Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = Indian Summer Monsoon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 12428 KB  
Article
Seasonal Changes in Indoor Thermal Conditions and Thermal Comfort in Urban Houses in the Warm–Humid Climate of India
by Subhagata Mukhopadhyay, Nikhil Kumar, Tetsu Kubota, Shankha Pratim Bhattacharya, Hanief Ariefman Sani and Takashi Asawa
Buildings 2026, 16(2), 382; https://doi.org/10.3390/buildings16020382 - 16 Jan 2026
Viewed by 267
Abstract
Cities in India experience distinct seasons, including summer, winter and monsoons. the understanding of thermal comfort within modern houses throughout the different seasons is pivotal for determining a passive design strategy for residences, towards carbon neutrality. Long-term investigations were conducted within five typical [...] Read more.
Cities in India experience distinct seasons, including summer, winter and monsoons. the understanding of thermal comfort within modern houses throughout the different seasons is pivotal for determining a passive design strategy for residences, towards carbon neutrality. Long-term investigations were conducted within five typical houses in the warm–humid climate of Kharagpur, India, spanning three seasons from July 2023 to July 2024. These included air temperature (AT), relative humidity (RH), indoor wind speed and globe temperature for calculating standard effective temperature (SET*). The SET* was used in thermal comfort evaluation, focusing on the cooling effects of elevated wind speeds. The results showed that indoor ATs were well stabilized among the houses, ranging from 27 to 32 °C in monsoon, 20 to 23 °C in winter and 30 to 32 °C in summer on average, due to the effects of high thermal mass structure with relatively small openings. Overall, both the house-wise differences (1–2 °C) and diurnal differences (0.5–3 °C) were much smaller than the seasonal differences. It was found that the resultant indoor operative temperatures (OTs) did not fall within the required comfort levels during the summer and monsoons, whereas those of the winter months met the required standard. The current modern Indian houses of high thermal mass structure prevented flexible adaptations to the dynamic seasonal changes as well as changes within a day. The occupants tended to reduce the SET* by increasing the wind speeds with the assistance of mechanical air circulation, thus reducing the perceived AT by 5 °C in summers. Separate design strategies should be adopted seasonally and in different parts of the day, to maintain a thermally comfortable environment for the occupants. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 5455 KB  
Article
Multidecadal Variation Characteristics and Mechanism Analysis of Indian Summer Monsoon Precipitation During the Little Ice Age
by Guangxun Shi
Atmosphere 2026, 17(1), 90; https://doi.org/10.3390/atmos17010090 - 15 Jan 2026
Viewed by 148
Abstract
The Indian monsoon is an important component of the tropical climate system. Studies suggest that both precipitation from the NNU-2K AF experiments and Little Ice Age (LIA) proxy data reveal a significant 56-year period in the Indian summer monsoon (ISM). Volcanic activity influences [...] Read more.
The Indian monsoon is an important component of the tropical climate system. Studies suggest that both precipitation from the NNU-2K AF experiments and Little Ice Age (LIA) proxy data reveal a significant 56-year period in the Indian summer monsoon (ISM). Volcanic activity influences the multi-year and decadal characteristics of Indian monsoon precipitation. A comparative analysis of multi-decadal variations in ISM precipitation from the AF experiments and the single-factor sensitivity experiments shows a correlation of 0.45 (p < 0.05), indicating dependence on volcanic activity. The 56-year period of ISM precipitation in the AF experiments is consistent with both the single-factor sensitivity experiments and precipitation influenced by volcanic activity. Further analysis reveals that cooling over Eurasia and warming of the Indian Ocean weaken the thermal contrast between land and sea, thereby reducing ISM intensity and decreasing ISM precipitation. Conversely, enhanced volcanic activity induces widespread cooling across the Northern Hemisphere, which shifts the Intertropical Convergence Zone (ITCZ) southward. This reduction in evaporative capacity and moisture content within the monsoon region ultimately decreases precipitation across the monsoon belt. Full article
(This article belongs to the Special Issue Tropical Monsoon Circulation and Dynamics)
Show Figures

Figure 1

18 pages, 6191 KB  
Article
Statistical Analysis of Strong Breeze and Large Wave Events in the North Indian Ocean
by Zhiwei You, Ning Wang, Yongchui Zhang, Yuli Liu, Chaochao He, Lei Han, Haoyue Jiang and Changming Dong
J. Mar. Sci. Eng. 2026, 14(2), 149; https://doi.org/10.3390/jmse14020149 - 10 Jan 2026
Viewed by 217
Abstract
Ocean winds and waves play a vital role in maritime navigation safety, offshore operations, and coastal zone dynamics. Although both factors have been widely studied individually, the joint characterization of wind and wave events remains limited in the North Indian Ocean. This study, [...] Read more.
Ocean winds and waves play a vital role in maritime navigation safety, offshore operations, and coastal zone dynamics. Although both factors have been widely studied individually, the joint characterization of wind and wave events remains limited in the North Indian Ocean. This study, utilizing ERA5 reanalysis data from 1980 to 2022, statistically analyzed the distribution and variation patterns of both wind speed and significant wave height, investigating the occurrence, affected area proportion, frequency, and intensity of SBLWEs. To understand the cause of Strong Breeze and Large Wave Events (SBLWEs), their connections with other phenomena, such as tropical cyclones, were also explored. The results show that regions with strong breezes and large waves are mainly concentrated in the central and western Arabian Sea near Africa and the central and western Bay of Bengal. Monthly averages indicate that wind and wave intensity are much higher during the summer monsoon than in other seasons, with high intensity, probability, and extensive affected areas of SBLWEs. The occurrence probability of SBLWEs is highest in the central and western Arabian Sea (up to ~40%), and the highest probability in the Bay of Bengal is about 20% near the eastern coast of Sri Lanka. The peak period of SBLWEs occurs from June to August, with the largest affected area in July, reaching almost 25%. Over the past 40 years, the number of SBLWEs has shown an increasing trend, with an average of 0.7 events annually. The intensity distribution of SBLWEs resembles that of wind speed and wave height, with the highest intensity areas concentrated in the Bay of Bengal, affected by tropical cyclones. This study can serve as a scientific reference for maritime route planning and offshore operations, helping to reduce the negative impacts of large wind and wave events and enhance navigation safety. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

22 pages, 14987 KB  
Article
The Characteristics and Mechanism of the Inter-Centennial Variations in Indian Summer Monsoon Precipitation
by Guangxun Shi, Shushuang Liu and Mingli Zhang
Water 2026, 18(1), 17; https://doi.org/10.3390/w18010017 - 20 Dec 2025
Cited by 1 | Viewed by 436
Abstract
Both the CESM-simulated NNU-2K dataset and proxy reconstructions of Indian Summer Monsoon (ISM) precipitation over the past two millennia reveal a significant centennial-scale period, including periodicities of 105, 150, and 200 years. The 105- and 200-year cycles identified in the NNU-2K all-forcing (AF) [...] Read more.
Both the CESM-simulated NNU-2K dataset and proxy reconstructions of Indian Summer Monsoon (ISM) precipitation over the past two millennia reveal a significant centennial-scale period, including periodicities of 105, 150, and 200 years. The 105- and 200-year cycles identified in the NNU-2K all-forcing (AF) experiment closely match those found in the volcanic single-forcing (Vol) experiment, suggesting that volcanic activity is a major driver of these variations. Volcanic forcing induces global cooling, which reduces the land–sea thermal contrast and weakens the monsoon circulation. Furthermore, stronger cooling in the Northern Hemisphere decreases the interhemispheric temperature gradient and weakens the trans-equatorial pressure gradient. This, in turn, suppresses cross-equatorial low-level flow from the Southern Hemisphere, further reducing ISM precipitation. The 105- and 150-year periodicities are also consistent with those in the total solar irradiance (TSI) single-forcing experiment, indicating a substantial response to solar variability. Increased solar irradiance enhances Northern Hemisphere warming, strengthening both the interhemispheric temperature gradient and the cross-equatorial pressure gradient. These changes facilitate stronger northward cross-equatorial flow in the lower troposphere, intensifying the ISM and increasing precipitation. Concurrently, solar forcing amplifies the thermal contrast between the Eurasian continent and the Indian Ocean, further reinforcing monsoon circulation. The 150-year cycle is also evident in the control (Ctrl) experiment, implicating internal climate variability as an additional mechanism. Analysis reveals a quasi-decadal Pacific Decadal Oscillation (PDO)-like sea surface temperature anomaly in the North Pacific. Its negative phase is linked to reduced sea-level pressure over the ISM region, enhanced low-level convergence, and increased precipitation. It also strengthens the Mascarene High over the Indian Ocean, intensifying the Somali Jet and southwesterly monsoon winds, which promote greater moisture transport into the ISM domain. Full article
(This article belongs to the Special Issue Monsoon Environmental Changes and Fluvial Sedimentation Processes)
Show Figures

Figure 1

14 pages, 4164 KB  
Article
Quantifying Moisture Source Contributions to Diverse Precipitation Events over the Tibetan Plateau
by Beiming Kang, Yan Ren, Yang Shi, Xiaomei Zhu, Jingjing Huang and Wenwen Bai
Water 2025, 17(24), 3587; https://doi.org/10.3390/w17243587 - 17 Dec 2025
Viewed by 531
Abstract
The Tibetan Plateau (TP), known as the “Asian Water Tower,” plays a critical role in regional and global climate systems. However, water resource sustainability is increasingly threatened under climate change and growing demand. While moisture transport mechanisms for summer monsoon and extreme precipitation [...] Read more.
The Tibetan Plateau (TP), known as the “Asian Water Tower,” plays a critical role in regional and global climate systems. However, water resource sustainability is increasingly threatened under climate change and growing demand. While moisture transport mechanisms for summer monsoon and extreme precipitation events have been widely studied, the understanding of moisture sources for different precipitation intensities remains limited. This study employs the Lagrangian-based HYSPLIT model to quantify moisture source contributions to three types of precipitation events—extreme precipitation (EP), moderate precipitation (MP), and light precipitation (LP)—over the TP from 1979 to 2020. Using trajectory clustering and moisture source diagnostics, we identify dominant transport pathways and their relative contributions. Results show that EP and MP events are primarily influenced by the Indian monsoon, with the Bay of Bengal and Arabian Sea as key sources, while LP events are dominated by westerlies. The western pathway contributes 15.55%, 36.28%, and 59.59% to EP, MP, and LP events, respectively, whereas the monsoon pathway accounts for 40.56%, 28.23%, and 31.21%. External moisture sources dominate across all event types (average 87.7%), with local recycling contributions decreasing from LP (12.90%) to EP (11.55%). These findings enhance the understanding of moisture–precipitation coupling mechanisms over the TP and provide a scientific basis for water resource management under changing climate conditions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

20 pages, 5810 KB  
Article
A Time-Dependent Intrinsic Correlation Analysis to Identify Teleconnection Between Climatic Oscillations and Extreme Climatic Indices Across the Southern Indian Peninsula
by Ali Danandeh Mehr, Athira Ajith, Adarsh Sankaran, Mohsen Maghrebi, Rifat Tur, Adithya Sandhya Saji, Ansalna Nizar and Misna Najeeb Pottayil
Atmosphere 2025, 16(12), 1395; https://doi.org/10.3390/atmos16121395 - 11 Dec 2025
Viewed by 377
Abstract
Large-scale climatic oscillations (COs) modulate extreme climate events (ECEs) globally and can trigger the Indian summer monsoons and associated ECEs. In this study, we introduced a Time-dependent Intrinsic Correlation (TDIC) analysis to quantify teleconnections between five major COs—the El Niño–Southern Oscillation (ENSO), Atlantic [...] Read more.
Large-scale climatic oscillations (COs) modulate extreme climate events (ECEs) globally and can trigger the Indian summer monsoons and associated ECEs. In this study, we introduced a Time-dependent Intrinsic Correlation (TDIC) analysis to quantify teleconnections between five major COs—the El Niño–Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO)—and multiple extreme climate indices (ECIs) over the southern Indian Peninsula. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was employed to decompose COs and ECIs into intrinsic mode functions across varying timescales, enabling a dynamic TDIC assessment. The results revealed statistically significant correlations between COs and ECIs, with the strongest influences in low-frequency modes (>10 years). Distinct COs predominantly modulate specific ECIs (e.g., ENSO with monsoon rainfall extremes; AMO and PDO with temperature extremes). These findings advance the understanding of Indian climate system dynamics and support the development of improved ECE forecasting models. Full article
(This article belongs to the Special Issue Atmosphere-Ocean Interactions: Observations, Theory, and Modeling)
Show Figures

Figure 1

15 pages, 8138 KB  
Article
Winds over the Red Sea and NE African Summer Climate
by Mark R. Jury
Climate 2025, 13(10), 215; https://doi.org/10.3390/cli13100215 - 17 Oct 2025
Viewed by 1008
Abstract
This study analyzes winds over the Red Sea (17 N, 39.5 E) and consequences for the northeast African climate in early summer (May–July). As the Indian SW monsoon commences, NNW winds > 6 m/s are channeled over the Red Sea between 2000 m [...] Read more.
This study analyzes winds over the Red Sea (17 N, 39.5 E) and consequences for the northeast African climate in early summer (May–July). As the Indian SW monsoon commences, NNW winds > 6 m/s are channeled over the Red Sea between 2000 m highlands, forming a low-level jet. Although sea surface temperatures of 30C instill evaporation of 8 mm/day and surface humidity of 20 g/kg, the air mass above the marine layer is dry and dusty (6 g/kg, 100 µg/m3). Land–sea temperature gradients drive afternoon sea breezes and orographic rainfall (~4 mm/day) that accumulate soil moisture in support of short-cycle crops such as teff. Statistical analyses of satellite and reanalysis datasets are employed to reveal the mesoscale structure and temporal response of NE African climate to marine winds via air chemistry data alongside the meteorological elements. The annual cycle of dewpoint temperature often declines from 12C to 4C during the Indian SW monsoon onset, followed by dusty NNW winds over the Red Sea. Consequences of a 14 m/s wind surge in June 2015 are documented via analysis of satellite and meteorological products. Moist convection was stunted, according to Cloudsat reflectivity, creating a dry-east/moist-west gradient over NE Africa (13–14.5 N, 38.5–40 E). Diurnal cycles are studied via hourly data and reveal little change for advected dust and moisture but large amplitude for local heat fluxes. Inter-annual fluctuations of early summer rainfall depend on airflows from the Red Sea in response to regional gradients in air pressure and temperature and the SW monsoon over the Arabian Sea. Lag correlation suggests that stronger NNW winds herald the onset of Pacific El Nino. Full article
Show Figures

Figure 1

12 pages, 2888 KB  
Article
Magnetic Component Unmixing of a Lacustrine Sedimentary Drill Core from Heqing Basin
by Xinwen Xu and Qing Zhao
Atmosphere 2025, 16(9), 1031; https://doi.org/10.3390/atmos16091031 - 30 Aug 2025
Viewed by 659
Abstract
Long and continuous lacustrine sediments in Southwest China provide exceptional records of the Indian summer monsoon (ISM) evolution. Rock magnetic and environmental magnetic methods have significant roles in these lacustrine studies. However, lacustrine sedimentary environments are complex and magnetic mineral signatures can be [...] Read more.
Long and continuous lacustrine sediments in Southwest China provide exceptional records of the Indian summer monsoon (ISM) evolution. Rock magnetic and environmental magnetic methods have significant roles in these lacustrine studies. However, lacustrine sedimentary environments are complex and magnetic mineral signatures can be altered by post-depositional processes. This study applies isothermal remanent magnetization (IRM) component unmixing methods to lacustrine sediments from the Heqing core, to identify and quantify magnetic mineral components. We analyzed 104 samples based on lithological variations and magnetic susceptibility (χ) to examine the composition of magnetic minerals and their relative contributions. Three distinct magnetic components were identified in IRM component unmixing results: a low-coercivity detrital component, a medium-coercivity authigenic component, and a hard magnetic component. Based on rock magnetic results, the medium-coercivity component was attributed to greigite. These components exhibit stratigraphic trends that reflect changes in paleoenvironmental conditions. The medium-coercivity component shows an upwards decrease, indicating a significant change in ISM science at about 1.8 Ma. The study highlights the importance of considering post-depositional processes when interpreting magnetic mineral signatures in lacustrine sediments. The CLG model, combined with conventional rock magnetic analyses, provides a rapid approach for characterizing magnetic assemblages in weakly magnetic sediments. Full article
(This article belongs to the Special Issue Paleoclimate Changes and Dust Cycle Recorded by Eolian Sediments)
Show Figures

Figure 1

23 pages, 5245 KB  
Article
Machine Learning Reconstruction of Wyrtki Jet Seasonal Variability in the Equatorial Indian Ocean
by Dandan Li, Shaojun Zheng, Chenyu Zheng, Lingling Xie and Li Yan
Algorithms 2025, 18(7), 431; https://doi.org/10.3390/a18070431 - 14 Jul 2025
Viewed by 739
Abstract
The Wyrtki Jet (WJ), a pivotal surface circulation system in the equatorial Indian Ocean, exerts significant regulatory control over regional climate dynamics through its intense eastward transport characteristics, which modulate water mass exchange, thermohaline balance, and cross-basin energy transfer. To address the scarcity [...] Read more.
The Wyrtki Jet (WJ), a pivotal surface circulation system in the equatorial Indian Ocean, exerts significant regulatory control over regional climate dynamics through its intense eastward transport characteristics, which modulate water mass exchange, thermohaline balance, and cross-basin energy transfer. To address the scarcity of in situ observational data, this study developed a satellite remote sensing-driven multi-parameter coupled model and reconstructed the WJ’s seasonal variations using the XGBoost machine learning algorithm. The results revealed that wind stress components, sea surface temperature, and wind stress curl serve as the primary drivers of its seasonal dynamics. The XGBoost model demonstrated superior performance in reconstructing WJ’s seasonal variations, achieving coefficients of determination (R2) exceeding 0.97 across all seasons and maintaining root mean square errors (RMSE) below 0.2 m/s across all seasons. The reconstructed currents exhibited strong consistency with the Ocean Surface Current Analysis Real-time (OSCAR) dataset, showing errors below 0.05 m/s in spring and autumn and under 0.1 m/s in summer and winter. The proposed multi-feature integrated modeling framework delivers a high spatiotemporal resolution analytical tool for tropical Indian Ocean circulation dynamics research, while simultaneously establishing critical data infrastructure to decode monsoon current coupling mechanisms, advancing early warning systems for extreme climatic events, and optimizing regional marine resource governance. Full article
Show Figures

Figure 1

27 pages, 6883 KB  
Review
An Overview of the Indian Monsoon Using Micropaleontological, Geochemical, and Artificial Neural Network (ANN) Proxies During the Late Quaternary
by Harunur Rashid, Xiaohui He, Yang Wang, C. K. Shum and Min Zeng
Geosciences 2025, 15(7), 241; https://doi.org/10.3390/geosciences15070241 - 24 Jun 2025
Cited by 1 | Viewed by 1958
Abstract
Atmospheric pressure gradients determine the dynamics of the southwest monsoon (SWM) and northeast monsoon (NEM), resulting in rainfall in the Indian subcontinent. Consequently, the surface salinity, mixed layer, and thermocline are impacted by the seasonal freshwater outflow and direct rainfall. Moreover, seasonally reversing [...] Read more.
Atmospheric pressure gradients determine the dynamics of the southwest monsoon (SWM) and northeast monsoon (NEM), resulting in rainfall in the Indian subcontinent. Consequently, the surface salinity, mixed layer, and thermocline are impacted by the seasonal freshwater outflow and direct rainfall. Moreover, seasonally reversing monsoon gyre and associated currents govern the northern Indian Ocean surface oceanography. This study provides an overview of the impact of these dynamic changes on sea surface temperature, salinity, and productivity by integrating more than 3000 planktonic foraminiferal censuses and bulk sediment geochemical data from sediment core tops, plankton tows, and nets between 25° N and 10° S and 40° E and 110° E of the past six decades. These data were used to construct spatial maps of the five most dominant planktonic foraminifers and illuminate their underlying environmental factors. Moreover, the cured foraminiferal censuses and the modern oceanographic data were used to test the newly developed artificial neural network (ANN) algorithm to calculate the relationship with modern water column temperatures (WCTs). Furthermore, the tested relationship between the ANN derived models was applied to two foraminiferal censuses from the northern Bay of Bengal core MGS29-GC02 (13°31′59″ N; 91°48′21″ E) and the southern Bay of Bengal Ocean Drilling Program (ODP) Site 758 (5°23.05′ N; 90°21.67′ E) to reconstruct the WCTs of the past 890 ka. The reconstructed WCTs at the 10 m water depth of core GC02 suggest dramatic changes in the sea surface during the deglacial periods (i.e., Bolling–Allerǿd and Younger Dryas) compared to the Holocene. The WCTs at Site 758 indicate a shift in the mixed-layer summer temperature during the past 890 ka at the ODP Site, in which the post-Mid-Brunhes period (at 425 ka) was overall warmer than during the prior time. However, the regional alkenone-derived sea-surface temperatures (SSTs) do not show such a shift in the mixed layer. Therefore, this study hypothesizes that the divergence in regional SSTs is most likely due to differences in seasonality and depth habitats in the paleo-proxies. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

21 pages, 4801 KB  
Article
Projection of Cloud Vertical Structure and Radiative Effects Along the South Asian Region in CMIP6 Models
by Praneta Khardekar, Hemantkumar S. Chaudhari, Vinay Kumar and Rohini Lakshman Bhawar
Atmosphere 2025, 16(6), 746; https://doi.org/10.3390/atmos16060746 - 18 Jun 2025
Viewed by 1008
Abstract
The evaluation of cloud distribution, properties, and their interaction with the radiation (longwave and shortwave) is of utmost importance for the proper assessment of future climate. Therefore, this study focuses on the Coupled Model Inter-Comparison Project Phase-6 (CMIP6) historical and future projections using [...] Read more.
The evaluation of cloud distribution, properties, and their interaction with the radiation (longwave and shortwave) is of utmost importance for the proper assessment of future climate. Therefore, this study focuses on the Coupled Model Inter-Comparison Project Phase-6 (CMIP6) historical and future projections using the Shared Socio-Economic Pathways (SSPs) low- (ssp1–2.6), moderate- (ssp2–4.5), and high-emission (ssp5–8.5) scenarios along the South Asian region. For this purpose, a multi-model ensemble mean approach is employed to analyze the future projections in the low-, mid-, and high-emission scenarios. The cloud water content and cloud ice content in the CMIP6 models show an increase in upper and lower troposphere simultaneously in future projections as compared to ERA5 and historical projections. The longwave and shortwave cloud radiative effects at the top of the atmosphere are examined, as they offer a global perspective on radiation changes that influence atmospheric circulation and climate variability. The longwave cloud radiative effect (44.14 W/m2) and the shortwave cloud radiative effect (−73.43 W/m2) likely indicate an increase in cloud albedo. Similarly, there is an expansion of Hadley circulation (intensified subsidence) towards poleward, indicating the shifting of subtropical high-pressure zones, which can influence regional monsoon dynamics and cloud distributions. The impact of future projections on the tropospheric temperature (200–600 hPa) is studied, which seems to become more concentrated along the Tibetan Plateau in the moderate- and high-emission scenarios. This increase in the tropospheric temperature at 200–600 hPa reduces atmospheric stability, allowing stronger convection. Hence, the strengthening of convective activities may be favorable in future climate conditions. Thus, the correct representation of the model physics, cloud-radiative feedback, and the large-scale circulation that drives the Indian Summer Monsoon (ISM) is of critical importance in Coupled General Circulation Models (GCMs). Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

12 pages, 2196 KB  
Article
Post-El Niño Influence on Summer Monsoon Rainfall in Sri Lanka
by Pathmarasa Kajakokulan and Vinay Kumar
Water 2025, 17(11), 1664; https://doi.org/10.3390/w17111664 - 30 May 2025
Viewed by 2688
Abstract
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying [...] Read more.
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying El Niño events. Results indicate that fast-decaying El Niño events lead to wet and cool summers while slow-decaying events result in dry and warm summers. These contrasting responses are linked to sea surface temperature (SST) changes in the central to eastern Pacific. During the fast-decaying El Niño, the transition to La Niña generates strong easterlies in the central and eastern Pacific, enhancing moisture convergence, upward motion, and cloud cover, resulting in wetter conditions over Sri Lanka. During the fast-decaying El Niño, enhanced precipitation over the Maritime Continent acts as a diabatic heating source, inducing Gill-type easterly wind anomalies over the tropical Pacific. These winds promote coupled feedbacks that accelerate the transition to La Niña, strengthening moisture convergence and upward motion over Sri Lanka. Conversely, slow-decaying El Niño events are associated with cooling in the western North Pacific and warming in the Indian Ocean, which promotes the development of the western North Pacific anticyclone, suppressing upward motion and reducing cloud cover, leading to conditions over Sri Lanka. Changes in the Walker circulation further contribute to these distinct rainfall patterns, highlighting its influence on regional climate dynamics. These findings enhance our understanding of the seasonal predictability of rainfall in Sri Lanka during post-El Niño Summers. Full article
Show Figures

Figure 1

23 pages, 2743 KB  
Article
Aerosol, Clouds and Radiation Interactions in the NCEP Unified Forecast Systems
by Anning Cheng and Fanglin Yang
Meteorology 2025, 4(2), 14; https://doi.org/10.3390/meteorology4020014 - 23 May 2025
Viewed by 2016
Abstract
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and [...] Read more.
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and semi-direct aerosol effects. The sensitivity experiment (EXP ACI) couples aerosols with both radiation and Thompson microphysics, accounting for aerosol indirect effects and fully interactive aerosol–cloud dynamics. Introducing aerosol and cloud interactions results in net cooling at the top of the atmosphere (TOA). Further analysis shows that the EXP ACI produces more liquid water at lower levels and less ice water at higher levels compared to the EXP CTL. The aerosol optical depth (AOD) shows a good linear relationship with cloud droplet number concentration, similar to other climate models, though with larger standard deviations. Including aerosol and cloud interactions generally enhances simulations of the Indian Summer Monsoon, stratocumulus, and diurnal cycles. Additionally, the study evaluates the impacts of aerosols on deep convection and cloud life cycles. Full article
Show Figures

Figure 1

16 pages, 6912 KB  
Article
The Interannual Cyclicity of Precipitation in Xinjiang During the Past 70 Years and Its Contributing Factors
by Wenjie Ma, Xiaokang Liu, Shasha Shang, Zhen Wang, Yuyang Sun, Jian Huang, Mengfei Ma, Meihong Ma and Liangcheng Tan
Atmosphere 2025, 16(5), 629; https://doi.org/10.3390/atmos16050629 - 21 May 2025
Viewed by 1139
Abstract
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional [...] Read more.
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional precipitation from 1951 to 2021 and analyze its contributing factors. The results indicated that the mean annual precipitation in Xinjiang (MAP_XJ) was dominated by a remarkably increasing trend over the past 70 years, which was superimposed by two bands of interannual cycles of approximately 3 years with explanatory variance of 56.57% (Band I) and 6–7 years with explanatory variance of 23.38% (Band II). This is generally consistent with previous studies on the cyclicity of precipitation in Xinjiang for both seasonal and annual precipitation. We analyzed the North Tropical Atlantic sea-surface temperature (NTASST), El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and Indian Summer Monsoon (ISM) as potential forcing factors that show similar interannual cycles and may contribute to the identified precipitation variability. Two approaches, multivariate linear regression and the Random Forest model, were employed to ascertain the relative significance of each factor influencing Bands I and II, respectively. The multivariate linear regression analysis revealed that the AO index contributed the most to Band I, with a significance score of −0.656, whereas the ENSO index with a one-year lead (ENSO−1yr) played a dominant role in Band II (significance score = 0.457). The Random Forest model also suggested that the AO index exhibited the highest significance score (0.859) for Band I, whereas the AO index with a one-year lead (AO−1yr) had the highest significance score (0.876) for Band II. Overall, our findings highlight the necessity of employing different methods that consider both the linear and non-linear response of climate variability to driving factors crucial for future climate prediction. Full article
(This article belongs to the Special Issue Desert Climate and Environmental Change: From Past to Present)
Show Figures

Figure 1

20 pages, 8438 KB  
Article
Primary Interannual Variability Modes of Summer Moisture Transports in the Tibetan Plateau
by Junhan Lan, Hong-Li Ren, Jieru Ma and Bin Chen
Remote Sens. 2025, 17(9), 1508; https://doi.org/10.3390/rs17091508 - 24 Apr 2025
Cited by 1 | Viewed by 949
Abstract
Moisture transports play a key role in maintaining the hydrometeorological cycle and forming its climate variability over the Tibetan Plateau (TP), also known as the “Asian water tower”. This study focuses on understanding the interannual variability mode characteristics of moisture transport in the [...] Read more.
Moisture transports play a key role in maintaining the hydrometeorological cycle and forming its climate variability over the Tibetan Plateau (TP), also known as the “Asian water tower”. This study focuses on understanding the interannual variability mode characteristics of moisture transport in the TP in boreal summer, using satellite-based analysis and reanalysis data from 1983 to 2022 with a combined empirical orthogonal function (EOF) analysis. We identified the first two primary interannual modes of TP summer water vapor fluxes, which are primarily characterized by zonal and meridional dipole patterns, respectively. The zonal pattern of the TP water vapor flux dominates the TP and East Asian summer rainfall variability, while the meridional pattern of the TP water vapor flux tends to be a result of the South Asian summer rainfall and its circulation anomalies. The tropical Indo-Pacific sea surface temperature (SST) variations, such as El Niño and Indian Ocean SST modes, have significantly delayed relationships with the interannual variability modes of the summer water vapor fluxes over the TP, indicating a significant modulation effect of the low-latitude oceanic variability on the interannual variations in TP summer moisture transport. These results deepen our understanding of the relationship between TP moisture transport and summer monsoonal rainfall variability, as well as the influence of the tropical oceans. Full article
Show Figures

Figure 1

Back to TopTop