kan Chen, Kang Zou, Yijia Gong, Ran Bi and Xiaowu Shu
Sensors 2021, 21(24), 8317; https://doi.org/10.3390/s21248317 - 13 Dec 2021
Cited by 6 | Viewed by 4243
Abstract
A novel system structure of resonant fiber optical gyroscope using a parallel double hollow-core photonic crystal fiber ring resonator is proposed, which employs the double closed loop and reciprocal modulation–demodulation technique to solve the problem of the length mismatch between rings. This structure [...] Read more.
A novel system structure of resonant fiber optical gyroscope using a parallel double hollow-core photonic crystal fiber ring resonator is proposed, which employs the double closed loop and reciprocal modulation–demodulation technique to solve the problem of the length mismatch between rings. This structure can suppress the residual amplitude modulation noise and laser frequency noise, essentially eliminating the influence of the Rayleigh backscattering noise and dramatically reduce the Kerr-effect-induced drift by three orders of magnitude. Thanks to its excellent noise suppression effect, the sensitivity of this novel system can approach the shot-noise-limited theoretical value of 8.94 × 10−7 rad/s assuming the length of the fiber ring resonator is 10 m. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop