Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Kalamata olives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1874 KB  
Article
Fermentation of Kalamata Natural Black Olives Using Selected Lactic Acid Bacteria as Starters
by Despina Vougiouklaki, Sophia Letsiou, Iliana Mavrokefalidou, Efstathia Tsakali, Simen Akkermans, Jan F. M. Van Impe and Dimitra Houhoula
Fermentation 2024, 10(1), 53; https://doi.org/10.3390/fermentation10010053 - 11 Jan 2024
Cited by 6 | Viewed by 3478
Abstract
Fermented foods such as table olives are produced through a spontaneous process that has been improved over the years, ensuring the safety and quality of the final product. The aim of the present work was to study the action of starter cultures of [...] Read more.
Fermented foods such as table olives are produced through a spontaneous process that has been improved over the years, ensuring the safety and quality of the final product. The aim of the present work was to study the action of starter cultures of lactic acid bacteria (Lacticaseibacillus rhamnosus GG ATCC53103, Levilactobacillus brevis ATCC8287, and Lactiplantibacillus plantarum ATCC14917) which were previously shown to have probiotic and antioxidant potential during the fermentation of natural Greek-style black olives (Kalamata) in brine containing 6% (w/v) NaCl at a temperature of 20 °C for a period of 150 days. At a molecular level, the main metabolites in every fermentation process were identified using an HPLC method. The results showed that the concentration of the metabolites increased gradually, developing a stable pattern after the 90th day of fermentation. In addition, the DL-p-hydroxyphenyllactic acid (OH-PLA) was identified as the phenolic acid with the highest concentration, independently of the selected starter culture. Microbial genomic DNA was also extracted from the olives’ surface at the final stages of fermentation (150 days) and was subjected to 16S rRNA sequencing using the Nanopore MinION™ NGS tool, enabling a comprehensive analysis of the microbial community. According to the findings, the most abundant genera were Lactobacillus and Leuconostoc. To the best of our knowledge, this is the first study exploring these particular starters for olive fermentation. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

16 pages, 336 KB  
Article
Influence of Spraying Some Biostimulants on Yield, Fruit Quality, Oil Fruit Content and Nutritional Status of Olive (Olea europaea L.) under Salinity
by Adel M. Al-Saif, Muhammad Moaaz Ali, Ahmed B. S. Ben Hifaa and Walid F. A. Mosa
Horticulturae 2023, 9(7), 825; https://doi.org/10.3390/horticulturae9070825 - 19 Jul 2023
Cited by 11 | Viewed by 3044
Abstract
Salinity currently affects more than 20% of agricultural land and is expected to pose potential challenges to land degradation and agricultural production in the future. It is a leading global abiotic stress that affects general plants and cultivated crops adversely. The utilization of [...] Read more.
Salinity currently affects more than 20% of agricultural land and is expected to pose potential challenges to land degradation and agricultural production in the future. It is a leading global abiotic stress that affects general plants and cultivated crops adversely. The utilization of biostimulants can enhance the efficiency of plant nutrition, facilitate the uptake of nutrients, boost crop yield, improve the quality characteristics of fruits and enhance plants’ ability to withstand abiotic stresses. Biostimulants serve as a vital reservoir of macro- and microelements and plant hormones, such as auxins, cytokinins and gibberellins. Therefore, the current study was conducted to examine the effect of the foliar application of some biostimulants on relieving the side effects of salinity on olive trees (Olea europaea) cv. Kalamata. The olive trees were sprayed three times with moringa leaf aqueous extract (MLE) at 2, 4 and 6%, seaweed extract (SWE) at 1000, 2000 and 3000 ppm and their combinations: 2% MLE + 1000 ppm SWE (combination 1), 4% MLE + 2000 ppm SWE (combination 2) and 6% MLE + 3000 ppm SWE (combination 3). The results revealed that the application of biostimulants had a beneficial effect on the overall growth and development of olive trees, surpassing the performance of untreated trees. Spraying MLE and SWE, particularly at concentrations of 6% and 3000 ppm, respectively, significantly enhanced various aspects of olive tree performance. Notably, there were significant increases in leaf chlorophyll content, flower number, fruit set percentages, fruit yields, fruit oil content, fruit firmness, total soluble solid (TSS) percentage and leaf macro- and micronutrients. Furthermore, the combined application of MLE and SWE resulted in a greater effect when compared to using each one individually. In both seasons, combination 3 outperformed the other treatments that were applied. Full article
(This article belongs to the Special Issue The Effect of Biostimulants on Horticultural Crops)
15 pages, 2090 KB  
Article
Fermentation of cv. Kalamata Natural Black Olives with Potential Multifunctional Yeast Starters
by Stamatoula Bonatsou and Efstathios Z. Panagou
Foods 2022, 11(19), 3106; https://doi.org/10.3390/foods11193106 - 6 Oct 2022
Cited by 10 | Viewed by 2771
Abstract
The purpose of this study was to explore the inoculated fermentation of cv. Kalamata natural black olives using selected strains of yeast cultures with multifunctional potential. For this purpose, five yeast starters belonging to Candida boidinii (four starters) and Saccharomyces cerevisiae (one starter), [...] Read more.
The purpose of this study was to explore the inoculated fermentation of cv. Kalamata natural black olives using selected strains of yeast cultures with multifunctional potential. For this purpose, five yeast starters belonging to Candida boidinii (four starters) and Saccharomyces cerevisiae (one starter), previously isolated from table olive fermentation of the same variety and screened for their technological characteristics and probiotic potential, were inoculated in brines at the beginning of fermentation. Microbial populations (lactic acid bacteria, yeasts, and Enterobacteriaceae), pH, titratable acidity, organic acids, and ethanol were monitored during fermentation for a period of 5 months. At the same time, the survival of each starter was assessed by culture-dependent molecular identification at the beginning (0 days), middle (75 days), and final stages (150 days) of fermentation in the brines and olives (at the end of the process only). The results revealed the coexistence of yeasts and lactic acid bacteria (LAB) throughout fermentation in most processes and also the absence of Enterobacteriaceae after the first 20 days of brining. The population of yeasts remained 2 log cycles below LAB counts, except for in the inoculated treatment with C. boidinii Y28, where the yeast starter prevailed from day 60 until the end of the fermentation, as well as in the inoculated treatment with C. boidinii Y30, where no LAB could be detected in the brines after 38 days. At the end of the process, LAB ranged between 4.6 and 6.8 log10 CFU/mL, while yeasts were close to 5.0 log10 CFU/mL, except for the inoculated fermentation with C. boidinii Y27 and spontaneous fermentation (control), in which the yeast counts were close to 3.5 log10 CFU/mL. At the end of fermentation, the recovery percentage of C. boidinii Y27 was 50% in the brines and 45% in the olives. C. boidinii Y28 and S. cerevisiae Y34 could be recovered at 25% and 5% in the brine, respectively, whereas neither starter could be detected in the olives. For C. boidinii Y30, the recovery percentage was 25% in the brine and 10% in the olives. Finally, C. boidinii Y31 could not be detected in the brines and survived at a low percentage (10%) in the olives. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 1344 KB  
Article
Foliar Application of Nano-Silicon Improves the Physiological and Biochemical Characteristics of ‘Kalamata’ Olive Subjected to Deficit Irrigation in a Semi-Arid Climate
by Islam F. Hassan, Rahaf Ajaj, Maybelle S. Gaballah, Chukwuma C. Ogbaga, Hazem M. Kalaji, Harlene M. Hatterman-Valenti and Shamel M. Alam-Eldein
Plants 2022, 11(12), 1561; https://doi.org/10.3390/plants11121561 - 13 Jun 2022
Cited by 49 | Viewed by 5162
Abstract
In Egypt’s arid and semi-arid lands where the main olive production zone is located, evapotranspiration is higher than rainfall during winter. Limited research has used nanomaterials, especially nano-silicon (nSi) to improve the growth, development, and productivity of drought-stressed fruit trees, amid the global [...] Read more.
In Egypt’s arid and semi-arid lands where the main olive production zone is located, evapotranspiration is higher than rainfall during winter. Limited research has used nanomaterials, especially nano-silicon (nSi) to improve the growth, development, and productivity of drought-stressed fruit trees, amid the global water scarcity problem. To assess the role of nSi on drought-sensitive ‘Kalamata’ olive tree growth, and biochemical and physiological changes under drought conditions, a split-plot experiment was conducted in a randomized complete block design. The trees were foliar sprayed with nSi in the field using nine treatments (three replicates each) of 0, 150, and 200 mg·L−1 under different irrigation regimes (100, 90, and 80% irrigation water requirements ‘IWR’) during the 2020 and 2021 seasons. Drought negatively affected the trees, but both concentrations of nSi alleviated drought effects at reduced irrigation levels, compared to the non-stressed trees. Foliar spray of both concentrations of nSi at a moderate level (90% IWR) of drought resulted in improved yield and fruit weight and reduced fruit drop percentage, compared to 80% IWR. In addition, there were reduced levels of osmoprotectants such as proline, soluble sugars, and abscisic acid (ABA) with less membrane damage expressed as reduced levels of malondialdehyde (MDA), H2O2 and electrolyte leakage at 90% compared to 80% IWR. These results suggest that ‘Kalamata’ olive trees were severely stressed at 80% compared to 90% IWR, which was not surprising as it is classified as drought sensitive. Overall, the application of 200 mg·L−1 nSi was beneficial for the improvement of the mechanical resistance, growth, and productivity of moderately-stressed (90% IWR) ‘Kalamata’ olive trees under the Egyptian semi-arid conditions. Full article
Show Figures

Figure 1

16 pages, 2980 KB  
Article
Authentication and Chemometric Discrimination of Six Greek PDO Table Olive Varieties through Morphological Characteristics of Their Stones
by Sofia Agriopoulou, Maria Tarapoulouzi, Marie Ampères Bedine Boat, Catherine Rébufa, Nathalie Dupuy, Charis R. Theocharis, Theodoros Varzakas, Sevastianos Roussos and Jacques Artaud
Foods 2021, 10(8), 1829; https://doi.org/10.3390/foods10081829 - 7 Aug 2021
Cited by 14 | Viewed by 4661
Abstract
Table olives, the number one consumed fermented food in Europe, are widely consumed as they contain many valuable ingredients for health. It is also a food which may be the subject of adulteration, as many different olive varieties with different geographical origin, exist [...] Read more.
Table olives, the number one consumed fermented food in Europe, are widely consumed as they contain many valuable ingredients for health. It is also a food which may be the subject of adulteration, as many different olive varieties with different geographical origin, exist all over the word. In the present study, the image analysis of stones of six main Greek protected designation of origin (PDO) table olive varieties was performed for the control of their authentication and discrimination, with cv. Prasines Chalkidikis, cv. Kalamata Olive, cv. Konservolia Stylidas, cv. Konservolia Amfissis, cv. Throuba Thassos and cv. Throuba Chios being the studied olive varieties. Orthogonal partial least square discriminant analysis (OPLS-DA) was used for discrimination and classification of the six Greek table olive varieties. With a 98.33% of varietal discrimination, the OPLS-DA model proved to be an efficient tool to authentify table olive varieties from their morphological characteristics. Full article
Show Figures

Figure 1

18 pages, 1532 KB  
Article
Volatile Composition of Industrially Fermented Table Olives from Greece
by Theano Mikrou, Katerina Kasimati, Ioanna Doufexi, Maria Kapsokefalou, Chrysavgi Gardeli and Athanasios Mallouchos
Foods 2021, 10(5), 1000; https://doi.org/10.3390/foods10051000 - 2 May 2021
Cited by 13 | Viewed by 3693
Abstract
Table olives represent one of the most important fermented products in Greece. Their highly appreciated flavor is directly associated with the volatile composition. However, extensive data on the volatile profile of table olives from Greek cultivars are scarce in the literature. For this [...] Read more.
Table olives represent one of the most important fermented products in Greece. Their highly appreciated flavor is directly associated with the volatile composition. However, extensive data on the volatile profile of table olives from Greek cultivars are scarce in the literature. For this reason, the volatile components of industrially fermented table olives from Kalamata, Conservolea and Halkidiki cultivars grown in different geographical areas within Greece were determined using headspace solid-phase microextraction combined with gas chromatography–mass spectrometry. More than 100 volatile compounds were identified and distributed over different chemical classes. All samples were rich in esters, alcohols and acids, whereas the samples of cv. Halkidiki were also characterized by increased levels of volatile phenols. Both qualitative and quantitative differences were observed, which resulted in the discrimination of the table olives according to olive cultivar and growing location. To the best of our knowledge, this is the first systematic study on the volatile profiles of table olives from Greek cultivars that also highlights the pronounced effect of olives’ growing location. Full article
(This article belongs to the Special Issue Assessment of Food Quality and Authenticity Using Volatile Compounds)
Show Figures

Figure 1

16 pages, 3619 KB  
Article
Shoot Girdling Improves Rooting Performance of Kalamata Olive Cuttings by Upregulating Carbohydrates, Polyamines and Phenolic Compounds
by Nikoleta-Kleio Denaxa, Stavros N. Vemmos and Peter A. Roussos
Agriculture 2021, 11(1), 71; https://doi.org/10.3390/agriculture11010071 - 16 Jan 2021
Cited by 14 | Viewed by 5927
Abstract
Girdling (a ring of bark approximately 5 mm wide) was applied on olive mother plants to investigate its effect on the rooting ability of cuttings. Treatment was applied in autumn and in spring. The cuttings were then immersed for 5 s into 2000 [...] Read more.
Girdling (a ring of bark approximately 5 mm wide) was applied on olive mother plants to investigate its effect on the rooting ability of cuttings. Treatment was applied in autumn and in spring. The cuttings were then immersed for 5 s into 2000 mg L−1 indole-3-butyric acid (IBA) in a 45% v/v ethanolic solution. Thirty days after girdling, cuttings were taken from girdled and control shoots from the part just above the girdle zone (basal), as well as from the part right above (middle). The base of the cuttings was collected, and the concentration of polyamines, phenolic compounds and soluble carbohydrates was determined. Girdling enhanced the rooting performance of the cuttings, while autumn proved to be a better season for rooting compared to spring. Girdling positively affected the concentration of all the measured parameters. The main characteristics of autumn cuttings were the high levels of glucose, mannitol, free and total polyamines, hydroxytyrosol, tyrosol, verbascoside, oleuropein, quercetin and luteolin. The cuttings taken from the middle part of the girdled shoot exhibited high sucrose, glucose, mannitol, free polyamines, hydroxytyrosol, luteolin-7-glucoside, total phenols and flavanol concentrations. Nonetheless, further research is needed in order to draw conclusions on the overall efficiency of girdling on inducing rooting of olive cuttings. Full article
Show Figures

Figure 1

29 pages, 4775 KB  
Article
Differences in the Endophytic Microbiome of Olive Cultivars Infected by Xylella fastidiosa across Seasons
by Annalisa Giampetruzzi, Paula Baptista, Massimiliano Morelli, Cristina Cameirão, Teresa Lino Neto, Daniela Costa, Giusy D’Attoma, Raied Abou Kubaa, Giuseppe Altamura, Maria Saponari, José Alberto Pereira and Pasquale Saldarelli
Pathogens 2020, 9(9), 723; https://doi.org/10.3390/pathogens9090723 - 2 Sep 2020
Cited by 51 | Viewed by 7910
Abstract
The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on [...] Read more.
The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi. Full article
(This article belongs to the Special Issue Endophytes in Plant Health and Disease)
Show Figures

Figure 1

28 pages, 3095 KB  
Review
A Review on Adventitious Lactic Acid Bacteria from Table Olives
by M. Francisca Portilha-Cunha, Angela C. Macedo and F. Xavier Malcata
Foods 2020, 9(7), 948; https://doi.org/10.3390/foods9070948 - 17 Jul 2020
Cited by 37 | Viewed by 5715
Abstract
Spontaneous fermentation constitutes the basis of the chief natural method of processing of table olives, where autochthonous strains of lactic acid bacteria (LAB) play a dominant role. A thorough literature search has unfolded 197 reports worldwide, published in the last two decades, that [...] Read more.
Spontaneous fermentation constitutes the basis of the chief natural method of processing of table olives, where autochthonous strains of lactic acid bacteria (LAB) play a dominant role. A thorough literature search has unfolded 197 reports worldwide, published in the last two decades, that indicate an increasing interest in table olive-borne LAB, especially in Mediterranean countries. This review attempted to extract extra information from such a large body of work, namely, in terms of correlations between LAB strains isolated, manufacture processes, olive types, and geographical regions. Spain produces mostly green olives by Spanish-style treatment, whereas Italy and Greece produce mainly green and black olives, respectively, by both natural and Spanish-style. More than 40 species belonging to nine genera of LAB have been described; the genus most often cited is Lactobacillus, with L. plantarum and L. pentosus as most frequent species—irrespective of country, processing method, or olive type. Certain LAB species are typically associated with cultivar, e.g., Lactobacillus parafarraginis with Spanish Manzanilla, or L. paraplantarum with Greek Kalamata and Conservolea, Portuguese Galega, and Italian Tonda di Cagliari. Despite the potential of native LAB to serve as starter cultures, extensive research and development efforts are still needed before this becomes a commercial reality in table olive fermentation. Full article
Show Figures

Figure 1

26 pages, 3543 KB  
Article
Authentication of Greek PDO Kalamata Table Olives: A Novel Non-Target High Resolution Mass Spectrometric Approach
by Natasa P. Kalogiouri, Reza Aalizadeh, Marilena E. Dasenaki and Nikolaos S. Thomaidis
Molecules 2020, 25(12), 2919; https://doi.org/10.3390/molecules25122919 - 24 Jun 2020
Cited by 25 | Viewed by 4796
Abstract
Food science continually requires the development of novel analytical methods to prevent fraudulent actions and guarantee food authenticity. Greek table olives, one of the most emblematic and valuable Greek national products, are often subjected to economically motivated fraud. In this work, a novel [...] Read more.
Food science continually requires the development of novel analytical methods to prevent fraudulent actions and guarantee food authenticity. Greek table olives, one of the most emblematic and valuable Greek national products, are often subjected to economically motivated fraud. In this work, a novel ultra-high-performance liquid chromatography–quadrupole time of flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method was developed to detect the mislabeling of Greek PDO Kalamata table olives, and thereby establish their authenticity. A non-targeted screening workflow was applied, coupled to advanced chemometric techniques such as Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA) in order to fingerprint and accurately discriminate PDO Greek Kalamata olives from Kalamata (or Kalamon) type olives from Egypt and Chile. The method performance was evaluated using a target set of phenolic compounds and several validation parameters were calculated. Overall, 65 table olive samples from Greece, Egypt, and Chile were analyzed and processed for the model development and its accuracy was validated. The robustness of the chemometric model was tested using 11 Greek Kalamon olive samples that were produced during the following crop year, 2018, and they were successfully classified as Greek Kalamon olives from Kalamata. Twenty-six characteristic authenticity markers were indicated to be responsible for the discrimination of Kalamon olives of different geographical origins. Full article
(This article belongs to the Special Issue Metabolomics in Food Authentication: Strategies and Applications)
Show Figures

Figure 1

17 pages, 3985 KB  
Article
Influence of Harvest Time and Malaxation Conditions on the Concentration of Individual Phenols in Extra Virgin Olive Oil Related to Its Healthy Properties
by Panagiotis Diamantakos, Triada Giannara, Maria Skarkou, Eleni Melliou and Prokopios Magiatis
Molecules 2020, 25(10), 2449; https://doi.org/10.3390/molecules25102449 - 24 May 2020
Cited by 44 | Viewed by 5720
Abstract
The phenolic fraction of the extra virgin olive oil (EVOO) has been studied over the past two decades because of its important health protective properties. Numerous studies have been performed in order to clarify the most crucial factors that affect the concentration of [...] Read more.
The phenolic fraction of the extra virgin olive oil (EVOO) has been studied over the past two decades because of its important health protective properties. Numerous studies have been performed in order to clarify the most crucial factors that affect the concentration of the EVOO’s phenolic fraction and many contradictory results have been reported. Having as target to maximize the phenolic content of EVOO and its healthy properties we investigated the impact of harvest time, malaxation temperature, and malaxation duration on the concentration of individual phenols in extra virgin olive oil. Olive oil was prepared in a lab-scale olive mill from different varieties in Greece. The extraction process for cultivar (cv) Koroneiki samples was performed at five different harvest periods from the same trees with three different malaxation temperatures and five different malaxation duration times (N = 75). Similar types of experiments were also performed for other varieties: cv Athenolia (N = 20), cv Olympia (N = 3), cv Kalamata (N = 3), and cv Throubolia Aegean (N=3) in order to compare the changes in the phenolic profile during malaxation. The quantitative analysis of the olive oil samples with NMR showed that the total phenolic content has a negative correlation with the ripening degree and the malaxation time. The NMR data we collected helped us to quantitate not only the total phenolic content but also the concentration of the major phenolic compounds such as oleocanthal, oleacein, oleokoronal, and oleomissional. We noticed different trends for the concentration of these phenols during malaxation process and for different malaxation temperatures. The different trends of the concentration of the individual phenols during malaxation and the completely different behavior of each variety revealed possible biosynthetic formation steps for oleocanthal and oleacein and may explain the discrepancies reported from previous studies. Full article
(This article belongs to the Special Issue Olive Oil: From Processing to Health Benefits)
Show Figures

Figure 1

24 pages, 6934 KB  
Article
Unraveling the Microbiota of Natural Black cv. Kalamata Fermented Olives through 16S and ITS Metataxonomic Analysis
by Maria Kazou, Aikaterini Tzamourani, Efstathios Z. Panagou and Effie Tsakalidou
Microorganisms 2020, 8(5), 672; https://doi.org/10.3390/microorganisms8050672 - 6 May 2020
Cited by 36 | Viewed by 5775
Abstract
Kalamata natural black olives are one of the most economically important Greek varieties. The microbial ecology of table olives is highly influenced by the co-existence of bacteria and yeasts/fungi, as well as the physicochemical parameters throughout the fermentation. Therefore, the aim of this [...] Read more.
Kalamata natural black olives are one of the most economically important Greek varieties. The microbial ecology of table olives is highly influenced by the co-existence of bacteria and yeasts/fungi, as well as the physicochemical parameters throughout the fermentation. Therefore, the aim of this study was the identification of bacterial and yeast/fungal microbiota of both olives and brines obtained from 29 cv. Kalamata olive samples industrially fermented in the two main producing geographical regions of Greece, namely Aitoloakarnania and Messinia/Lakonia. The potential microbial biogeography association between certain taxa and geographical area was also assessed. The dominant bacterial family identified in olive and brine samples from both regions was Lactobacillaceae, presenting, however, higher average abundances in the samples from Aitoloakarnania compared to Messinia/Lakonia. At the genus level, Lactobacillus, Celerinatantimonas, Propionibacterium and Pseudomonas were the most abundant. In addition, the yeasts/fungal communities were less diverse compared to those of bacteria, with Pichiaceae being the dominant family and Pichia, Ogataea, and Saccharomyces being the most abundant genera. To the best of our knowledge, this is the first report on the microbiota of both olives and brines of cv. Kalamata black olives fermented on an industrial scale between two geographical regions of Greece using metagenomics analysis. Full article
(This article belongs to the Special Issue Food Microbial Diversity)
Show Figures

Figure 1

17 pages, 2893 KB  
Article
Role of Fruit Epicuticular Waxes in Preventing Bactrocera oleae (Diptera: Tephritidae) Attachment in Different Cultivars of Olea europaea
by Manuela Rebora, Gianandrea Salerno, Silvana Piersanti, Elena Gorb and Stanislav Gorb
Insects 2020, 11(3), 189; https://doi.org/10.3390/insects11030189 - 17 Mar 2020
Cited by 28 | Viewed by 4266
Abstract
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the major pest of cultivated olives (Olea europaea L.), and a serious threat in all of the Mediterranean Region. In the present investigation, we demonstrated with traction force experiments that B. oleae female [...] Read more.
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the major pest of cultivated olives (Olea europaea L.), and a serious threat in all of the Mediterranean Region. In the present investigation, we demonstrated with traction force experiments that B. oleae female adhesion is reduced by epicuticular waxes (EWs) fruit surface, and that the olive fruit fly shows a different ability to attach to the ripe olive surface of different cultivars of O. europaea (Arbequina, Carolea, Dolce Agogia, Frantoio, Kalamata, Leccino, Manzanilla, Picholine, Nostrale di Rigali, Pendolino and San Felice) in terms of friction force and adhesion, in relation with different mean values of olive surface wettability. Cryo-scanning morphological investigation revealed that the EW present on the olive surface of the different analyzed cultivars are represented by irregular platelets varying in the orientation, thus contributing to affect the surface microroughness and wettability in the different cultivars, and consequently the olive fruit fly attachment. Further investigations to elucidate the role of EW in olive varietal resistance to the olive fruit fly in relation to the olive developmental stage and environmental conditions could be relevant to develop control methods alternative to the use of harmful pesticides. Full article
(This article belongs to the Special Issue Physical and Chemical Interactions between Insects and Plants)
Show Figures

Figure 1

14 pages, 1739 KB  
Article
Preliminary Study and Observation of “Kalamata PDO” Extra Virgin Olive Oil, in the Messinia Region, Southwest of Peloponnese (Greece)
by Vasiliki Skiada, Panagiotis Tsarouhas and Theodoros Varzakas
Foods 2019, 8(12), 610; https://doi.org/10.3390/foods8120610 - 23 Nov 2019
Cited by 19 | Viewed by 5314
Abstract
While there has been considerable research related to Koroneiki cultivar in different areas in Greece, no systematic work has been carried out on olive oil analysis from one of the most important olive-growing regions in Greece, located southwest of Peloponnese, Messinia. This work [...] Read more.
While there has been considerable research related to Koroneiki cultivar in different areas in Greece, no systematic work has been carried out on olive oil analysis from one of the most important olive-growing regions in Greece, located southwest of Peloponnese, Messinia. This work is the first systematic attempt to study the profile of Messinian olive oils and evaluate to what extent they comply with the recent EU regulations in order to be classified as “Kalamata Protected Designation of Origin (PDO)”-certified products. Quality indices were measured and detailed analyses of sterols, triterpenic dialcohols, fatty acid composition and wax content were conducted in a total of 71 samples. Messinian olive oils revealed a high-quality profile but, at the same time, results demonstrated major fluctuations from the established EU regulatory limits on their chemical parameters. Results showed low concentrations of total sterols, with 66.7% of the examined samples below the regulated set limits for Kalamata PDO status; high concentrations of campesterol, with a total of 21.7%, exceeding the legal maximum of 4.0%; and a slight tendency of high total erythrodiol content. Fatty acid composition and wax content were within the normal range expected for the extra virgin olive oil (EVOO) category. However, the narrower established PDO limits in specific fatty acids showed some fluctuations in a few cases. Full article
(This article belongs to the Special Issue Extra Virgin Olive Oil Quality, Safety, and Authenticity)
Show Figures

Graphical abstract

14 pages, 1882 KB  
Article
A Comparison between Organic and Conventional Olive Farming in Messenia, Greece
by Håkan Berg, Giorgos Maneas and Amanda Salguero Engström
Horticulturae 2018, 4(3), 15; https://doi.org/10.3390/horticulturae4030015 - 9 Jul 2018
Cited by 40 | Viewed by 10739
Abstract
Olive farming is one of the most important occupations in Messenia, Greece. The region is considered the largest olive producer in the country and it is recognized as a Protected Designation of Origin (PDO) for Kalamata olive oil, which is considered extra fine. [...] Read more.
Olive farming is one of the most important occupations in Messenia, Greece. The region is considered the largest olive producer in the country and it is recognized as a Protected Designation of Origin (PDO) for Kalamata olive oil, which is considered extra fine. In response to the declining trend of organic olive farming in Greece, this study assesses to what extent organic olive farming in Messenia provides a financially and environmentally competitive alternative to conventional olive farming. In this study, 39 olive farmers (23 conventional and 16 organic) participated in interviews based on questionnaires. The results showed that organic olive farming is significantly more profitable than conventional farming, primarily because of a higher price for organic olive oil. Despite this, the majority of the conventional farmers perceived a low profit from organic farming as the main constraint to organic olive farming. All farmers agreed that organic olive farming contributed to a better environment, health and quality of olive oil. Organic farmers used fewer synthetic pesticides and fertilizers and applied more environmentally-friendly ground vegetation management techniques than conventional farmers. Overall, organic farming was found to provide a competitive and sustainable alternative to conventional olive farming in Messenia. Full article
(This article belongs to the Special Issue Food Safety Pertinent to Fresh Produce)
Show Figures

Figure 1

Back to TopTop