Towards Quantum Noise Squeezing for 2-Micron Light with Tellurite and Chalcogenide Fibers with Large Kerr Nonlinearity
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andersen, U.L.; Gehring, T.; Marquardt, C.; Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 2016, 91, 053001. [Google Scholar] [CrossRef]
- Schnabel, R. Squeezed states of light and their applications in laser interferometers. Phys. Rep. 2017, 684, 1–51. [Google Scholar] [CrossRef]
- Mukamel, S.; Freyberger, M.; Schleich, W.P.; Bellini, M.; Zavatta, A.; Leuchs, G.; Silberhorn, C.; Boyd, R.W.; Sánchez-Soto, L.L.; Stefanov, A.; et al. Roadmap on quantum light spectroscopy. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 072002. [Google Scholar] [CrossRef]
- Appel, J.; Figueroa, E.; Korystov, D.; Lobino, M.; Lvovsky, A.I. Quantum Memory for Squeezed Light. Phys. Rev. Lett. 2008, 100, 093602. [Google Scholar] [CrossRef]
- Vahlbruch, H.; Chelkowski, S.; Danzmann, K.; Schnabel, R. Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys. 2007, 9, 371. [Google Scholar] [CrossRef]
- Kaiser, F.; Fedrici, B.; Zavatta, A.; D’Auria, V.; Tanzilli, S. A fully guided-wave squeezing experiment for fiber quantum networks. Optica 2016, 3, 362–365. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, P.; Jin, G.-R. Single-Port Homodyne Detection in a Squeezed-State Interferometry with Optimal Data Processing. Photonics 2021, 8, 291. [Google Scholar] [CrossRef]
- Khalil, E.; Mohamed, A.-B.; Obada, A.-S.; Eleuch, H. Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity. Mathematics 2020, 8, 1830. [Google Scholar] [CrossRef]
- Grote, H.; Danzmann, K.; Dooley, K.L.; Schnabel, R.; Slutsky, J.; Vahlbruch, H. First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory. Phys. Rev. Lett. 2013, 110, 181101. [Google Scholar] [CrossRef]
- Mansell, G.L.; McRae, T.G.; Altin, P.A.; Yap, M.J.; Ward, R.L.; Slagmolen, B.J.J.; Shaddock, D.A.; McClelland, D.E. Observation of Squeezed Light in the 2 μm Region. Phys. Rev. Lett. 2018, 120, 203603. [Google Scholar] [CrossRef]
- Mehmet, M.; Vahlbruch, H. The Squeezed Light Source for the Advanced Virgo Detector in the Observation Run O3. Galaxies 2020, 8, 79. [Google Scholar] [CrossRef]
- Ralph, T.C.; Lam, P.K. Teleportation with Bright Squeezed Light. Phys. Rev. Lett. 1998, 81, 5668–5671. [Google Scholar] [CrossRef]
- Taylor, M.A.; Janousek, J.; Daria, V.; Knittel, J.; Hage, B.; Bachor, H.; Bowen, W. Biological measurement beyond the quantum limit. Nat. Photonics 2013, 7, 229–233. [Google Scholar] [CrossRef]
- Lassen, M.; Delaubert, V.; Janousek, J.; Wagner, K.; Bachor, H.-A.; Lam, P.K.; Treps, N.; Buchhave, P.; Fabre, C.; Harb, C.C. Tools for Multimode Quantum Information: Modulation, Detection, and Spatial Quantum Correlations. Phys. Rev. Lett. 2007, 98, 083602. [Google Scholar] [CrossRef]
- Heinze, J.; Willke, B.; Vahlbruch, H. Observation of Squeezed States of Light in Higher-Order Hermite-Gaussian Modes with a Quantum Noise Reduction of up to 10 dB. Phys. Rev. Lett. 2022, 128, 083606. [Google Scholar] [CrossRef]
- Yan, M.; Ma, L. Generation of Higher-Order Hermite–Gaussian Modes via Cascaded Phase-Only Spatial Light Modulators. Mathematics 2022, 10, 1631. [Google Scholar] [CrossRef]
- Vahlbruch, H.; Mehmet, M.; Danzmann, K.; Schnabel, R. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. Phys. Rev. Lett. 2016, 117, 110801. [Google Scholar] [CrossRef]
- Corney, J.F.; Heersink, J.; Dong, R.; Josse, V.; Drummond, P.D.; Leuchs, G.; Andersen, U.L. Simulations and experiments on polarization squeezing in optical fiber. Phys. Rev. A 2008, 78, 023831. [Google Scholar] [CrossRef]
- McCormick, C.F.; Boyer, V.; Arimondo, E.; Lett, P.D. Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett. 2006, 32, 178–180. [Google Scholar] [CrossRef]
- Shelby, R.M.; Levenson, M.D.; Perlmutter, S.H.; DeVoe, R.G.; Walls, D.F. Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber. Phys. Rev. Lett. 1986, 57, 691–694. [Google Scholar] [CrossRef]
- Rosenbluh, M.; Shelby, R.M. Squeezed optical solitons. Phys. Rev. Lett. 1991, 66, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, M.; Sharping, J.E.; Kumar, P.; Porzio, A.; Windeler, R.S. Soliton squeezing in microstructure fiber. Opt. Lett. 2002, 27, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, M.; Sharping, J.E.; Kumar, P.; Levandovsky, D.; Vasilyev, M. Soliton squeezing in a Mach-Zehnder fiber interferometer. Phys. Rev. A 2001, 64, 031801. [Google Scholar] [CrossRef]
- Tran, T.X.; Cassemiro, K.N.; Söller, C.; Blow, K.J.; Biancalana, F. Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers. Phys. Rev. A 2011, 84, 013824. [Google Scholar] [CrossRef]
- Dong, R.; Heersink, J.; Corney, J.; Drummond, P.; Andersen, U.L.; Leuchs, G. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers. Opt. Lett. 2008, 33, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Kapasi, D.; Eichholz, J.; McRae, T.; Ward, R.; Slagmolen, B.J.J.; Legge, S.; Hardman, K.S.; Altin, P.; McClelland, D. Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research. Opt. Express 2020, 28, 3280–3288. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, Y.; Wang, X.; Song, W.; Chen, X.; Bin, W.; Li, J.; Zhao, C.; Wang, P. 5 W ultra-low-noise 2 µm single-frequency fiber laser for next-generation gravitational wave detectors. Opt. Lett. 2020, 45, 4911–4914. [Google Scholar] [CrossRef]
- Zervas, M.N.; Codemard, C.A. High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives [Invited]. J. Opt. Soc. Am. B 2010, 27, B63–B92. [Google Scholar] [CrossRef]
- Aleshkina, S.S.; Fedotov, A.; Korobko, D.; Stoliarov, D.; Lipatov, D.S.; Velmiskin, V.; Temyanko, V.L.; Kotov, L.V.; Gumenyuk, R.; Likhachev, M.E. All-fiber polarization-maintaining mode-locked laser operated at 980 nm. Opt. Lett. 2020, 45, 2275–2278. [Google Scholar] [CrossRef]
- Kamynin, V.A.; Wolf, A.A.; Skvortsov, M.I.; Filatova, S.A.; Kopyeva, M.S.; Vlasov, A.A.; Tsvetkov, V.B.; Babin, S.A. Distributed Temperature Monitoring Inside Ytterbium DFB and Holmium Fiber Lasers. J. Light. Technol. 2021, 39, 5980–5987. [Google Scholar] [CrossRef]
- Bachor, H.A.; Ralph, T.C.; Lucia, S.; Ralph, T.C. A Guide to Experiments in Quantum Optics; Wiley-vch: Weinheim, Germany, 2004. [Google Scholar]
- Tao, G.; Ebendorff-Heidepriem, H.; Stolyarov, A.M.; Danto, S.; Badding, J.V.; Fink, Y.; Ballato, J.; Abouraddy, A.F. Infrared fibers. Adv. Opt. Photon. 2015, 7, 379–458. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Luther-Davies, B.; Richardson, K. Chalcogenide photonics. Nat. Photon. 2011, 5, 141–148. [Google Scholar] [CrossRef]
- Cai, D.; Xie, Y.; Guo, X.; Wang, P.; Tong, L. Chalcogenide Glass Microfibers for Mid-Infrared Optics. Photonics 2021, 8, 497. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Shiryaev, V.S.; Koptev, M.Y.; Stepanov, B.S.; Muravyev, S.V. Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion. J. Non-Cryst. Solids 2018, 480, 43–50. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Kim, A.V. Numerical Simulation of Ultrashort Mid-IR Pulse Amplification in Praseodymium-Doped Chalcogenide Fibers. J. Light. Technol. 2017, 35, 5397–5403. [Google Scholar] [CrossRef]
- Kibler, B.; Lemière, A.; Gomes, J.-T.; Gaponov, D.; Lavoute, L.; Désévédavy, F.; Smektala, F. Octave-spanning coherent supercontinuum generation in a step-index tellurite fiber and towards few-cycle pulse compression at 2 μm. Opt. Commun. 2021, 488, 126853. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Dorofeev, V.V.; Skobelev, S.S.; Balakin, A.A.; Motorin, S.E.; Kosolapov, A.F.; Andrianov, A.V. Microstructured Fibers Based on Tellurite Glass for Nonlinear Conversion of Mid-IR Ultrashort Optical Pulses. Photonics 2020, 7, 51. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Andrianov, A.V. Design and Dispersion Control of Microstructured Multicore Tellurite Glass Fibers with In-Phase and Out-of-Phase Supermodes. Photonics 2021, 8, 113. [Google Scholar] [CrossRef]
- Qin, G.; Liao, M.; Suzuki, T.; Mori, A.; Ohishi, Y. Widely tunable ring-cavity tellurite fiber Raman laser. Opt. Lett. 2008, 33, 2014–2016. [Google Scholar] [CrossRef]
- Snopatin, G.E.; Churbanov, M.F.; Pushkin, A.A.; Gerasimenko, V.V.; Dianov, E.M.; Plotnichenko, V.G. High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km. Optoelectron. Adv. Mater. Rapid Commun. 2009, 3, 669–671. [Google Scholar]
- Shiryaev, V.; Churbanov, M.; Snopatin, G.; Chenard, F. Preparation of low-loss core–clad As–Se glass fibers. Opt. Mater. 2015, 48, 222–225. [Google Scholar] [CrossRef]
- Dianov, E.M.; Petrov, M.Y.; Plotnichenko, V.G.; Sysoev, V.K. Estimate of the minimum optical losses in chalcogenide glasses. Sov. J. Quantum Electron. 1982, 12, 498–499. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Andrianov, A.V.; Corney, J.F.; Leuchs, G. Chalcogenide fibers for Kerr squeezing. Opt. Lett. 2020, 45, 5299–5302. [Google Scholar] [CrossRef]
- Available online: https://irflex.com (accessed on 12 September 2022).
- Agrawal, G.P. Nonlinear Fiber Optics, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Singh, M.; Singh, A. The Optimal Order Newton’s Like Methods with Dynamics. Mathematics 2021, 9, 527. [Google Scholar] [CrossRef]
- Available online: http://www.amorphousmaterials.com (accessed on 12 September 2022).
- Ghosh, G. Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses. J. Am. Ceram. Soc. 1995, 78, 2828–2830. [Google Scholar] [CrossRef]
- Drummond, P.; Corney, J. Quantum noise in optical fibers I Stochastic equations. J. Opt. Soc. Am. B 2001, 18, 139–152. [Google Scholar] [CrossRef]
- Corney, J.; Drummond, P. Quantum noise in optical fibers II Raman jitter in soliton communications. J. Opt. Soc. Am. B 2001, 18, 153–161. [Google Scholar] [CrossRef]
- Bonetti, J.; Hernandez, S.; Grosz, D.F. Master equation approach to propagation in nonlinear fibers. Opt. Lett. 2021, 46, 665–668. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Anashkina, E.A.; Corney, J.F.; Bobrovs, V.; Leuchs, G.; Andrianov, A.V. Numerical Simulations on Polarization Quantum Noise Squeezing for Ultrashort Solitons in Optical Fiber with Enlarged Mode Field Area. Photonics 2021, 8, 226. [Google Scholar] [CrossRef]
- Yuan, W. 2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber. Laser Phys. Lett. 2013, 10, 95107. [Google Scholar] [CrossRef]
- Xiong, C.; Magi, E.; Luan, F.; Tuniz, A.; Dekker, S.; Sanghera, J.S.; Shaw, L.B.; Aggarwal, I.D.; Eggleton, B.J. Characterization of picosecond pulse nonlinear propagation in chalcogenide As(2)S(3) fiber. Appl. Opt. 2009, 48, 5467–5474. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Qin, G.; Liao, M.; Suzuki, T.; Ohishi, Y. Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber. J. Opt. Soc. Am. B 2011, 28, 1831–1836. [Google Scholar] [CrossRef]
Parameter | Symbol | Dimension | Type of Glass Fiber | |||
---|---|---|---|---|---|---|
As2Se3 | As2S3 | Tellurite | Silica | |||
Core diameter | d | µm | 2.6 | 5 | 2.7 | 8.2 |
Numerical aperture | NA | 0.58 | 0.3 | 0.5 | 0.14 | |
Nonlinear Kerr coefficient | γ | (W km)−1 | 5000 | 400 | 200 | 0.6 |
Dispersion coefficient | β2 | ps2/km | 790 | 350 | 170 | −80 |
Fraction of the Raman contribution | fR | 0.1 | 0.1 | 0.51 | 0.2 | |
Optical loss | α | dB/km | 60 | 50 | 20 | 20 |
Pump wavelength | λp | µm | 2 | |||
Temperature | T | K | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokin, A.A.; Leuchs, G.; Corney, J.F.; Kalinin, N.A.; Anashkina, E.A.; Andrianov, A.V. Towards Quantum Noise Squeezing for 2-Micron Light with Tellurite and Chalcogenide Fibers with Large Kerr Nonlinearity. Mathematics 2022, 10, 3477. https://doi.org/10.3390/math10193477
Sorokin AA, Leuchs G, Corney JF, Kalinin NA, Anashkina EA, Andrianov AV. Towards Quantum Noise Squeezing for 2-Micron Light with Tellurite and Chalcogenide Fibers with Large Kerr Nonlinearity. Mathematics. 2022; 10(19):3477. https://doi.org/10.3390/math10193477
Chicago/Turabian StyleSorokin, Arseny A., Gerd Leuchs, Joel F. Corney, Nikolay A. Kalinin, Elena A. Anashkina, and Alexey V. Andrianov. 2022. "Towards Quantum Noise Squeezing for 2-Micron Light with Tellurite and Chalcogenide Fibers with Large Kerr Nonlinearity" Mathematics 10, no. 19: 3477. https://doi.org/10.3390/math10193477
APA StyleSorokin, A. A., Leuchs, G., Corney, J. F., Kalinin, N. A., Anashkina, E. A., & Andrianov, A. V. (2022). Towards Quantum Noise Squeezing for 2-Micron Light with Tellurite and Chalcogenide Fibers with Large Kerr Nonlinearity. Mathematics, 10(19), 3477. https://doi.org/10.3390/math10193477