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Abstract: Ultrashort optical pulses play an important role in fundamental research and applications.
It is important to have reliable information about pulse parameters such as duration, intensity
profile, and phase. Numerous methods for characterizing pulses in the near-IR range have been well
developed by now. However, there is a challenge with pulse measurement in the mid-IR, which
is largely related to the underdeveloped component base in this spectral range. We investigate by
means of numerical simulations a simple method of pulse reconstruction applicable in the mid-IR.
The method is based on measuring and processing only the initial pulse spectrum and two converted
spectra in elements with Kerr nonlinearity for different B-integrals characterizing nonlinear phase
accumulation. The hardware implementation of the proposed method is very simple. This method
requires only a one-dimensional data set, has no moving parts in the optical scheme, and allows for
working with high-energy as well as low-energy pulses. We propose a novel simple, efficient, noise-
tolerant algorithm for data processing that assumes spectral phase approximation by a polynomial
function. We demonstrate numerically the reconstruction of mid-IR ultrashort pulses, namely 3 µm
wavelength pulses, using commercial chalcogenide As2S3-based glass fibers as nonlinear elements.

Keywords: chalcogenide fibers; Kerr nonlinearity; pulse reconstruction; spectral phase reconstruction

1. Introduction

Ultrashort optical pulses with durations ranging from a few fs to one hundred ps play
an important role in fundamental research and various applications. Reliable information
about pulse parameters such as duration, intensity profile, and phase is needed in many
tasks. At present, numerous methods for characterizing pulses in the near-IR range are
quite well developed. Note that the widely used methods with commercial hardware and
software implementation are based on second harmonic generation. These are ACF (Au-
tocorrelation Function), SHG FROG (Second-Harmonic Generation Frequency-Resolved
Optical Gating), and SPIDER (Spectral Phase Interferometry for Direct Electric-field Re-
construction) [1–3]. However, for these methods, there are ambiguities associated with the
direction of the time axis and the sign of the phase and limitations associated, for example,
with the phase-matching bandwidth of the used nonlinear crystals. Therefore, quite a
number of modifications and original methods were proposed with various advantages
for specific purposes [1,2,4–12], for example, to avoid ambiguities, increase the temporal
and/or spectral resolution and expand the characterized range, measure signals with a
complex spectral–temporal structure, and avoid information loss due to averaging over
many (sometimes unstable) pulses.

But there exists a challenge of pulse measurement in the mid-IR, which is related to
the underdeveloped component base in this spectral range. Thus, the development of
simple, reliable, and inexpensive methods for measuring the intensity profile and phase
of mid-IR ultrashort pulses is of great importance, especially for low pulse energies. The
present study aims to address this issue.
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Recently, a method for measuring the shape and phase of ultrashort pulses based on the
processing of self-modulated spectra was proposed, which makes it possible to reconstruct sig-
nals without ambiguities and without limitation on their spectral width [13,14]. In the current
contribution, we continue the development and numerical study of the method of pulse
reconstruction based on fibers with high third-order Kerr nonlinearity. We propose a novel
efficient algorithm for data processing and demonstrate the applicability of the method for
measuring mid-IR ultrashort pulses, namely 3 µm wavelength pulses, using commercial
chalcogenide As2S3-based glass fibers as nonlinear elements. Such fibers are transparent
up to 6.5 µm and have large nonlinear Kerr coefficients, therefore, they are very suitable for
the considered problem. The method is based on spectral measurements. Only the initial
pulse spectrum and two converted spectra in elements with Kerr nonlinearity are required.
These two converted spectra must have different B-integrals characterizing nonlinear phase
accumulation. Moreover, there is no need to know the exact values of the B-integrals,
only their ratio should be known [13,14]. The hardware implementation of the method is
simple and involves the use of elements with third-order rather than second-order nonlin-
earity. This method requires only a one-dimensional data set (unlike the FROG family of
methods), has no moving parts in the optical scheme (unlike most correlators and FROG
implementations), and allows working with high-energy as well as low-energy pulses,
which makes it promising in terms of potential implementation in devices of integrated
photonics and fiber optics [14]. The earlier proposed reconstruction algorithms are based on
the Gerchberg–Saxton algorithm [13,14]. However, these Gerchberg–Saxton-like algorithms
work correctly if the pulse phase is not large (does not exceed π) [13]. In the case of a
large chirp, the global minimum may not be reached; instead, stagnation may occur at a
local minimum of an error function characterizing the difference between the original and
reconstructed spectra (iterative algorithms often loop around a local minimum). Previously,
we applied elements of genetic algorithms to solve this problem [13], which significantly
increased the calculation time but did not guarantee to find the global minimum. Here, we
propose a very simple and efficient algorithm to overcome this challenge. The algorithm is
based on exploiting a polynomial spectral phase and finding polynomial coefficients using
an exhaustive search on a reasonable grid of parameters, which allows finding global and
all local minima on the preset grid. Moreover, the found polynomial phase corresponding
to the global minimum can be used to seed the iterative algorithm. This allows refining the
“right” solution and attaining an almost perfect agreement between the original and recon-
structed data, which is demonstrated through numerous simulations. Next, we calculate
parameters for commercial chalcogenide As2S3-based glass fibers and demonstrate their
application as nonlinear elements in the analyzed method with the developed algorithm
for measuring mid-IR pulses through representative numerical examples.

2. Methods

The method for the spectral phase reconstruction investigated in this work is based
on measuring spectra converted during the pulse propagation in nonlinear elements with
Kerr nonlinearity. Such elements are short segments of a highly nonlinear fiber of length L.
If the dispersion length LD is much larger than the fiber length (LD = T0

2/|β2| >> L, where
T0 is the characteristic pulse duration, β2 is the quadratic dispersion coefficient [15]), the
dispersionless approximation can be used to describe pulse propagation, and the evolution
of the complex electric field amplitude E is described by a very simple equation [15]:

∂E(t, z)
∂z

= iγ|E(t, z)|2E(t, z), (1)

where γ is the nonlinear Kerr coefficient of the fiber; t is the time; and z is the coordi-
nate along the fiber. This equation can be solved analytically [15]. The pulse intensity
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distribution in the time domain is conserved but the nonlinear phase shift is acquired. To
characterize the accumulated nonlinear phase, it is convenient to define the B-integral as

B =
∫ L

0
γP(z)dz = γPL, (2)

where P is peak power. The complex field envelopes of the output pulses during propaga-
tion in fiber for two different values of the B-integral B1 and B2 are

E1(t) = E0(t) exp(iB1|E0(t)|2/max(|E0(t)|2)), (3)

E2(t) = E0(t) exp(iB2|E0(t)|2/max(|E0(t)|2)), (4)

where E0(t) is the field at the input and E1(t) and E2(t) are the fields at the fiber output.
Let us also introduce the spectral complex amplitudes:

Ẽ0,1,2( f ) = F̂[E0,1,2(t)], (5)

where f is the frequency counted from the central pulse frequency f 0 and F̂ is the Fourier
transform operator. The corresponding spectral phases are ϕ0, ϕ1, and ϕ2.

The main idea of the method is illustrated in Figure 1a. There is a pulse with known
spectral intensity I0(f ) and spectral phase (ϕreal) that should be reconstructed. Let us denote
the converted spectral intensities at the output of the nonlinear fiber as I1(f ) and I2(f )
measured for two different values of the B-integral (B1 and B2, respectively). We guess with
some accuracy the spectral phase ϕ0 is close to ϕreal (Figure 1a). Using the inverse Fourier
transform operator F̂−1, we can calculate the corresponding field E0(t) in the time domain:

E0(t) = F̂−1
[

Ẽ0( f )
]
= F̂−1

[√
I0( f ) exp(iϕ0)

]
. (6)

Next, we can calculate the complex fields E1(t) and E2(t) using expressions (3) and (4).

Note that
∣∣∣Ẽ1( f )

∣∣∣2 and
∣∣∣Ẽ2( f )

∣∣∣2 will be close to I1(f ) and I2(f ), respectively. Moreover, the

smaller the difference between ϕ0 and ϕreal, the better match
∣∣∣Ẽj( f )

∣∣∣2 with Ij(f ) (j = 1,2).
To quantitatively characterize the coincidence of the real and reconstructed spectra, we
introduce the error function:

∆ =
1
2

[
∑N

q=1

(∣∣∣Ẽ1
(

fq
)∣∣∣2 − I1

(
fq
))2

+ ∑N
q=1

(∣∣∣Ẽ2
(

fq
)∣∣∣2 − I2

(
fq
))2

]1/2

∑N
q=1 I0

(
fq
) , (7)

where N is the number of sampling points of the frequency interval and fq is the frequency
at the q-th point.
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Figure 1. (a) Illustration of the method for pulse reconstruction based on processing of spectra
converted in fibers with Kerr nonlinearity. (b) Block diagram of proposed algorithm of searching for
optimal polynomial spectral phase (for certain B-integrals). (c) Block diagram of iterative algorithm
(for certain B-integrals). Here, FFT is fast Fourier transform; IFFT is inverse FFT.

Further, we can formulate the problem formally. We need to find a spectral phase
that minimizes the error ∆. Note that in the described procedure it is necessary to set
B-integrals which can be pre-assessed but not exactly known as a rule; however, the
ratio B2/B1 is known. We run the developed algorithms for various B1 and select the
value minimizing the error function. It will be demonstrated in Section 3.4 that the found
B-integrals coincide with the original B-integrals. The same approach was successfully
applied for the processing of experimental data using a Gerchberg–Saxton-like algorithm
with the genetic algorithm elements in [13,14].

Here, to prevent possible looping of iterative algorithms around a local minimum of
the error function and guarantee to find the solution near the global minimum, we propose
a very simple, efficient, and fast algorithm based on approximating the spectral phase
by a polynomial function and optimizing the corresponding polynomial coefficients by
exhaustive search on a reasonable grid so as to minimize the error and find the optimal
polynomial phase ϕ0

opt. We consider the case of spectral phase approximation taking
into account the quadratic and cubic contributions, which is the most important case
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from the practical point of view and is usually sufficient in the common case of pulse
propagation in a dispersive medium [15]. In addition, this case allows a simple and intuitive
graphical interpretation, providing visual control of seeking a solution. The scheme of the
proposed algorithm is shown in Figure 1b. A polynomial spectral phase is constructed
on a reasonable grid of the quadratic and cubic coefficients; spectral complex amplitude
Ẽ0( f ) and corresponding field amplitude E0(t) is calculated. Next, field amplitudes E1(t)
and E2(t) are simulated using Equations (3) and (4) and the error function is estimated
using Equation (7). An exhaustive search allows for finding quadratic and cubic coefficients
giving global and all local minima on the preset grid. If necessary, it will not be difficult to
implement this algorithm taking into account the search for a polynomial phase of a higher
order. In this work, we purposely study representative cases in which, in addition to the
global minimum corresponding to the solution, there are local minima.

Next, we propose to use the found approximate solution with a polynomial phase to
seed the previously developed iterative algorithm. In this case, the iterative search for an
improved solution occurs near the global minimum, so this hybrid algorithm is well suited
for phase refining (finding the phase difference from the polynomial one). The scheme of
one cycle of the iterative algorithm is shown in Figure 1c (a more detailed description can
be found in [14]).

3. Results
3.1. Reconstruction of “Ideal” Signal

First, we considered an “ideal” case. An initial pulse without any noise was set with a
spectral phase containing only quadratic and cubic terms:

ϕ( f ) = C(0)
2 f 2 + C(0)

3 f 3, (8)

where C2
(0) = 6.5 ps2 and C3

(0) = −3.6 ps3. The spectral intensity profile was sech2-shaped;
the spectral width was FWHM = 0.6 THz (full width at half maximum). We applied the
proposed algorithm shown in Figure 1b. We performed an exhaustive search over the range
of parameters −10 ps2 ≤ C2 ≤ 10 ps2, −10 ps3 ≤ C3 ≤ 10 ps3 (with steps dC2 = 0.1 ps2

and dC3 = 0.1 ps3) in which, in addition to the global minimum corresponding to the true
solution, a local minimum was also found. The required range of C2 and C3 depends on
the pulse spectral width and the maximum expected pulse chirp (which depends on the
net dispersion). Figure 2a–d display the numerically found solution (the computational
time is a few seconds). As expected for such a case, the numerically found spectral phase
ideally coincides with the initially specified one; therefore, the temporal intensity profile
and temporal phase as well as the output spectra after conversion in the Kerr fiber with
the given B1 and B2 for the reconstructed pulse also perfectly coincide with the original
ones. The calculated error function ∆ is shown in Figure 2e, where the global minimum is
labeled “I” and the local minimum is labeled “II”. We also specially constructed a pulse
with a spectral phase corresponding to the local minimum II. In this case, the error is much
higher and there is a significant difference in the converted spectra plotted for the initial
pulse and for the “wrong” reconstructed one.

3.2. Reconstruction of Signals with Spectral Noise

Next, we investigated the effect of spectral noise on the results of the algorithm
execution. We assumed that the original spectral phase was still determined by expression
(8) with the same polynomial coefficients as in the previous case (C2

(0) = 6.5 ps2 and
C3

(0) =−3.6 ps3). Then, we constructed the original spectrum and the nonlinearly converted
ones but random noise was added to all three spectra at a level of 5% of the maximum of
I0(f ) and we applied the numerical algorithm for finding the polynomial phase (Figure 3a–d). In
this case, the results of the reconstruction of the polynomial coefficient C2 coincided with
C2

(0) and the found value C3 = −3.8 ps3 slightly differed from the precisely specified value
C3

(0) (Figure 3a–d). The error was ∆ = 0.0072. For comparison, we constructed the pulse for
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the polynomial phase corresponding to the local minimum II (Figure 3f–i) with a higher
error ∆ = 0.0201.
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found for the global minimum I of the error function ∆ (C2 = 6.5 ps2 and C3 = −3.6 ps3) shown in (e).
((f–i), right column) “Wrong” solution constructed for the local minimum II of the error function ∆
(C2 = 2.2 ps2 and C3 = 4 ps3) shown in (e). (a,f) Intensity and phase in the time domain; (b,g) input
pulse spectrum and spectral phase; (c,h) converted spectra at the output for B1 = 1; (d,i) converted
spectra at the output for B2 = 2. Black curves calculated for the initial pulse and color (magenta and
blue) curves correspond to numerically reconstructed pulses for subplots (a–d,f–i).

Next, we analyzed a large number of different pulses generated for polynomial spectral
phases with randomly set values of the coefficients C2

(0) and C3
(0). The spectral intensity

profile was also sech2-shaped and the spectral width was FWHM = 0.6 THz. For each
pulse, random spectral noise at a level of 5% of the maximum of I0(f ) was added to the
original spectrum and to the converted spectra (for B1 = 1 and B2 = 2), and then the
polynomial phase search algorithm was applied (with steps dC2 = 0.1 ps2, dC3 = 0.1 ps3).
The values of the randomly generated coefficients corresponding to each specific test signal
(100 pulses in total) are shown by dots in Figure 4a. Figure 4b shows the error function ∆
calculated for each specific test signal, and Figure 4c demonstrates the difference between
the reconstructed and original polynomial coefficients. Note that the error function is
practically independent of the value of the coefficients C2 and C3. We also visually checked
that in all cases the solution corresponding to the original signal was found.
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Figure 3. Search for polynomial spectral phase (by data with spectral noise). Search for polynomial
spectral phase (ideal case). ((a–d), left column) “Right” solution found for the global minimum I
of the error function ∆ (C2 = 6.5 ps2 and C3 = −3.8 ps3) shown in (e). ((f–i), right column) “Wrong”
solution constructed for the local minimum II of the error function ∆ (C2 = 2.4 ps2 and C3 = 3.9 ps3)
shown in (e). (a,f) Intensity and phase in the time domain; (b,g) input pulse spectrum and spectral
phase; (c,h); converted spectra at the output for B1 = 1; (d,i) converted spectra at the output for
B2 = 2. Black curves calculated for the initial pulse and color (magenta and blue) curves correspond
to numerically reconstructed pulses for subplots (a–d,f–i).
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3.3. Reconstruction of Signal with Spectral Phase Perturbations

Here, we demonstrate the use of a hybrid algorithm (Figure 1a,b) for the reconstruction
of a pulse whose phase differs from the polynomial one. We considered the case in which a
uniformly distributed random value (0.1π × random[−1, 1]) was added at each point fq to
the polynomial phase defined by expression (8). Therefore, the spectra I1(f ) and I2(f ) are
strongly modulated. Spectral noise was not added for this test case. Using an exhaustive
search for the spectral polynomial coefficients, we reconstruct the pulse (Figure 5a–d, left
column). Further, we used this pulse with the polynomial spectral phase to seed the
iterative algorithm. The results of its execution are shown in Figure 5e–h (right column).
The phase peculiarities were reconstructed very well. The error ∆ was reduced by a factor
of 27 (from ∆ = 0.0269 to ∆ = 0.0010) and the original and found converted spectra coincided
very well. For comparison, we run the iterative algorithm under other initial conditions.
Sometimes we observed that the iterative algorithm could loop near a local minimum
(the error functions were similar to the ones shown in Figures 2e and 3e). In these cases,
the original and found converted spectra were not in good agreement; the errors ∆ were
significantly higher than for the solution near the global minimum. Therefore, the use of
the hybrid algorithm guaranteed finding the “right” solution.
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Figure 5. Reconstruction of the pulse with random addition to the spectral phase. ((a–d), left column)
Solution for polynomial spectral phase found for the global minimum of error function ∆ (C2 = 6.3 ps2

and C3 = −3.5 ps3). ((e–h), right column) Solution found for the global minimum using the iterative
algorithm. (a,e) Intensity and phase in the time domain; (b,f) input pulse spectrum and spectral
phase; (c,g); converted spectra at the output for B1 = 1; (d,h) converted spectra at the output for
B2 = 2. Black curves calculated for the initial pulse and color (magenta and blue) curves correspond
to numerically reconstructed pulses.

3.4. Reconstruction of Mid-IR Signals Using Chalcogenide Fiber

Next, we considered the possibility of implementing the method for measuring ultra-
short pulses in the mid-IR range using chalcogenide fibers with high Kerr nonlinearity. As
an example, we numerically analyzed the reconstruction of the pulses produced by 3 µm
wavelength lasers (with a central wavelength in the 2.8–3.9 µm range). Such pulses are
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routinely generated, for example, in rare-earth ion-doped fluoride fiber lasers [16]. We
proposed to use step-index arsenic sulfide (As2S3-based) glass fibers as nonlinear elements.
Note that such fibers are produced by different companies and are commercially available,
which will make it quite easy to implement this method in research laboratories. As an ex-
ample, we considered IRflex Corporation fibers [17]. Based on technical specifications [17],
we estimated the fiber parameters and then simulated pulse reconstruction using these
parameters.

To calculate the nonlinear Kerr coefficient γ and the quadratic dispersion coefficient β2
of arsenic sulfide glass fibers, we used the well-known method of finding the propagation
constant β and electric fields of fundamental modes for the linear polarization by solving
numerically the characteristic equation at different frequencies [15]. The refractive index
was given by the Sellmeier equation based on measurements performed by Amorphous
Materials Inc. (“AMTIR-6” [18]) and the numerical aperture was NA = 0.3 (corresponding
to the difference between the core and cladding refractive indices of about 0.019). The
calculated nonlinear coefficients γ and dispersion coefficients β2 are plotted in Figure 6a,b,
respectively, for fiber diameters of 5, 6.5, 7, and 9 µm. All the considered fibers had a large
γ of about 100 (W · km)−1 (Figure 6a). The dispersion curves were almost flat functions
of wavelength in the 2.8–4 µm range (Figure 6b). Their calculations were required for
estimating LD.
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Figure 6. Calculated nonlinear Kerr coefficients (a) and quadratic dispersion coefficients (b) for
step-index arsenic sulfide glass fibers with NA = 0.3 and different core diameters.

Next, we simulated diverse 3 µm pulses with realistic parameters and reconstructed
them using the hybrid algorithm, assuming that an As2S3 fiber with a core diameter of
6.5 µm serves for spectrum conversions. We purposely set spectral phases with leading
polynomial contributions due to quadratic and cubic terms and added different regular per-
turbations. Representative examples are shown in Figure 7. Each column corresponds to an
individual pulse with original data (black), data reconstructed with the proposed algorithm
for searching an optimal polynomial spectral phase (magenta), and data reconstructed with
the iterative algorithm near the global minimum of ∆ (blue). We added spectral noise for
I0(f ), I1(f ), and I2(f ) at a level of 2% of the maximum of I0(f ). We assumed that B1 is not
well known and run the algorithms for various B1 values in the 0.5–2 range. The minima of
error functions corresponded to the original B1 values (Figure 7, bottom row).

The first representative example is a pulse at 2.8 µm with the energy of order 1 nJ, an
FWHM duration of 340 fs and an FWHM Fourier transform limited duration
TFTL = 260 fs (Figure 7, left column). Pulses with similar characteristics can be routinely gen-
erated with mode-locked fluoride fiber lasers [16]. We set ϕreal = −0.4[ps2]f 2 + 0.15[ps4]f 4,
B1 = 0.9, and B1 = 1.8. Such B-integrals can be achieved for a sub-cm fiber length. For
example, B2 = 1.8, if the launched energy is only 0.85 nJ and L = 0.5 cm (γ = 150 (W km)−1

@ 2.8 µm). For a sech2-shaped spectrum, T0 ≈ TFTL/1.763 = 150 fs, therefore LD = 9 cm
is much longer than 0.5 cm and the dispersionless approximation is correct. Since the
proposed algorithm for searching the polynomial phase does not take into account the
fourth-order contribution, the mismatch with the original data is visible but not very high.
Using the iterative algorithm after the reconstruction of the quadratic phase allows for
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refining the pulse characteristics (Figure 7, left column). Error ∆ was decreased from 0.0059
to 0.0017 (this took eight iterations).
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Figure 7. Reconstruction of mid-IR 3 µm class laser pulses with realistic parameters for commercially
available arsenic sulfide glass fibers as nonlinear elements for spectrum conversion. Each column
corresponds to an individual pulse. The upper row shows intensity profiles and phases; the second
row shows the initial spectra and spectral phases; the third and fourth rows show converted spectra
for different B-integrals. Solid black curves correspond to original signals, magenta curves correspond
to pulses obtained by the proposed algorithm for polynomial spectral phase searching (dashed—
temporal or spectral intensities, dash-dotted—temporal or spectral phases), and blue curves are
obtained by the iterative algorithm near the global minimum of error ∆ (dashed—temporal or spectral
intensities, dash-dotted—temporal or spectral phases). Bottom row shows error functions calculated
for different B1 values (the minima correspond to the original B1 values). Magenta graphs (left
axes) are for algorithm optimizing polynomial phase and blue graphs (right axes) are for iterative
algorithm.

The second example is a pulse at 3.5 µm with an FWHM duration of 4 ps and FWHM
Fourier transform limited duration TFTL = 2 ps (T0 ≈ 1.1 ps) (Figure 7, middle column).
For such a pulse LD = 2.8 m, therefore, the L maximum can be about 15–20 cm. We set
ϕreal = −150[ps2]f 2 + 450[ps3]f 3 + 0.05π·sin(f /0.01[THz]). We simulated that for B2 = 2.2,
L = 20 cm, and γ = 85 (W km)−1 @ 3.5 µm, the peak power is only 130 W, which corresponds
to the launched pulse energy of 0.8 nJ (with allowance for the temporal shape of the
pulse). Error ∆ was decreased from 0.0151 to 0.0012 after running the iterative algorithm
(16 iterations).
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The final example is a pulse at 3.9 µm with an FWHM duration of 18 ps and
TFTL = 10 ps (T0 ≈ 5.7 ps) (Figure 7, right column). For such a pulse, the dispersion length is
very large, LD = 140 m, therefore the maximum fiber length can be about a few meters. We
set ϕreal = −900[ps2]f 2 + 600[ps3]f 3 + 0.05π·cos(f /0.005[THz]) and obtain that for B2 = 2.6,
γ = 60 (W km)−1 @ 3.9 µm, and L = 5 m, the peak power is as low as 9 W and energy can
be lower than 0.2 nJ. Error ∆ is decreased from 0.0256 to 0.0030 after running the iterative
algorithm (23 iterations).

Thus, for all tested pulses shown in Figure 7, the algorithm for searching the polyno-
mial phase gave quite a good agreement with the original data (black and magenta lines
are close to each other). Using the iterative algorithm near the global minima of the error
functions allowed for refining the features of the reconstructed signals and obtaining an
almost perfect agreement with the original signals (black and blue lines almost coincide
in Figure 7). The error function was reduced by an order of magnitude after applying the
iterative procedure.

4. Discussion

In the presented work, we paid attention to the development of a method of ultrashort
pulse reconstruction based on processing spectra converted into fibers with high third-
order Kerr nonlinearity. The method without ambiguities requires only three spectra: the
initial spectrum of an ultrashort pulse and two converted spectra for the different values of
B-integrals [13,14]. It was shown previously that exact knowledge of the B-integral values
is not necessary, their ratio is quite enough [13]. Note that for measuring pulse trains
delivered by mode-locked laser systems, one can use only a single piece of a nonlinear fiber.
The exact ratio of the B-integrals can be obtained by controllable attenuation of a signal
before the fiber by measuring the output average power. For differently attenuated pulses,
the ratio of B-integrals is equal to the ratio of average powers.

In this work, we proposed and implemented a novel, very simple and efficient algo-
rithm for data processing which is based on searching for the optimal polynomial spectral
phase. Through numerous simulations, we showed that the algorithm is noise-tolerant.
Moreover, the results of its execution can be used to seed the iterative Gerchberg–Saxton-like
algorithm for refining the “right” solution.

The considered method of spectral phase reconstruction using the proposed and
implemented numerical algorithm for searching the polynomial phase is applicable for
measuring ultrashort pulses in a wide range of durations. The upper duration limit is
determined primarily by spectrometer resolution and peak powers achievable for long
pulses (about a few tens ps or may be up to ~100 ps). The lower duration limit is determined
by dispersion effects in nonlinear fibers, which lead to pulse distortions at relatively short
durations (shorter than a few tens of fs). However, earlier we proposed a modified iterative
algorithm with allowance for fiber dispersion to mitigate the requirements for a lower
duration limit and demonstrated its applicability in experiments [14].

Now let us address the limitations related to a pulse peak power. The minimum value
of B-integral at which the method is applicable is about 1. At noticeably smaller values of
B-integrals, the pulse spectrum is converted insignificantly, which, taking into account noise
and imperfection of the spectral measurements, does not allow for reliable reconstruction
of the phase. Therefore, the minimum characterizable signal peak power depends on γ
and L. The length of the fiber segment L can be limited by dispersion effects. Therefore, for
estimation, we can take L << LD. Thus, the peak power of the measured signals should be
P >> 1/(γLD). Note that for sufficiently long pulses with a duration of several ps or tens
of ps with a narrowband spectrum, the limiting factor may be not dispersion but optical
losses.

We demonstrated that the method with the developed algorithms can be applied for
the reconstruction of pulses in the mid-IR range, namely 3 µm wavelength pulses, using
commercially available chalcogenide As2S3-based glass fibers. Such fibers are transparent
in this range and have a huge Kerr nonlinearity. We demonstrated numerically by various
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representative examples with realistic parameters that the proposed algorithm for searching
the polynomial spectral phase gives a fairly good match, and the subsequent application of
the iterative algorithm near the global minimum of the error function allows achieving an
almost perfect match between the original and reconstructed signals. The next step of the
work can be the experimental implementation of the method for measuring mid-IR pulses
using chalcogenide fibers. Additionally, note that As2S3-based glass fibers can be used to
characterize ultrashort pulses in a wider spectral range of up to 5–6 µm. The use of other
types of commercial chalcogenide fibers, such as As2Se3-based glass fibers or customized
chalcogenide fibers based on glasses with special compositions, can provide even more
opportunities for characterization of mid-IR ultrashort optical pulses since they can have
higher nonlinear coefficients and a wider transparency range [19–23].

5. Conclusions

To conclude, we developed and investigated a novel numerical algorithm for ultra-
short pulse reconstruction based on processing the initial pulse spectrum and two spectra
converted into fibers with high third-order Kerr nonlinearity. This simple, efficient, noise-
tolerant algorithm assumes spectral phase approximation by a polynomial function and
finds the global minimum of error function using an exhaustive search on a reasonable grid
of polynomial coefficients. Moreover, the results of the algorithm execution can be used
to seed the iterative Gerchberg–Saxton-like algorithm for refining the solution (finding
non-polynomial addition to the spectral phase). We demonstrated that the method can
be applied for the reconstruction of pulses in the mid-IR range, namely 3 µm wavelength
pulses, using commercially available chalcogenide As2S3-based glass fibers.
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