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Abstract: Squeezed light—nonclassical multiphoton states with fluctuations in one of the quadrature
field components below the vacuum level—has found applications in quantum light spectroscopy,
quantum telecommunications, quantum computing, precision quantum metrology, detecting grav-
itational waves, and biological measurements. At present, quantum noise squeezing with optical
fiber systems operating in the range near 1.5 µm has been mastered relatively well, but there are no
fiber sources of nonclassical squeezed light beyond this range. Silica fibers are not suitable for strong
noise suppression for 2 µm continuous-wave (CW) light since their losses dramatically deteriorate
the squeezed state of required lengths longer than 100 m. We propose the generation multiphoton
states of 2-micron 10-W class CW light with squeezed quantum fluctuations stronger than −15 dB in
chalcogenide and tellurite soft glass fibers with large Kerr nonlinearities. Using a realistic theoretical
model, we numerically study squeezing for 2-micron light in step-index soft glass fibers by taking into
account Kerr nonlinearity, distributed losses, and inelastic light scattering processes. Quantum noise
squeezing stronger than −20 dB is numerically attained for a customized As2Se3 fibers with realistic
parameters for the optimal fiber lengths shorter than 1 m. For commercial As2S3 and customized
tellurite glass fibers, the expected squeezing in the−20–−15 dB range can be reached for fiber lengths
of the order of 1 m.

Keywords: Kerr nonlinearity; quantum noise squeezing; chalcogenide fibers; tellurite fibers; stochastic
nonlinear Schrödinger equation

MSC: 81V10

1. Introduction

The branch of quantum optics operating with light states with macroscopic amplitudes
and field intensities and well-defined nonclassical properties at the same time has recently
attracted much attention. In particular, it is of great interest to study the generation and
transportation of bright squeezed light, which refers to nonclassical multiphoton states
with fluctuations in one of the quadrature field components below the vacuum level [1].
Squeezed light has found applications in quantum light spectroscopy, quantum telecom-
munications, including quantum key distribution, quantum computing with continuous
variables, quantum memory, and precision quantum metrology with accuracy above the
standard quantum limit [2–8] as well as in such ultrasensitive measurements as detecting
gravitational waves [9–11]. It has been shown that bright squeezed light sources can be
used to demonstrate the effect of quantum teleportation [12]. Additionally, higher-order
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spatial-mode squeezed light can be used for biological particle tracking measurements [13].
The possibilities of employing higher-order Hermite–Gaussian modes to form squeezed
light have been discussed [14–16].

Many technologies for generating squeezed light have been developed over the last
few decades. However, there has been a revival of interest in novel optimized squeezing
schemes based on Kerr nonlinearity driven by advances in waveguide fabrication technolo-
gies and by prospective applications. The development of new highly nonlinear materials
and technologies for producing low-loss fibers and the growing demand for squeezed
light in an extended wavelength range encourage the performance of in-depth theoreti-
cal analyses. Nonclassical squeezed light can be best obtained from light with a level of
field quadrature fluctuations that is already close to the quantum limit by propagating it
through a nonlinear medium such as an optical parametric system, an optical fiber with
Kerr nonlinearity, or an atomic ensemble [1].

Different nonlinear processes lead to the generation of different types of squeezed light
with notable difference in their properties. Nonlinear media with quadratic nonlinearity
are widely used to produce squeezed vacuum states in the process of parametric down-
conversion. Vacuum-squeezed states have zero mean amplitude and a nonzero mean
photon number. By now, this method has achieved record squeezing values [17] and
has found many applications. However, there are certain limitations associated with this
method. Low-loss crystals with high quadratic nonlinearity are required, and special
arrangements are needed to fulfill the phase-matching conditions between the pump and
the generated squeezed light. The detection scheme requires either photon-resolving
detectors or the use of a local oscillator phase-locked to the squeezed light. Moreover, the
wavelength of the generated squeezed light is far from the pump wavelength, requiring
some additional wavelength conversion stages when using commonly available laser
sources to produce squeezed light in the desired wavelength range.

A simpler and broadband squeezing setup can be constructed using the non-resonant
Kerr nonlinearity, which can be especially efficient in optical fibers offering a long inter-
action distance. Fiber-based setups generate squeezed light with a large mean amplitude
in the vicinity of the pump wavelength. The use of polarization-maintaining fibers and
employing the polarization squeezing technique helps to make the generation and detection
schemes robust [18].

Squeezed light can also be generated in atomic ensembles. However, the level of
directly observed squeezing (~3.5 dB)—relevant for applications—that has been achieved
in experiments so far is moderate when compared to other generation methods [19].

Nonclassical light has an important advantage in terms of applications in quantum
telecommunications if it is directly compatible with fiber optics. At present, quantum noise
squeezing in silica optical fibers at a wavelength of about 1.55 µm has been experimentally
achieved in a number of studies [18,20–25]. The record value for experimentally attained
squeezing in optical fibers is −6.8 dB (−10.4 dB when correcting for linear losses) [25].

One of the challenges of quantum optics is the extension of the available wavelength
range of nonclassical light sources, which is important for many applications. For instance,
next-generation gravitational wave detectors are likely to operate at a wavelength of 2 µm,
but they require noise suppression stronger than−10 dB relative to the shot-noise level [10].
Similar arguments apply to other high-precision measuring devices. Two-micron fiber
lasers with a noise level close to the quantum limit are being actively developed [26,27], and
the further suppression of the quantum fluctuations of these sources in all-fiber systems
is of great practical interest. At present, from the point of view of quantum fiber optics,
the range around 1.5 µm has been mastered, but there are no fiber sources of nonclassical
light beyond this range, although silica fiber sources of classical light in the 1–2 µm range
are diversified and are very widespread [28–31]. In standard silica fibers with a relatively
low Kerr nonlinear coefficient (~1 (W km)−1), losses grow significantly as the wavelength
increases (from 0.2 dB/km at 1.55 µm to 20–50 dB/km at 2 µm), which makes them
unsuitable for quantum applications. Note that optical losses are one of the most important
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factors limiting quantum effects in optical fibers (which is discussed and explained in detail
in [32]). However, there are special non-silica soft glasses with giant nonlinearity [33] that
have comparable loss coefficients but that can generate nonclassical states of light with a
significant reduction in the required length. Examples of such fibers include chalcogenide
and tellurite fibers with strong localization of the field inside a small core. Non-oxide
chalcogenide glasses consist of one or more chalcogens: S, Se, or Te, in combination with
elements such as As, Ge, Sb, P, In, Ga, etc. [33]. Tellurite glasses are based on tellurium
dioxide [33]. The nonlinear Kerr coefficients of these soft glass fibers can be 2–4 orders
of magnitude higher than the nonlinear coefficients of standard silica fibers [34–40], so
the required fiber length can be reduced significantly, and the influence of loss can be
mitigated. Note that optical losses as low as 20 dB/km for tellurite fibers [41], 12 dB/km
for As2S3 fibers [42], and 60 dB/km for As2Se3 fibers [43] have been reported. Moreover,
theoretical estimates show that losses in chalcogenide fibers can be significantly reduced
(down to 0.5 dB/km) by increasing the material purity [44]. The use of such fibers in
classical nonlinear optics experiments is well established, but their potential for quantum
applications, such as in generating nonclassical multiphoton states of light, has hardly been
investigated as of yet.

To design new experiments, we revisit theoretical models and prospective experimen-
tal arrangements with reasonable realistic parameters using numerical modeling.

Recently, using chalcogenide glass fibers to squeeze continuous-wave (CW) light at
a wavelength of 2 µm was proposed, and very simple analytical estimates confirmed the
promise of this approach [45]. The model only took into account the action of the Kerr
nonlinearity, losses were assumed to be lumped at the output end of the fiber, and other
processes were neglected [45]. In this paper, we numerically study squeezing for 2-micron
light in chalcogenide and tellurite step-index fibers using a more realistic theoretical model
and by taking into account the Kerr nonlinearity, distributed losses, and inelastic light
scattering processes. We considered two types of relatively widespread chalcogenide glass
fibers (As2S3 and As2Se3 [46]) and a tellurite glass fiber (TeO2–Bi2O3–ZnO–Na2O) with
realistic characteristics as well as a standard telecommunication silica fiber for comparison.
We calculate the most important parameters for squeezing in customized As2Se3 and
tellurite glass fibers and in commercially available As2S3 and silica fibers. The problem of
calculating the characteristics of a fiber is a classical problem. Its description is based on
Maxwell’s equations [47]. From the solution of the characteristic equation, eigenvalues are
obtained, and these make it possible to calculate effective mode areas and hence nonlinear
Kerr coefficients as well as the group velocity dispersion [47]. Next, we perform detailed
numerical studies and identify the factors that limit quantum noise squeezing by taking
into account realistic fiber parameters. It is not a trivial task to simulate such a complex
system with allowance for real nonlinear response functions, including the instantaneous
Kerr and the delayed Raman contributions, which differ significantly for different glasses.
Here, we use an advanced numerical simulation method based on the construction of
a set of solutions of the stochastic nonlinear Raman-modified Schrödinger equation in
phase space, which is equivalent with an appropriate choice of simulation parameters to
the solution of the Fokker–Planck equation for the Wigner distribution of the state of a
quantum system. We compare the squeezing efficiency for 2 µm CW light in different fibers
and reveal the limiting factors. We assume that the system operates at room temperature
rather than at a cryogenic temperature. The possibilities of quantum noise suppression in
soft glass fibers were compared with the modeling results of the same effect in a standard
silica fiber.

2. Methods

To calculate the step-index parameters of the As2Se3, As2S3, tellurite, and silica fibers
we use a well-known approach based on numerically solving Maxwell’s equations for
axially symmetric geometry [47]. An electric field E(t, x, y, z) of the light wave (where t is
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time, and x, y, z are the Cartesian coordinates) with almost linear polarization along the
x-axis propagating in an optical fiber along the z-axis can be presented in the form [47]:

E(t, x, y, z) =
1
2

x̂
[

F(x, y)A(t, z)eiβ0ze−iω0t + c.c.
]

(1)

where A(t, z) is a complex and slowly varying envelope; the function F(x,y) charac-
terizes the transverse mode structure of the fiber; ω0 is the central angular frequency
(ω0 = 2πf 0 = 2πc/λp, c is the speed of light, and λp is the central (pump) wavelength);
βj = (djβ/dωj)ω = ω0; β is a propagation constant; andω is the angular frequency detuning
from ω0.

For an axially symmetric fiber, F(x,y) = F(r)eilϕ, l = 0,1,2, . . . , and r and ϕ are polar
coordinates. The equation determining F(r) is obtained from Maxwell’s equations. The
solution is well known for the case of a step-index fiber with a core radius of a = d/2 (d is
the diameter of the fiber core) [47]:

F(r) =
{

Jl(κr), r ≤ a
CcladKl(qr), r ≥ a

(2)

where Jl is a Bessel function, and Kl is a modified Bessel function.

κ =
√

n2
corek2

0 − β2, q =
√

β2 − n2
cladk2

0, (3)

ncore and nclad are frequency-dependent refractive indices of the core and cladding, re-
spectively; k0 = ω0/c; and the constant Cclad is determined according to the boundary
condition Jl(κa) = CcladKl(qa). The propagation constant β is found from the characteristic
equation [47]:[

J′l (U)

UJl(U)
+

K′l(W)

WKl(W)

][
J′l (U)

UJl(U)
+

n2
clad

n2
core

K′l(W)

WKl(W)

]
= l2

(
1

U2 +
1

W2

)(
1

U2 +
n2

clad
n2

core

1
W2

)
, (4)

where U = κa, and W = qa. To numerically solve Equation (4), we used an optimal fourth-
order Newton-like method [48].

Frequency-dependent refractive indices were calculated using Sellmeier equations
for As2Se3 [49], As2S3 [49], tellurite [50], and silica [47] glasses. Numerical apertures were
calculated as

NA =
√

n2
core − n2

clad, (5)

We considered the fundamental mode to be l = 0 and m = 1, where m is the solution
of Equation (4) in the order of decreasing β. After finding β and F(r), we calculated the
second-order dispersion coefficient β2 and the nonlinear Kerr coefficient γ [47]:

γ =
4π2n2

[∫ ∞
−∞|F(r)|

2dr
]2

λp
∫ ∞
−∞|F(r)|

4dr
, (6)

where n2 is the nonlinear refractive index.
Next, we constructed a set of solutions for the complex amplitude A(t, z) of a CW light

field that obeyed the stochastic nonlinear Raman-modified Schrödinger equation [51–54]:

∂

∂z
A(t, z) = i

β2

2
∂2

∂t2 A(t, z) +
[

iγ
∫ ∞

0
dt′R

(
t− t′

)∣∣A(t′, z
)∣∣2 + iΓR(t, z)

]
A(t, z)− α

2
A(t, z) + Γ(t, z), (7)

where γ is the nonlinear Kerr coefficient; α is the linear optical losses; R(t) = (1 − fR)δ(t)
+ fR·RR(t) is the deterministic nonlinear response function taking into account the instan-
taneous Kerr response as well as the delayed Raman response RR(t) with a fractional
contribution fR (Figure 1 shows the spectra of Raman functions R̃R = 1√

2π

∫ ∞
−∞ RR(t)eiωtdt
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for As2Se3 [55], As2S3 [56], tellurite [57], and silica [52] glasses); and ΓR and Γ are the
zero-mean delta-correlated model functions describing Raman noise and linear quantum
noise, respectively,

ΓR(ω, z) =
1√
2π

∞∫
−∞

ΓR(t, z)eiωtdt, (8)

Γ(ω, z) =
1√
2π

∞∫
−∞

Γ(t, z)eiωtdt, (9)

< ΓR(ω, z)ΓR∗(ω′, z′
)
> = γ}ω0αR(ω−ω0)

1
2
+

1

exp
(
}|ω−ω0|

kT

)
− 1

δ
(
ω−ω′

)
δ
(
z− z′

)
, (10)

αR(ω) = 2
∣∣∣∣Im

(∫ ∞

0
R(t)eiωtdt

)∣∣∣∣, (11)

< Γ(ω, z)Γ∗
(
ω′, z′

)
> =

α

2
}ω0δ

(
ω−ω′

)
δ
(
z− z′

)
, (12)

where h̄ is the Planck constant; k is the Boltzmann constant; T is the absolute temperature;
f 0 is the central frequency; and ω0 is the central angular frequency (ω0 = 2πf 0 = 2πc/λp,
where c is the speed of light, and λp is the pump wavelength).
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Figure 1. Real and imaginary parts of model Raman response functions in the frequency domain.

The initial complex field amplitude is set as the square root of the pump power P,
adding normally distributed delta-correlated stochastic noise δE(0,t)

E(t, 0) =
√

P + δE(t, 0), (13)

< δE(t, 0)δE∗
(
t′, 0
)
> =

}ω0

2
δ
(
t− t′

)
. (14)

We numerically simulated the signal evolution described by Equation (7) using a
specially written home-made software. This software is based on the split-step Fourier
method and uses fast Fourier transform [47]. We considered a set of 103 independent
realizations of the initial conditions given by Equations (13) and (14). We assumed that the
input signal was a standard quantum-limited one. It has a central symmetric distribution
in phase space (Figure 2a shows an example). The evolution of each realization for a
certain fiber length shifts the point in phase space [1]. X1 and X2 are the two conjugate
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quadratures of the electromagnetic field for the considered single-mode (with their mean
values subtracted). In Kerr squeezing, the resulting state is neither an amplitude nor a
phase-squeezed state. Instead, the state is squeezed for a quadrature that is rotated in
phase space by a skewed angle with respect to the direction of the mean field value (we
assume without loss of generality that the mean field value lies along the X1 quadrature).
The distribution takes the form of a rotated ellipse-like cloud with uncertainty along the
minor axis directions below the standard quantum limit (Figure 2b) [1]. This uncertainty
characterizes quantum noise squeezing [1]. We found the minor axis for each cloud
corresponding to a certain fiber length (using a modified binary search minimizing the
variance along an axis) and calculated the noise suppression relative to the initial noise.
Note that losses and inelastic scattering processes deteriorate the degree of squeezing. We
neglect guided acoustic wave Brillouin scattering since—as will be shown—the optimal
lengths of soft glass fibers are relatively short.
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Figure 2. Clouds in single-mode phase space corresponding to coherent-state noise (a) and the
squeezed quantum noise (b). X1 and X2 are two conjugate quadratures of the electromagnetic
field (with their mean values subtracted) of the considered single mode. Each point in the cloud
corresponds to a particular realization of the quantum trajectory in the phase space obtained by the
modeling; the scattering of the points around the mean values represents the quantum uncertainty.

3. Results

We have considered three types of soft glass fibers (As2Se3, As2S3, and tellurite) based
on the latest advances in glass technology. Fibers made of As2Se3 glass, which have the
highest nonlinear refractive index, are successfully fabricated by many scientific groups
and commercial companies [33,34,46]. It is known that in the absence of optical losses and
inelastic scattering processes, the variance of fluctuations of one quadrature component
monotonically decreases with the increasing Kerr parameter ϕKerr = γPz at the initial
evolution stage [32]. However, the contribution of parasitic processes deteriorates the
noise suppression, and this accumulates as z increases. As such, a fiber design providing
large γ values is desirable. We have purposely chosen a small enough diameter of an
As2Se3 fiber to provide a hugely effective nonlinear Kerr coefficient and single-mode
light propagation at a wavelength of 2 µm. However, further reduction of the diameter
may be impractical because it is difficult from a technological point of view and may
eventually even be counter-productive from a fundamental point of view because when
decreasing the core diameters approaching the sub-wavelength regime, the mode diameter
no longer follows the core diameter. When considering an As2S3 glass fiber, we specifically
selected a commercially available fiber [46] in order to demonstrate that the technical
implementation of quantum noise squeezing effects in the proposed approach can be
straight-forward. When considering a tellurite fiber, we focused on special fibers that have
been reported in the literature [33,41]. We have also analyzed a standard SMF28e silica
telecom fiber for comparison. Table 1 summarizes the preset and calculated parameters of
the considered fibers.
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Table 1. Parameters used in simulations of quantum noise squeezing.

Parameter Symbol Dimension
Type of Glass Fiber

As2Se3 As2S3 Tellurite Silica

Core diameter d µm 2.6 5 2.7 8.2
Numerical aperture NA 0.58 0.3 0.5 0.14

Nonlinear Kerr coefficient γ (W km)−1 5000 400 200 0.6
Dispersion coefficient β2 ps2/km 790 350 170 −80

Fraction of the Raman contribution fR 0.1 0.1 0.51 0.2
Optical loss α dB/km 60 50 20 20

Pump wavelength λp µm 2
Temperature T K 300

Figure 3 shows the results of numerical simulations in the framework of Equations (7)–(14)
and taking into account the parameters listed in Table 1. Each row corresponds to a certain
type of fiber. Quantum noise squeezing as a function of fiber length and pump power is
demonstrated in the left column. As expected, the higher the pump power, the stronger
the optimal squeezing. However, the squeezing is not a monotonic function of the fiber
length. There are optimal lengths for which the noise suppression is strongest. However,
the minimum is broad, and the squeezing near the optimal values is achieved in a fairly
wide range of fiber lengths at a fixed light power. Additionally, the higher the power, the
shorter the optimal fiber length. To explain these peculiarities, we calculated the power
corresponding to the wave at λp at the output of the fiber and the power in the Raman wave
as functions of fiber length and the pump power (middle and right column, respectively). It
is seen that for relatively high pump powers (>36 dBm) and lengths longer than the optimal
ones, the deterministic Raman nonlinearity plays a significant role for soft glass fibers.
There is significant energy transfer from the wave at λp to the Raman wave (powers at λp
sharply decrease but powers in Raman waves sharply increase towards the right corner
in the corresponding panels for soft glasses in Figure 3). For relatively low pump powers
(<33 dBm), the deterministic Raman nonlinearity is not very important; the main limiting
factor is optical loss. This was checked by additional numerical simulations in which we
successively switched off Raman effects, optical loss, and Raman noise and compared the
results with the results obtained in the full model. For standard silica fibers, the losses are
the main limiting factor for all of the considered power values.
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Figure 3 demonstrates that quantum noise squeezing stronger than−20 dB is expected
theoretically for customized As2Se3 fibers at a propagation distance shorter than 1 m. For
As2S3 and tellurite glass fibers, the expected squeezing in the −20–−15 dB range can
be reached for fiber lengths of the order of 1 m. Silica fibers are not suitable for strong
noise suppression at the wavelength of 2 µm since their losses dramatically deteriorate the
squeezed state for the required lengths, which are longer than 100 m.

4. Discussion

In the presented work, we have proposed the generation of multiphoton states of 10-W
class light in the 2-micron wavelength range with squeezed quantum fluctuations stronger
than −15 dB in chalcogenide and tellurite soft glass fibers with large Kerr nonlinearities.
Using a realistic step-index customized design and commercial fibers with nonlinear
Kerr coefficients that are 2–4 orders of magnitude larger compared to standard silica
fibers, we have numerically studied the possibility of quantum noise squeezing in the
framework of the stochastic nonlinear Raman-modified Schrödinger equation by taking
into account Kerr nonlinearity, distributed losses, and inelastic light scattering processes.
We have theoretically revealed the factors limiting noise suppression. At relatively high
pump powers (>36 dBm) and lengths longer than optimal ones, the deterministic Raman
nonlinearity plays a significant role in soft glass fibers. For relatively low pump powers
(<33 dBm), the deterministic Raman nonlinearity is not very important; the main limiting
factor is optical loss. Quantum noise squeezing stronger than −20 dB is numerically
predicted for a customized As2Se3 fiber for optimal fiber lengths shorter than 1 m. For
commercial As2S3 and customized tellurite glass fibers, a squeezing in the −20–−15 dB
range can be expected to be reached for fiber lengths of the order of 1 m. We verified that
silica fibers are not suitable for strong noise suppression at the 2 µm wavelength since the
high optical losses in this regime dramatically deteriorate the nonclassical multiphoton
states. As such, our study paves the way for novel fiber sources of nonclassical squeezed
light in the 2-micron wavelength that are desirable for numerous applications.
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