Influence of Spraying Some Biostimulants on Yield, Fruit Quality, Oil Fruit Content and Nutritional Status of Olive (Olea europaea L.) under Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Experimental Area and Experimental Design
2.2. Total Chlorophyll (SPAD)
2.3. Flower Number, Fruit Set Percentages, Fruit Drop Percentages and Fruit Yield
2.4. Fruit Quality
2.5. Leaf Chemical Composition
2.6. Statistical Analysis
3. Results
3.1. Total Chlorophyll, Flower Number and Fruit Set Percentages
3.2. Fruit Drop Percentage and Fruit Yield
3.3. Fruit Quality
3.4. Nutritional Status
3.4.1. Leaf Mineral Content from Nitrogen, Phosphorous and Potassium
3.4.2. Leaf Mineral Content from Boron, Zinc, Iron and Manganese
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. 2021. Available online: http://faostat-fao.org (accessed on 19 December 2021).
- Langgut, D.; Cheddadi, R.; Carrión, J.S.; Cavanagh, M.; Colombaroli, D.; Eastwood, W.J.; Greenberg, R.; Litt, T.; Mercuri, A.M.; Miebach, A. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. Holocene 2019, 29, 902–922. [Google Scholar] [CrossRef]
- Di Vita, G.; Chinnici, G.; D’AMICO, M. Sustainability of olive oil production in sicilian marginal agricultural areas. Qual. Access Success. 2015, 16, 118–125. Available online: https://www.researchgate.net/publication/273443713 (accessed on 1 March 2023).
- Palese, A.M.; Pergola, M.; Favia, M.; Xiloyannis, C.; Celano, G. A sustainable model for the management of olive orchards located in semi-arid marginal areas: Some remarks and indications for policy makers. Environ. Sci. Policy 2013, 27, 81–90. [Google Scholar] [CrossRef]
- Perrino, E.V.; Wagensommer, R.P.; Medagli, P. Aegilops (Poaceae) in Italy: Taxonomy, geographical distribution, ecology, vulnerability and conservation. Syst. Biodivers. 2014, 12, 331–349. [Google Scholar] [CrossRef]
- Vossen, P. Olive oil: History, production, and characteristics of the world’s classic oils. Hort. Sci. 2007, 42, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro-Gomes, F.L.; Sacks, D. The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Front. Cell. Infect. Microbiol. 2012, 2, 59. [Google Scholar] [CrossRef] [Green Version]
- Muzzalupo, I.; Vendramin, G.G.; Chiappetta, A. Genetic biodiversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers. Sci. World J. 2014, 2014, 296590. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.-E. Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ. Exp. Bot. 2014, 103, 158–179. [Google Scholar] [CrossRef] [Green Version]
- Lorite, I.; Gabaldón-Leal, C.; Ruiz-Ramos, M.; Belaj, A.; De la Rosa, R.; León, L.; Santos, C. Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agric. Water Manag. 2018, 204, 247–261. [Google Scholar] [CrossRef]
- Connor, D.J.; Fereres, E. The physiology of adaptation and yield expression in olive. Hortic. Rev. 2010, 31, 155–229. [Google Scholar] [CrossRef]
- Tuck, K.L.; Hayball, P.J. Major phenolic compounds in olive oil: Metabolism and health effects. J. Nutr. Biochem. 2002, 13, 636–644. [Google Scholar] [CrossRef]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Olive (Olea europaea L.)—Morphology, taxonomy, composition and health benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2021; pp. 117–129. [Google Scholar]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef]
- Parmoon, G.; Moosavi, S.A.; Siadat, S.A. How salinity stress influences the thermal time requirements of seed germination in Silybum marianum and Calendula officinalis. Acta Physiol. Plant. 2018, 40, 175. [Google Scholar] [CrossRef]
- Majeed, A.; Muhammad, Z.; Islam, S.; Ahmad, H. Salinity imposed stress on principal cereal crops and employing seed priming as a sustainable management approach. Acta Ecol. Sin. 2019, 39, 280–283. [Google Scholar] [CrossRef]
- Han, Y.; Yin, S.; Huang, L. Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul. 2015, 76, 13–23. [Google Scholar] [CrossRef]
- Han, J.; Shi, J.; Zeng, L.; Xu, J.; Wu, L. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environ. Sci. Pollut. Res. 2015, 22, 2976–2986. [Google Scholar] [CrossRef]
- Garg, N.; Bhandari, P. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul. 2016, 78, 371–387. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Plett, D.; Moller, I. Na⁺ transport in glycophytic plants: What we known and would like to know. Plant Cell Environ. 2010, 33, 612–626. [Google Scholar] [CrossRef]
- De Souza Miranda, R.; Gomes-Filho, E.; Prisco, J.T.; Alvarez-Pizarro, J.C. Ammonium improves tolerance to salinity stress in Sorghum bicolor plants. Plant Growth Regul. 2016, 78, 121–131. [Google Scholar] [CrossRef]
- Kumar, V.; Khare, T. Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl−) and additive stress effects of NaCl. Acta Physiol. Plant. 2016, 38, 1–9. [Google Scholar] [CrossRef]
- Mohamed, A.K.S.; Qayyum, M.F.; Abdel-Hadi, A.M.; Rehman, R.A.; Ali, S.; Rizwan, M. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch. Agron. Soil Sci. 2017, 63, 1736–1747. [Google Scholar] [CrossRef]
- Zhang, P.; Senge, M.; Dai, Y. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Rev. Agric. Sci. 2016, 4, 46–55. [Google Scholar] [CrossRef]
- Sayyad-Amin, P.; Jahansooz, M.-R.; Borzouei, A.; Ajili, F. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J. Biol. Phys. 2016, 42, 601–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, P.; Botella, M.Á.; Cerdá, A.; Martínez, V. Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Canad. J. Bot. 2004, 82, 207–213. [Google Scholar] [CrossRef]
- Howladar, S.M. A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol. Environ. Saf. 2014, 100, 69–75. [Google Scholar] [CrossRef]
- Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 2015, 193, 105–113. [Google Scholar] [CrossRef]
- John, N.R.; Gala, V.C.; Sawant, C.S. Inhibitory effects of plant extracts on multi-species dental biofilm formation in-vitro. Int. J. Pharm. Bio. Sci. 2013, 4, 487–495. Available online: https://www.researchgate.net/publication/255784456 (accessed on 1 March 2023).
- Azra, Y.; Basra, S.; Farooq, M.; Rehman, H.U.; Hussain, N.; Athar, H.U.R. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 2013, 69, 225–233. [Google Scholar] [CrossRef]
- Desoky, E.; Elrys, A.; Mohamed, G.; Rady, M. Exogenous application of moringa seed extract positively alters fruit yield and its contaminant contents of Capsicum annuum plants grown on a saline soil contaminated with heavy metals. Adv. Plants Agric. Res. 2018, 8, 591–601. [Google Scholar] [CrossRef]
- Latif, H.; Mohamed, H. Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. S. Afr. J. Bot. 2016, 106, 221–231. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Basra, S.M.A.; Afzal, I.; Wahid, A. Screening of moringa landraces for leaf extract as biostimulant in wheat. Int. J. Agric. Biol. 2017, 19, 999–1006. [Google Scholar] [CrossRef]
- Sun, R.-Z.; Cheng, G.; Li, Q.; He, Y.-N.; Wang, Y.; Lan, Y.-B.; Li, S.-Y.; Zhu, Y.-R.; Song, W.-F.; Zhang, X. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant Sci. 2017, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Arif, Y.; Bajguz, A.; Hayat, S. Moringa oleifera extract as a natural plant biostimulant. J. Plant Growth Reg. 2023, 42, 1291–1306. [Google Scholar] [CrossRef]
- Abd El–Hamied, S.A.; El-Amary, E.I. Improving growth and productivity of pear trees using some natural plants extracts under north sinai conditions. J. Agric. Vet. Sci. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Mosa, W.F.; Salem, M.Z.; Al-Huqail, A.A.; Ali, H.M. Application of glycine, folic acid, and moringa extract as bio-stimulants for enhancing the production of ‘Flame Seedless’ grape cultivar. BioResources 2021, 16, 3391–3410. [Google Scholar] [CrossRef]
- Norrie, J.; Keathley, J. Benefits of Ascophyllum nodosum marine-plant extract applications to ´Thompson Seedless´ grape production. Acta Hortic. 2006, 727, 243–248. [Google Scholar] [CrossRef]
- Sharma, H.S.; Fleming, C.; Selby, C.; Rao, J.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Spiżewski, T.; Grabowska, A. The effect of seaweed extracts on the yield and quality parameters of broccoli (Brassica oleracea var. cymosa L.) In open feld production. Acta Hortic. 2013, 1009, 83–89. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Shehata, S.; Abdel-Azem, H.S.; Abou El-Yazied, A.; El-Gizawy, A. Effect of foliar spraying with amino acids and seaweed extract on growth chemical constitutes, yield and its quality of celeriac plant. Eur. J. Sci. Res. 2011, 58, 257–265. Available online: http://www.eurojournals.com/ejsr.htm (accessed on 1 March 2023).
- Al-Rawi, W.; Al-Hadethi, M.; Abdul-Kareem, A. Effect of foliar application of gibberellic acid and seaweed extract spray on growth and leaf mineral content on peach trees. Iraqi J. Agric. Sci. 2016, 47, 98–105. Available online: https://www.researchgate.net/publication/330354718 (accessed on 1 March 2023).
- Colavita, G.M.; Spera, N.; Blackhall, V.; Sepulveda, G.M. Effect of seaweed extract on pear fruit quality and yield. In Proceedings of the XI International Pear Symposium, Patagonia, Argentina, 31 October 2011; pp. 601–607. [Google Scholar] [CrossRef]
- Masny, A.; Basak, A.; Zurawicz, E. Effect of foliar applications of Kelpak SL and Goemar BM 86 preparations on yield and fruit quality in two strawberry cultivars. J. Fruit Ornam. Plant Res. 2004, 12, 23–27. [Google Scholar]
- Fornes, F.; Sanchez-Perales, M.; Guardiola, J. Effect of a seaweed extract on the productivity of’de Nules’ clementine mandarin and navelina orange. Bot. Mar. 2002, 45, 486–489. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- El-Sharony, T.; El-Gioushy, S.; Amin, O. Effect of foliar application with algae and plant extracts on growth, yield and fruit quality of fruitful mango trees cv. Fagri Kalan. J. Hortic. 2015, 2, 1–6. [Google Scholar] [CrossRef]
- Basak, A. “Effect of preharvest treatment with seaweed products, Kelpak® and Goëmar BM 86®, on fruit quality in apple. Int. J. Fruit Sci. 2008, 8, 1–14. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of biostimulants for organic apple production: Effects on tree growth, yield, and fruit quality at harvest and during storage. Front. Plant Sci. 2018, 9, 1–17. [Google Scholar] [CrossRef]
- Parikh, S.J. Introduction to soil chemistry: Analysis and instrumentation. Soil Sci. Soc. Am. J. 2014, 78, 1828. [Google Scholar] [CrossRef]
- Yadava, U.L. A rapid and nondestructive method to determine chlorophyll in intact leaves. Hort. Sci. 1986, 21, 1449–1450. [Google Scholar] [CrossRef]
- El-Hady, S.; Eman, L.; Haggag, M.; Abdel-Migeed, M.; Desouky, I. Studies on sex compatiblity of some olive cultivars. Res. J. Agric. Biol. Sci. 2007, 3, 504–509. Available online: https://www.researchgate.net/publication/281265322 (accessed on 1 March 2023).
- Magness, J.R.; Taylor, G.F. An Improved Type of Pressure Tester for the Determination of Fruit Maturity; U.S. Dept. of Agriculture: Washington, DC, USA, 1925; Volume 350. [Google Scholar]
- Kumar, S.J.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K. Green solvents and technologies for oil extraction from oilseeds. Chem. Cent. J. 2017, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Arrobas, M.; Afonso, S.; Rodrigues, M.Â. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry. Plant Meth. 2022, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Asch, J.; Johnson, K.; Mondal, S.; Asch, F. Comprehensive assessment of extraction methods for plant tissue samples for determining sodium and potassium via flame photometer and chloride via automated flow analysis. J. Plant Nutr. Soil Sci. 2022, 185, 308–316. [Google Scholar] [CrossRef]
- Stafilov, T.; Karadjova, I. Atomic absorption spectrometry in wine analysis. Maced. J. Chem. Chem. Eng. 2009, 28, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Snedecor, G.; Cochran, W. Statistical Methods; Analysis and Book; Iowa State Univ. Press: Ames, IA, USA, 1990; pp. 129–131. [Google Scholar]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Hussan, M.U.; Sarwar, M.I. A review: Impact of salinity on plant growth. Nat. Sci. 2019, 17, 34–40. [Google Scholar] [CrossRef]
- Merwad, A.-R.M. Using Moringa oleifera extract as biostimulant enhancing the growth, yield and nutrients accumulation of pea plants. J. Plant Nutr. 2018, 41, 425–431. [Google Scholar] [CrossRef]
- Abdalla, M.M. The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int. J. Plant Physiol. Biochem. 2013, 5, 42–49. [Google Scholar] [CrossRef]
- Makkar, H.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef] [Green Version]
- Sardar, H.; Nisar, A.; Anjum, M.A.; Naz, S.; Ejaz, S.; Ali, S.; Javed, M.S.; Ahmad, R. Foliar spray of moringa leaf extract improves growth and concentration of pigment, minerals and stevioside in stevia (Stevia rebaudiana Bertoni). Ind. Crops Prod. 2021, 166, 113485. [Google Scholar] [CrossRef]
- Mashamaite, C.V.; Ngcobo, B.L.; Manyevere, A.; Bertling, I.; Fawole, O.A. Assessing the usefulness of Moringa oleifera leaf extract as a biostimulant to supplement synthetic fertilizers: A Review. Plants 2022, 11, 2214. [Google Scholar] [CrossRef]
- keya Tudu, C.; Dey, A.; Pandey, D.K.; Panwar, J.S.; Nandy, S. Role of plant derived extracts as biostimulants in sustainable agriculture: A detailed study on research advances, bottlenecks and future prospects. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–179. [Google Scholar] [CrossRef]
- Nasir, M.; Khan, A.S.; Basra, S.A.; Malik, A.U. Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’mandarin. Sci. Hortic. 2016, 210, 227–235. [Google Scholar] [CrossRef]
- Hassan, A.; Abd-Alhamid, N.; Aly, R.B.; Hassan, H. Effect of foliar application with algae and moringa leaves extracts on vegetative growth, leaf mineral contents, yield and chemical fruit quality of picual olive trees. Arab. Univ. J. Agric. Sci. 2019, 27, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, T.S.M.; Kassim, N.; AbouRayya, M.; Abdalla, A. Influence of foliar application with moringa (Moringa oleifera L.) leaf extract on yield and fruit quality of Hollywood plum cultivar. J. Hortic. 2017, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bakhsh, A.; Javaad, H.W.; Hussain, F.; Akhtar, A.; Raza, M.K. Application of Moringa oleifera leaf extract improves quality and yield of peach (Prunus persica). J. Pure Appl. Agric. 2020, 5, 42–51. Available online: https://www.researchgate.net/publication/343230978 (accessed on 1 March 2023).
- Mosa, W.F.; Sas-Paszt, L.; Głuszek, S.; Górnik, K.; Anjum, M.A.; Saleh, A.A.; Abada, H.S.; Awad, R.M. Effect of some biostimulants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple. Horticulturae 2022, 9, 32. [Google Scholar] [CrossRef]
- Oancea, F.; Velea, S.; Fãtu, V.; Mincea, C.; Ilie, L. Micro-algae based plant biostimulant and its effect on water stressed tomato plants. Rom. J. Plant Prot. 2013, 6, 104–117. Available online: https://www.researchgate.net/publication/318489795 (accessed on 1 March 2023).
- Durand, N.; Briand, X.; Meyer, C. The effect of marine bioactive substances (N PRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol. Plant. 2003, 119, 489–493. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Rengasamy, K.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef]
- Asadi, M.; Rasouli, F.; Amini, T.; Hassanpouraghdam, M.B.; Souri, S.; Skrovankova, S.; Mlcek, J.; Ercisli, S. Improvement of photosynthetic pigment characteristics, mineral content, and antioxidant activity of Lettuce (Lactuca sativa L.) by arbuscular mycorrhizal fungus and seaweed extract foliar application. Agronomy 2022, 12, 1943. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Khan, A.; Munir, M.; Shaheen, T.; Tassawar, T.; Rafiq, M.; Ali, S.; Anwar, R.; Rehman, R.; Hasan, M.; Malik, A. Supplemental foliar applied mixture of amino acids and seaweed extract improved vegetative growth, yield and quality of citrus fruit. Sci. Hortic. 2022, 296, 110903. [Google Scholar] [CrossRef]
- Anli, M.; Kaoua, M.E.; Boutasknit, A.; ben-Laouane, R.; Toubali, S.; Baslam, M.; Lyamlouli, K.; Hafidi, M.; Meddich, A. Seaweed extract application and arbuscular mycorrhizal fungal inoculation: A tool for promoting growth and development of date palm (Phoenix dactylifera L.) cv. Boufgous. S. Afr. J. Bot. 2020, 132, 15–21. [Google Scholar] [CrossRef]
- Dhir, B. Use of seaweed extracts for enhancement of crop production. In Biostimulants for Crop Production and Sustainable Agriculture; CABI GB: Oxfordshire, UK, 2022; pp. 219–236. [Google Scholar]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Amlani, M.; Yetgin, S. Seaweeds: Bioactive components and properties, potential risk factors, uses, extraction and purification methods. Mar. Sci. Technol. Bull. 2022, 11, 9–31. [Google Scholar] [CrossRef]
- Deolu-Ajayi, A.O.; van der Meer, I.M.; Van der Werf, A.; Karlova, R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant Cell Environ. 2022, 45, 2537–2553. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Garcia-Perez, P.; Cardarelli, M.; Senizza, B.; Miras-Moreno, B.; Colla, G.; Lucini, L. Plant biostimulants from seaweeds or vegetal proteins enhance the salinity tolerance in greenhouse lettuce by modulating plant metabolism in a distinctive manner. Sci. Hortic. 2022, 305, 111368. [Google Scholar] [CrossRef]
- Parthiban, C.; Saranya, C.; Girija, K.; Hemalatha, A.; Suresh, M.; Anantharaman, P. Biochemical composition of some selected seaweeds from Tuticorin coast. Adv. Appl. Sci. Res. 2013, 4, 362–366. Available online: https://www.pelagiaresearchlibrary.com (accessed on 1 March 2023).
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M. Minerals from macroalgae origin: Health benefits and risks for consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef] [Green Version]
- Renaut, S.; Masse, J.; Norrie, J.P.; Blal, B.; Hijri, M. A commercial seaweed extract structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Plant Biotechnol. J. 2019, 12, 1346–1358. [Google Scholar] [CrossRef] [Green Version]
- El Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Begum, M.; Bordoloi, B.C.; Singha, D.D.; Ojha, N.J. FDha role of sea weed extract on growth, yield and quality of some agricultural crops-a review. Agric. Rev. 2018, R-1838, 1–6. [Google Scholar] [CrossRef]
- Ahir Unnati, J.; Patil, S.; Patel, N.; Tandel, B.; Ahir Priya, J. Response of foliar spray of seaweed extract at different pH levels on fruiting and yield of mango (Mangifera indica) cv. Kesar. J. Pharm. Innov. 2022, 11, 1767–1769. Available online: https://www.researchgate.net/publication/365760189 (accessed on 1 March 2023).
- De Sousa, A.; Ayub, R.; Botelho, R. Fruit set and yield of apple trees cv. Gala treated with seaweed extract of Ascophyllum nodosum and thidiazuron. Rev. Bras. Frutic. 2019, 41, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Arioli, T.; Villalta, O.N.; Hepworth, G.; Farnsworth, B.; Mattner, S.W. Effect of seaweed extract on avocado root growth, yield and post-harvest quality in far north Queensland, Australia. J. Appl. Phycol. 2023, 1–11. [Google Scholar] [CrossRef]
- Omar, A.E.-D.K.; Ahmed, M.A.-A.; Al-Obeed, R.; Alebidi, A. Influence of foliar applications of yeast extract, sea-weed extract and different potassium sources fertilization on yield and fruit quality of ‘Flame seedless’ grape. Acta Sci. Pol. Hortorum Cultus 2020, 19, 143–150. [Google Scholar] [CrossRef]
- El-Sese, A.; Mohamed, A.; Abou-Zaid, E.A.; Abd-El-Ghany, A. Impact of foliar application with seaweed extract, amino acids and vitamins on yield and berry quality of some grapevine cultivars. SVU-Int. J. Agric. Sci. 2020, 2, 73–84. [Google Scholar] [CrossRef]
- Irani, H.; ValizadehKaji, B.; Naeini, M.R. Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes. Chem. Biol. Technol. Agric. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef] [Green Version]
- Gomathi, R.; Kohila, S.; Ramachandiran, K. Evaluating the effect of seaweed formulations on the quality and yield of sugarcane. Madras Agric. J. 2017, 104, 161–165. [Google Scholar] [CrossRef]
- Al-Saif, A.M.; Sas-Paszt, L.; Awad, R.M.; Mosa, W.F. Apricot (Prunus armeniaca) performance under foliar application of humic acid, brassinosteroids, and seaweed extract. Horticulturae 2023, 9, 519. [Google Scholar] [CrossRef]
- Ayton, J.; Mailer, R.J.; Haigh, A.; Tronson, D.; Conlan, D. Quality and oxidative stability of Australian olive oil according to harvest date and irrigation. J. Food Lipids 2007, 14, 138–156. [Google Scholar] [CrossRef]
- Alowaiesh, B.; Singh, Z.; Kailis, S.G. Harvesting time influences fruit removal force, moisture, oil content, free fatty acids and peroxide in the oil of Frantoio and Manzanilla olive cultivars. Aust. J. Crop Sci. 2016, 10, 1662–1668. [Google Scholar] [CrossRef]
- Bakshi, M.; Tiku, A.; Guleria, S.; Jamwal, S.; Gupta, M. Effect of harvesting time on yield, quality and fatty acid profile of olive oil produced in foothills of Himalayas. J. Pharmacogn. Phytochem. 2018, 7, 3464–3469. Available online: https://www.phytojournal.com (accessed on 1 March 2023).
Mechanical analysis | ||||||
Clay | Silt | Sand | Soil texture | |||
12.2% | 22.8% | 65% | Sandy loam | |||
CaCO3− | Organic matter | EC dSm−1 (1:1) | pH (1:1) | |||
13% | 0.2% | 4.54 (Saline) | 8.3 | |||
Soluble cations and anions (meq/L) | ||||||
Ca2+ | Mg2+ | Na+ | K+ | HCO3− | Cl− | SO42− |
14.40 | 6.80 | 13.05 | 9.38 | 16.06 | 13.78 | 12.65 |
Available macronutrients (mg/kg soil) | Available micronutrients (mg/L) | |||||
N | P | K | Fe | Zn | Mn | |
98 | 6.82 | 508 | 0.85 | 0.11 | 0.27 |
Water quantity per tree (L/day) | ||||
January-February | March | April–September | October | November–December |
50 | 80 | 100 | 80 | 50 |
Water chemical composition of the used water | ||||
Parameter | Sample | |||
Textural class | Micronutrients | |||
pH | 7.88 | Fe | 0.39 mg/L | |
EC | 5.22 ds/m | Zn | 0.02 mg/L | |
Salinity | 2067 ppm | Mn | 0.03 mg/L | |
Soluble cations | Cu | 0.14 mg/L | ||
Na+ | 42.1 Meq/L | Soluble anions | ||
K+ | 0.55 Meq/L | Cl− | 44.0 Meq/L | |
Ca+ | 4.6 Meq/L | HCO3− | 5.20 Meq/L | |
Mg+ | 3.8 Meq/L | CO32− | - | |
SO42− | 1.15 Meq/L |
Treatments | Total Chlorophyll (SPAD) | Flower Number (cm2) | Fruit Set % | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 54.63 f | 57.18 f | 576.00 f | 671.00 g | 4.21 d | 4.39 f |
MLE | 2% | 62.00 e | 62.00 e | 673.00 e | 711.00 f | 4.43 d | 4.70 ef |
4% | 63.78 de | 67.47 d | 712.00 d | 757 e | 5.64 c | 5.73 bc | |
6% | 69.21 bc | 70.76 c | 752.00 c | 787 d | 5.85 bc | 6.04 ab | |
SWE | 1000 ppm | 63.26 de | 64.36 de | 686.00 e | 719.00 f | 4.34 d | 5.01 de |
2000 ppm | 69.15 bc | 71.70 c | 752.00 c | 753.00 e | 566 c | 5.63 bc | |
3000 ppm | 72.87 b | 74.80 b | 797.00 b | 836 c | 6.12 ab | 6.14 ab | |
Combinations | 1 | 66.27 cd | 66.25 d | 673.00 e | 746 e | 5.55 c | 5.42 cd |
2 | 72.87 b | 75.62 b | 798.00 b | 860.00 b | 6.51 a | 6.37 a | |
3 | 81.32 a | 81.96 a | 892.60 a | 936.00 a | 6.54 a | 6.49 a | |
LSD0.05 | 3.50 | 3.04 | 16.55 | 23.16 | 0.43 | 0.48 |
Treatments | Fruit Drop (%) | Production (kg/Tree) | Yield (t/ha) | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 92.37 a | 89.47 a | 37.60 e | 39.96 g | 4.17 e | 4.43 g |
MLE | 2% | 90.28 b | 86.59 b | 37.84 e | 41.14 fg | 4.20 e | 4.57 fg |
4% | 87.73 cd | 83.51 cd | 41.96 d | 44.14 e | 4.66 d | 4.90 e | |
6% | 86.87 d | 82.46 d | 43.64 cd | 49.88 c | 4.84 cd | 5.54 c | |
SWE | 1000 ppm | 89.55 bc | 86.06 b | 37.90 e | 41.98 f | 4.20 e | 4.66 f |
2000 ppm | 88.07 cd | 83.88 cd | 43.42 cd | 46.32 d | 4.82 cd | 5.14 d | |
3000 ppm | 86.56 d | 82.44 d | 44.86 bc | 51.28 bc | 4.98 bc | 5.69 bc | |
Combinations | 1 | 90.09 b | 84.22 c | 41.70 d | 44.58 e | 4.63 d | 4.95 e |
2 | 84.08 e | 80.48 e | 46.46 b | 51.58 b | 5.16 b | 5.72 b | |
3 | 79.96 f | 78.17 f | 51.44 a | 53.96 a | 5.71 a | 5.99 a | |
LSD0.05 | 1.77 | 1.49 | 2.45 | 1.49 | 0.27 | 0.16 |
Treatments | Fruit Weight (g) | Fruit Size (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | |||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 5.28 f | 5.76 f | 6.41 f | 6.94 f | 2.40 e | 2.70 g | 1.70 e | 1.67 f |
MLE | 2% | 5.49 ef | 5.83 f | 6.67 f | 7.03 f | 2.86 c | 2.90 f | 1.72 e | 1.81 e |
4% | 6.41 d | 6.60 cde | 7.63 cd | 7.54 d | 2.91 c | 3.05 e | 1.86 d | 1.99 cd | |
6% | 6.88 bcd | 6.76 cd | 8.05 bc | 7.85 cd | 3.22 b | 3.31 d | 1.97 c | 2.07 bc | |
SWE | 1000 ppm | 5.64 ef | 5.98 f | 6.78 ef | 7.47 de | 2.68 d | 2.84 f | 1.85 d | 1.89 de |
2000 ppm | 6.52 cd | 6.51 de | 7.77 bcd | 7.71 d | 3.27 b | 3.34 d | 1.89 d | 1.92 de | |
3000 ppm | 6.96 bc | 6.90 c | 8.19 bc | 8.18 c | 3.31 b | 3.47 c | 2.12 b | 2.08 bc | |
Combinations | 1 | 5.91 e | 6.31 e | 7.24 de | 7.13 ef | 3.01 c | 306 e | 1.85 d | 1.86 e |
2 | 7.09 b | 7.47 b | 8.23 b | 8.97 b | 3.39 b | 3.61 b | 2.05 bc | 2.18 b | |
3 | 7.81 a | 8.35 a | 9.13 a | 9.61 a | 3.60 a | 3.76 a | 2.23 a | 2.39 a | |
LSD0.05 | 0.50 | 0.32 | 0.52 | 0.39 | 0.16 | 0.11 | 0.08 | 0.10 |
Treatments | Pulp Weight (g) | Seed Weight (g) | Pulp–Fruit Ratio | Fruit Firmness (Ib/inch2) | Moisture Content% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 4.04 f | 4.53 g | 1.23 ab | 1.23 de | 0.77 e | 0.78 e | 4.44 e | 4.55 e | 68.8 a | 72.10 a |
MLE | 2% | 4.37 ef | 4.63 g | 1.13 b | 1.19 e | 0.79 bcd | 0.79 de | 4.56 e | 5.11 d | 65.39 b | 70.23 b |
4% | 4.79 de | 5.32 de | 1.31 a | 1.29 bcd | 0.79 bcd | 0.80 cd | 5.32 c | 5.50 cd | 61.84 cd | 67.38 cd | |
6% | 5.47 bc | 5.48 cd | 1.35 a | 1.28 bcd | 0.80 bc | 0.81 bc | 5.74 b | 5.56 c | 61.87 cd | 64.42 e | |
SWE | 1000 ppm | 4.44 ef | 4.76 fg | 1.24 ab | 1.22 de | 0.78 de | 0.79 de | 4.90 d | 5.40 cd | 63.55 bc | 68.60 c |
2000 ppm | 5.03 cd | 5.18 de | 1.35 a | 1.32 abc | 0.79 bcd | 0.80 de | 5.38 c | 5.46 cd | 61.47 cd | 67.05 d | |
3000 ppm | 5.51 bc | 5.65 c | 1.30 a | 1.25 cde | 0.82 ab | 0.82 b | 5.62 b | 6.23 b | 59.92 d | 63.90 e | |
Combinations | 1 | 4.66 de | 5.03 ef | 1.25 ab | 1.28 bcd | 0.79 cde | 0.80 de | 4.82 d | 5.36 cd | 62.58 c | 67.97 cd |
2 | 5.61 b | 6.13 b | 1.36 a | 1.34 ab | 0.81 bc | 0.82 b | 5.68 b | 6.07 b | 56.67 e | 61.12 f | |
3 | 6.29 a | 6.99 a | 1.31 a | 1.37 a | 0.83 a | 0.84 a | 6.20 a | 6.70 a | 54.38 f | 58.26 g | |
LSD0.05 | 0.46 | 0.31 | 0.14 | 0.07 | 0.02 | 0.01 | 0.22 | 0.39 | 1.99 | 1.33 |
Treatments | TSS (%) | Oil Content (%) | |||
---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 12.45 f | 13.20 d | 13.19 g | 14.47 g |
MLE | 2% | 13.12 def | 13.71 cd | 13.63 g | 15.06 g |
4% | 13.32 cde | 13.98 c | 15.43 e | 17.63 d | |
6% | 13.83 cd | 14.72 b | 16.50 cd | 18.03 cd | |
SWE | 1000 ppm | 13.22 cde | 13.82 c | 14.57 f | 15.72 f |
2000 ppm | 13.81 cd | 14.00 c | 15.94 de | 17.78 cd | |
3000 ppm | 14.64 b | 15.04 b | 17.01 bc | 18.32 bc | |
Combinations | 1 | 12.65 ef | 13.80 c | 15.37 e | 16.96 e |
2 | 13.89 c | 14.88 b | 17.52 b | 18.81 b | |
3 | 15.37 a | 15.81 a | 18.50 a | 20.43 a | |
LSD0.05 | 0.67 | 0.53 | 0.60 | 0.62 |
Treatments | Nitrogen (%) | Phosphorous (%) | Potassium (%) | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 1.41 f | 1.46 e | 0.39 f | 0.40 e | 0.95 f | 0.99 e |
MLE | 2% | 1.43 f | 1.48 e | 0.43 e | 0.43 de | 1.01 e | 1.01 e |
4% | 1.49 de | 1.54 d | 0.47 d | 0.49 c | 107 d | 1.10 d | |
6% | 1.51 d | 1.61 c | 0.49 cd | 0.52 b | 1.12 c | 1.13 cd | |
SWE | 1000 ppm | 1.47 e | 1.49 e | 0.46 d | 0.43 de | 1.00 e | 1.03 e |
2000 ppm | 1.48 de | 1.55 d | 0.47 d | 0.49 c | 1.08 d | 1.12 cd | |
3000 ppm | 1.58 c | 1.67 b | 0.51 bc | 0.52 b | 1.17 b | 1.16 c | |
Combinations | 1 | 1.47 e | 1.48 e | 0.46 d | 0.44 d | 1.06 d | 1.09 d |
2 | 1.63 b | 1.65 bc | 0.52 b | 0.54 b | 1.15 b | 1.22 b | |
3 | 1.76 a | 1.78 a | 0.54 a | 0.57 a | 1.24 a | 1.30 a | |
LSD0.05 | 0.03 | 0.04 | 0.02 | 0.03 | 0.04 | 0.04 |
Treatments | Boron (ppm) | Zinc (ppm) | Iron (ppm) | Manganese (ppm) | |||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 41.51 e | 45.22 d | 30.79 f | 33.19 f | 102.23 f | 103.73 f | 31.52 g | 33.90 d |
MLE | 2% | 44.33 e | 45.32 d | 31.11 f | 34.60 ef | 103.10 ef | 104.17 f | 33.74 f | 35.42 d |
4% | 48.68 d | 51.52 c | 36.03 cd | 36.70 de | 107.23 cd | 107.43 cd | 36.22 e | 38.76 c | |
6% | 53.64 c | 52.18 c | 36.15 cd | 37.58 cd | 109.40 bc | 111.10 bc | 38.97 cd | 41.76 b | |
SWE | 1000 ppm | 47.68 d | 46.57 d | 32.83 ef | 34.53 ef | 105.63 de | 105.70 ef | 35.44 e | 35.38 d |
2000 ppm | 51.68 c | 52.42 c | 34.53 de | 38.11 cd | 108.63 bcd | 108.77 cd | 37.92 d | 39.72 c | |
3000 ppm | 54.37 c | 53.87 c | 38.16 bc | 39.34 c | 110.13 bc | 112.50 b | 39.81 bc | 42.58 b | |
Combinations | 1 | 47.83 d | 47.31 d | 32.93 ef | 35.38 ef | 105.40 de | 106.33 def | 35.14 ef | 37.87 c |
2 | 57.88 b | 60.17 b | 39.17 b | 42.19 b | 111.23 b | 113.03 b | 40.55 b | 42.51 b | |
3 | 63.10 a | 64.60 a | 42.73 a | 46.06 a | 115.13 a | 116.97 a | 42.29 a | 45.1 a | |
LSD0.05 | 3.00 | 3.14 | 2.45 | 2.07 | 3.00 | 2.53 | 1.42 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saif, A.M.; Ali, M.M.; Ben Hifaa, A.B.S.; Mosa, W.F.A. Influence of Spraying Some Biostimulants on Yield, Fruit Quality, Oil Fruit Content and Nutritional Status of Olive (Olea europaea L.) under Salinity. Horticulturae 2023, 9, 825. https://doi.org/10.3390/horticulturae9070825
Al-Saif AM, Ali MM, Ben Hifaa ABS, Mosa WFA. Influence of Spraying Some Biostimulants on Yield, Fruit Quality, Oil Fruit Content and Nutritional Status of Olive (Olea europaea L.) under Salinity. Horticulturae. 2023; 9(7):825. https://doi.org/10.3390/horticulturae9070825
Chicago/Turabian StyleAl-Saif, Adel M., Muhammad Moaaz Ali, Ahmed B. S. Ben Hifaa, and Walid F. A. Mosa. 2023. "Influence of Spraying Some Biostimulants on Yield, Fruit Quality, Oil Fruit Content and Nutritional Status of Olive (Olea europaea L.) under Salinity" Horticulturae 9, no. 7: 825. https://doi.org/10.3390/horticulturae9070825
APA StyleAl-Saif, A. M., Ali, M. M., Ben Hifaa, A. B. S., & Mosa, W. F. A. (2023). Influence of Spraying Some Biostimulants on Yield, Fruit Quality, Oil Fruit Content and Nutritional Status of Olive (Olea europaea L.) under Salinity. Horticulturae, 9(7), 825. https://doi.org/10.3390/horticulturae9070825