An Overview of the Indian Monsoon Using Micropaleontological, Geochemical, and Artificial Neural Network (ANN) Proxies During the Late Quaternary
Abstract
1. Introduction
2. Modern Surface and Deep Circulation of the Indian Ocean
3. Materials and Methods
4. Results and Discussion
4.1. Relationships Between the Sediment Carbonate Concentration and Modern Foraminiferal Distribution
4.2. Modern Foraminiferal Distribution, Surface Currents, and Deep Circulation
4.3. WCTs at the Northern and Southern Bay of Bengal Core MGS29-GC02 and Site 758
4.3.1. Northern Bay of Bengal WCTs from Core MGS29-GC02 During the Last 15 ka
4.3.2. WCTs from the Southern Bay of Bengal ODP Site 758 During the Past 890 ka
4.4. Complexities in the Northern Indian Ocean’s Last Glacial Cycle Temperature Records
5. Conclusions
- (i)
- The improved spatial maps suggest that the low abundance of foraminiferal tests and % wtCaCO3 on the continental margin is most likely due to the large supply of terrigenous sediments borne by the numerous large rivers traversing the Indian subcontinent. However, the low % wtCaCO3 concentration and low abundance of foraminiferal tests in the deep basins such as the Somali Basin, Central Indian Basin, and Wharton Basin are due to the dissolution of carbonate as a result of intrusion by the low bottom water [CO32−]-bearing AABW.
- (ii)
- The most abundant Globigerinoides ruber (white), with a >30% concentration on the western Indian margin and southern equatorial Indian Ocean but >20% in the eastern Bay of Bengal, the Andaman Sea, and the Java coast, was found. The abundance of Globigerina bulloides is >30% in the upwelling region of the western Arabian Sea, but is also common (<10%) in the western BoB continental margin and the southern tip of India. G. sacculifer is ubiquitous in the northern Indian Ocean but is scarce in the western Arabian Sea. The abundance of Pulleniatina obliquiloculata is ~5%, with >10% scattered patches, but its abundance increases in the southwestern Indian Ocean. Neogloboquadrina dutertrei shows a near-identical distribution to P. obliquiloculata, except the former has a high concentration in the eastern Bay of Bengal. The dissolution-resistant characteristics of N. dutertrei and P. obliquiloculata tests facilitated their high preservation in the equatorial and southern Indian Ocean, even with the circulation of the Antarctic Bottom water. In contrast to the open Indian Ocean, the low foraminiferal concentration on the continental margin is most likely influenced by the terrestrial dilution.
- (iii)
- The reconstructed WCTs from core MGS29-GC02 suggest various influences from the freshwater during the Bolling–Allerǿd, Younger Dryas, and Holocene. Moreover, the WCTs from ODP Site 758 suggest a one-step change in the mixed-layer (i.e., 10 m water depth) temperature during the summer. However, no discernible change in temperature at 100 m and 200 m water depths was found. In contrast to ODP Site 758, the alkenone-derived sea-surface temperature at the western Arabian Sea ODP Site 722 shows canonical glacial–interglacial climate cycles of the last 1 Ma.
- (iv)
- There are divergences between the WCTs and alkenone-derived SSTs among the regional temperature composite, which could either be due to changes in depth habitats and seasonality in the paleo-proxies or be impacted by the upwelling of cold water.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kutzbach, J.E.; Street-Perrott, F.A. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 1985, 317, 130–134. [Google Scholar] [CrossRef]
- Webster, P.; Magana, V.O.; Palmer, T.; Shukla, J.; Thomas, R.; Yanai, M.; Yasunari, T. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophy. Res. 1998, 1031, 14451–14510. [Google Scholar] [CrossRef]
- Mei, R.; Ashfaq, M.; Rastogi, D.; Leung, L.R.; Dominguez, F. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century. J. Climate 2015, 28, 3400–3419. [Google Scholar] [CrossRef]
- Hunt, K.M.R.; Fletcher, J.K. The relationship between Indian monsoon rainfall and low-pressure systems. Clim. Dyn. 2019, 53, 1859–1871. [Google Scholar] [CrossRef]
- Hurley, J.; Boos, W. A global climatology of monsoon low-pressure systems. Quarter. J. Roy. Meteoro. Soc. 2014, 141, 1049–1064. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.P.; Zhai, A.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M.; et al. (Eds.) Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Gupta, A.K.; Anderson, D.M.; Overpeck, J.T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 2003, 421, 354–357. [Google Scholar] [CrossRef]
- Kathayat, G.; Sinha, A.; Breitenbach, S.; Tan, L.; Spötl, C.; Li, H.; Dong, X.; Zhang, H.; Ning, Y.; Allan, R.; et al. Protracted Indian monsoon droughts of the past millennium and their societal impacts. Proc. Nat. Acad. Sci. USA 2022, 119, e2207487119. [Google Scholar] [CrossRef]
- Sengupta, D.; Raj, B.; Shenoi, S. Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the Tropical Indian Ocean. Geophy. Res. Lett. 2006, 33, L22609. [Google Scholar] [CrossRef]
- Geen, R.; Bordoni, S.; Battisti, D.S.; Hui, K. Monsoons, ITCZs, and the Concept of the Global Monsoon. Rev. Geophy. 2020, 58, e2020RG000700. [Google Scholar] [CrossRef]
- Bastia, F.; Equeenuddin, S.M. Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India. Global Planet. Change 2016, 144, 51–66. [Google Scholar]
- Dey, S.; Dash, M.; Sasmal, K.; Jana, S.; Nadimpalli, J. Impact of river runoff on seasonal sea level, Kelvin waves, and East India Coastal Current in the Bay of Bengal: A numerical study using ROMS. Reg. Stud. Mar. Sci. 2020, 35, 101214. [Google Scholar] [CrossRef]
- Akhil, V.P.; Durand, F.; Lengaigne, M.; Vialard, J.; Keerthi, M.G.; Gopalakrishna, V.V.; Deltel, C.; Papa, F.; de Boyer Montégut, C. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. J. Geophy. Res. Oceans 2014, 119, 3926–3947. [Google Scholar] [CrossRef]
- Curry, W.B.; Ostermann, D.R.; Guptha, M.V.S.; Ittekkot, V. Foraminiferal production and monsoonal upwelling in the Arabian Sea: Evidence from sediment traps. Geol. Soc. Lond. Sp. Pub. 1992, 64, 93–106. [Google Scholar] [CrossRef]
- Vishal, C.R.; Gauns, M.U.; Pratihary, A.K. Suboxic waters of the eastern Arabian Sea shelter secondary chlorophyll maximum dominated by heterotrophic dinoflagellate Pronoctiluca spp. (order Noctilucales). Eviron. Monitorin. Ass. 2025, 197. [Google Scholar] [CrossRef]
- Ganapati, P.M.; Murphy, V.S.R. Salinity and temperature variation of surface waters off the Visakhapatnam coast. Univ. Mem. Oceanogr. I 1954, 49, 125–142. [Google Scholar]
- Shankar, D.; Vinaychandran, P.N.; Unnikrishnan, A.S. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 2002, 52, 63–120. [Google Scholar] [CrossRef]
- Rashid, H.; Flower, B.P.; Poore, R.Z.; Quinn, T.M. A ~25 ka monsoon variability record from the Andaman Sea. Quat. Sci. Rev. 2007, 26, 2586–2597. [Google Scholar] [CrossRef]
- Murata, F.; Terao, T.; Hayashi, T.; Asada, H.; Matsumoto, J. Relationship between the atmospheric conditions at Dhaka, Bangladesh, and rainfall at Cherrapunjee, India. Nat. Hazards 2008, 44, 399–410. [Google Scholar] [CrossRef]
- Reagan, J.R.; Boyer, T.P.; García, H.E.; Locarnini, R.A.; Baranova, O.K.; Bouchard, C.; Cross, S.L.; Mishonov, A.V.; Paver, C.R.; Seidov, D.; et al. World Ocean Atlas 2023; Dataset: NCEI Accession 0270533; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2024. [Google Scholar]
- Locarnini, R.A.; Mishonov, A.V.; Baranova, O.K.; Reagan, J.R.; Boyer, T.P.; Seidov, D.; Wang, Z.; Garcia, H.E.; Bouchard, C.; Cross, S.L.; et al. World Ocean Atlas 2023, Volume 1: Temperature. National Centers for Environmental Information (U.S.); NOAA Atlas NESDIS 89; NOAA National Centers for Environmental Information (NCEI): Silver Spring, MD, USA, 2024. [Google Scholar]
- Molnar, P.; England, P.; Martinod, J. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophy. 1993, 31, 357–396. [Google Scholar] [CrossRef]
- Raymo, M.E.; Ruddiman, W.F. Tectonic forcing of Late Cenozoic climate. Nature 1992, 359, 117–122. [Google Scholar] [CrossRef]
- Clift, P.D.; Betzler, C.; Clemens, S.C.; Christensen, B.; Eberli, G.P.; France-Lanord, C.; Gallagher, S.; Holbourn, A.; Kuhnt, W.; Murray, R.W.; et al. A synthesis of monsoon exploration in the Asian marginal seas. Sci. Drilling 2022, 31, 1–29. [Google Scholar] [CrossRef]
- Bé, A.W.H.; Hamlin, W.H. Ecology of Recent Planktonic Foraminifera: Part 3: Distribution in the North Atlantic during the Summer of 1962. Micropaleontology 1967, 13, 87–106. [Google Scholar] [CrossRef]
- Bé, A.W.H.; Tolderlund, D.S. Distribution and ecology of living planktic foraminifera in surface waters of the Atlantic and Indian oceans. In Micropaleontology of Oceans; Funnell, B.M., Riedel, W.R., Eds.; Cambridge University Press: New York, NY, USA, 1971; pp. 105–149. [Google Scholar]
- Rashid, H.; Lu, Q.-Q.; Zeng, M.; Wang, Y.; Zhang, Z.-W. Sea-Surface Characteristics of the Newfoundland Basin of the Northwest Atlantic Ocean during the Last 145,000 Years: A Study Based on the Sedimentological and Paleontological Proxies. Appl. Sci. 2021, 11, 3343. [Google Scholar] [CrossRef]
- Schafer, C.T.; Rashid, H. Can planktonic Foraminifera help to implement the New United Nations High Seas Treaty? Proc. Nova Scotian Inst. Sci. 2024, 53, 205–217. [Google Scholar]
- Zeng, M.; Rashid, H.; Zhou, Y.-X.; McManus, J.F.; Wang, Y. Dynamics of the subpolar gyre and transition zone of the North Atlantic during the last glacial cycle. Quarter. Sci. Rev. 2023, 314, 108215. [Google Scholar] [CrossRef]
- Imbrie, J.; Kipp, N.G. Chapter: A New Micropaleontological Method for Quantitative Paleoclimatology: Application to a Late Pleistocene Caribbean Core. In The Late Cenozoic Glacial Ages; Turekian, K., Ed.; Yale University Press: New Haven, CT, USA, 1971; pp. 71–181. [Google Scholar]
- Kipp, N.G. New transfer function for estimating past sea-surface conditions from seabed distribution of planktonic foraminifera in the North Atlantic. In Investigation of Late Quaternary Paleoceanography and Paleoclimatology; Cline, R.M., Hays, J.D., Eds.; Geological Society of America Memoir: Boulder, CO, USA, 1976; Volume 145, pp. 3–41. [Google Scholar]
- Hutson, W.H.; Prell, W.L. A Paleoecological Transfer Function, FI-2, for Indian Ocean Planktonic Foraminifera. J. Paleontol. 1980, 54, 381–398. [Google Scholar]
- CLIMAP Project Members. The surface of the ice-age Earth. Science 1976, 191, 1131–1137. [Google Scholar] [CrossRef]
- CLIMAP Project Members. Seasonal Reconstructions of the Earth’s Surface at the Last Glacial Maximum. Geol. Soc. Amer. Map Chart Ser. 1981, MC-36, 1–18. [Google Scholar]
- Prell and the Brown University group (1980, 1984). NOAA National Centers for Environmental Information. Available online: https://doi.org/10.25921/WMEJ-6P14 (accessed on 2 January 2025).
- Prell, W.L.; Hutson, W.H.; Williams, D.F.; Bé, A.W.H.; Geitzenauer, K.; Molfino, B. Surface circulation of the Indian Ocean during the last glacial maximum, approximately 18,000 yr B.P. Quat. Res. 1980, 14, 309–336. [Google Scholar] [CrossRef]
- Cullen, J.L. Microfossil evidence for changing salinity patterns in the Bay of Bengal over the last 20,000 years. Palaeogeo. Palaeoclim. Palaeoeco. 1981, 35, 315–356. [Google Scholar] [CrossRef]
- Cullen, J.L.; Prell, W.L. Planktonic foraminifera of the northern Indian Ocean: Distribution and preservation in surface sediments. Mar. Micropaleo. 1984, 9, 1–52. [Google Scholar] [CrossRef]
- Anderson, D.M.P.; Prell, W.L. A 300 kyr record of upwelling off Oman during the Late Quaternary: Evidence of the Asian Southwest Monsoon. Paleoceanography 1993, 8, 193–208. [Google Scholar] [CrossRef]
- Vénce-Peyré, M.-T.; Caulet, J.P.; Grazzini, C.V. Glacial/interglacial changes in the equatorial part of the Somali Basin (NW Indian Ocean) during the last 355 kyr. Paleoceanography 1997, 12, 640–648. [Google Scholar] [CrossRef]
- Vénce-Peyré, M.T.; Caulet, J.P.; Grazzini, C.V. Paleohydrographic Changes in the Somali Basin (5°N Upwelling and Equatorial Areas) During the Last 160 kyr, Based on Correspondence Analysis of Foraminiferal and Radiolarian Assemblages. Paleoceanography 1995, 10, 473–491. [Google Scholar] [CrossRef]
- De, S.; Sarker, S.; Gupta, A.K. Orbital and suborbital variability in the equatorial Indian Ocean as recorded in sediments of the Maldives Ridge (ODP Hole 716A) during the past 444 ka. In Monsoon Evolution and Tectonics–Climate Linkage in Asia; Clift, P.D., Tada, R., Zheng, H., Eds.; Geological Society of London: London, UK, 2010; Volume 342, pp. 17–27. [Google Scholar]
- Barrows, T.T.; Juggins, S. Sea-surface temperatures around the Australian margin and the Indian Ocean during the Last Glacial Maximum. Quat. Sci. Rev. 2005, 24, 1017–1047. [Google Scholar] [CrossRef]
- Bhadra, S.R.; Saraswat, R. A strong influence of the mid-Pleistocene transition on the monsoon and associated productivity in the Indian Ocean. Quat. Sci. Rev. 2022, 295, 107761. [Google Scholar] [CrossRef]
- Gayathri, N.M.; Sreevidya, E.; Sijinkumar, A.V.; Nath, B.N.; Sandeep, K.; Kurian, P.J.; Pankaj, K. Last 15 ka record of water column changes associated with Indian summer monsoon variability from the northeastern Bay of Bengal. Quat. Int. 2025, 723, 109713. [Google Scholar] [CrossRef]
- Chen, M.T.; Farrell, J.W. Planktonic Foraminifer Faunal Variations in the Northeastern Indian Ocean: A High-Resolution Record of the Past 800,000 Years from Site 758. In Proceedings of the Ocean Drilling Program, Scientific Results Vol. 121; Weissel, J., Peirce, J., Taylor, E., Alt, J., Eds.; Ocean Drilling Program: College Station, TX, USA, 1991; pp. 125–140. [Google Scholar]
- Yang, Y.-P.; Zhang, L.-L.; Yi, L.; Zhong, F.-C.; Lu, Z.-Y.; Wan, S.; Du, Y.-F.; Xiang, R. A contracting Intertropical Convergence Zone during the Early Heinrich Stadial 1. Nat Comm. 2023, 14, 4695. [Google Scholar] [CrossRef]
- Stoll, H.M.; Arevalos, A.; Burke, A.; Ziveri, P.; Mortyn, G.; Shimizu, N.; Unger, D. Seasonal cycles in biogenic production and export in Northern Bay of Bengal sediment traps. Deep Sea Res. Part (II) 2007, 54, 558–580. [Google Scholar] [CrossRef]
- Siccha, M.; Trommer, G.; Schulz, H.; Hemleben, C.; Kucera, M. Factors controlling the distribution of planktonic foraminifera in the Red Sea and implications for the development of transfer functions. Mar. Micropaleontol. 2009, 72, 146–156. [Google Scholar] [CrossRef]
- Salman, M.; Saraswat, R. Intrusion of Arabian Sea high salinity water and monsoon—Associated processes modulate planktic foraminiferal abundance and carbon burial in the southwestern Bay of Bengal. Environ. Sci. Pollut. Res. 2024, 31, 24961–24985. [Google Scholar] [CrossRef] [PubMed]
- Prell, W.; Martin, A.; Cullen, J.; Trend, M. NOAA. 1999. Available online: https://www.ncdc.noaa.gov/paleo-search/study/5908 (accessed on 2 January 2025).
- Anbuselvan, N.; Nathan, D.S. Distribution and environmental implications of planktonic foraminifera in the surface sediments of southwestern part of Bay of Bengal, India. J. Sed. Environ. 2021, 6, 213–235. [Google Scholar] [CrossRef]
- Munz, P.M.; Siccha, M.; Lückge, A.; Böll, A.; Kucera, M.; Schulz, H. Decadal-resolution record of winter monsoon intensity over the last two millennia from planktic foraminiferal assemblages in the northeastern Arabian Sea. Holocene 2015, 25, 1756–1771. [Google Scholar] [CrossRef]
- Munir, S.; Sun, J.; Morton, S.L.; Zhang, X.; Ding, C. Horizontal Distribution and Carbon Biomass of Planktonic Foraminifera in the Eastern Indian Ocean. Water 2022, 14, 2048. [Google Scholar] [CrossRef]
- Mohtadi, M.; Max, L.; Hebbeln, D.; Baumgart, A.; Krück, N.; Jennerjahn, T. Modern environmental conditions recorded in surface sediment samples off W and SW Indonesia: Planktonic foraminifera and biogenic compounds analyses. Mar. Micropaleontol. 2007, 65, 96–112. [Google Scholar] [CrossRef]
- Maeda, A.; Kuroyanagi, A.; Iguchi, A.; Gaye, B.; Rixen, T.; Nishi, H.; Kawahata, H. Seasonal variation of fluxes of planktic foraminiferal tests collected by a time-series sediment trap in the central Bay of Bengal during three different years. Deep Sea Res. Part (I) 2022, 183, 103718. [Google Scholar] [CrossRef]
- Frerichs, W.E. Planktonic foraminifera in the sediments of the Andaman Sea. J. Foram. Res. 1971, 1, 1–14. [Google Scholar] [CrossRef]
- Guptha, M.V.S.; Curry, W.B.; Ittekkot, V.; Muralinath, A.S. Seasonal variation in the flux of planktonic foraminifera: Sediments trap results from the Bay of Bengal, Northern Indian Ocean. J. Foram. Res. 1997, 27, 5–19. [Google Scholar] [CrossRef]
- Cortese, G.; Dunbar, G.B.; Carter, L.; Scott, G.; Bostock, H.; Bowen, M.; Crundwell, M.; Hayward, B.W.; Howard, W.; Martínez, J.I.; et al. Southwest Pacific Ocean response to a warmer world: Insights from Marine Isotope Stage 5e. Paleoceanography 2013, 28, 585–598. [Google Scholar] [CrossRef]
- CLIMAP Project Members (2009): Planktic Foraminifera Counts in Surface Sediment Samples [Dataset]. PANGAEA. Available online: https://doi.org/10.1594/PANGAEA.51927 (accessed on 18 June 2025).
- Bhadra, S.R.; Saraswat, R. The flux of planktic Foraminifera; sediment trap results from the Bay of Bengal, northern Indian Ocean. Deep-Sea Res. Part (II) 2021, 183, 104927. [Google Scholar] [CrossRef]
- Hasan, Z.; Akhter, S.; Kabir, A. Analysis of rainfall trends in southeast Bangladesh. J. Environ. 2014, 3, 51–56. [Google Scholar]
- Thompson, L.G.; Yao, T.; Davis, M.E.; Henderson, K.A.; Mosley-Thompson, E.; Lin, P.-N.; Beer, J.; Synal, H.-A.; Cole-Dai, J.; Bolzan, J.F. Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core. Science 1997, 276, 1821–1825. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Interannual variability of surface water extent at global scale, 1993–2004. J. Geophys. Res. 2010, 115, D12111. [Google Scholar] [CrossRef]
- Robinson, R.A.J.; Brezina, C.A.; Parrish, R.R.; Horstwood, M.S.A.; Oo, N.W.; Bird, M.I.; Thein, M.; Walters, A.S.; Oliver, G.J.H.; Zaw, K. Large rivers and orogens: The evolution of the Yarlung Tsangpo–Irrawaddy system and the eastern Himalayan syntaxis. Gondwana Res. 2014, 26, 112–121. [Google Scholar] [CrossRef]
- Subramanian, V. Sediment load of Indian Rivers. Curr. Sci. 1993, 64, 928–930. [Google Scholar]
- Perry, G.D.; Duffy, P.B.; Miller, N.L. An extended data set of river discharges for validation of general circulation models. J. Geophy. Res. 1996, 101, 21339–21349. [Google Scholar] [CrossRef]
- Schott, F.A.; McCreary, J.P. The monsoon circulation of the Indian Ocean. Progr. Oceanog. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Chatterjee, A.; Shankar, D.; McCreary, J.P.; Vinayachandran, P.N.; Mukherjee, A. Dynamics of Andaman Sea circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal. J. Geophys. Res. Oceans 2017, 122, 3200–3218. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Shankar, D.; Aparna, S.G.; Amol, P.; Fernando, V.; Kankonkar, A.; Michael, G.S.; Satelkar, N.P.; Khalap, S.T. Observed variability of the West India Coastal Current on the continental slope from 2009–2018. J. Earth Syst. Sci. 2020, 129, 57. [Google Scholar] [CrossRef]
- Gordon, A. Indian-Atlantic transfer of thermocline water at the Agulhas Retroflection. Science 1985, 227, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Wijffels, S.E.; Meyers, G. An Intersection of Oceanic Waveguides: Variability in the Indonesian Throughflow Region. J. Phys. Oceanog. 2003, 34, 1232–1253. [Google Scholar] [CrossRef]
- Talley, L.D. Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Progr. Oceanogr. 2008, 78, 257–303. [Google Scholar] [CrossRef]
- Abram, N.J.; Hargreaves, J.A.; Wright, N.M.; Thirumalai, K.; Ummenhofer, C.C.; England, M.H. Palaeoclimate perspectives on the Indian Ocean Dipole. Quat. Sci. Rev. 2020, 237, 106302. [Google Scholar] [CrossRef]
- Zhou, X.-Q.; Alphonse, S.D.; Shi, X.-X.; Bassinot, F.; Moreno, E.; Jin, X.-B.; Beaufort, L.; Liu, C.-L. Changes in Atmospheric Convection Over the Indo-Pacific Warm Pool and Coupled IOD and ENSO Patterns During the Last Glacial Maximum. Geophys. Res. Lett. 2025, 52, e2024GL112276. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Saji, N.H.; Xie, S.-P.; Tam, C.-Y. Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean. Geophys. Res. Lett. 2006, 33, L14704. [Google Scholar] [CrossRef]
- Cai, W.-J.; Wu, L.-X.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.-S.; Yu, J.-Y.; Stuecker, M.F.; Santoso, S.; Li, X.-C.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef]
- Gordon, A.L.; Shroyer, E.L.; Mahadevan, A.; Sengupta, D.; Freilich, M. Bay of Bengal: 2013 northeast monsoon upper-ocean circulation. Oceanography 2016, 29, 82–91. [Google Scholar] [CrossRef]
- Srinivasan, A.; Garraffo, Z.; Iskandarani, M. Abyssal circulation in the Indian Ocean from a 1/12° resolution global hindcast. Deep Sea Res. Part (I) 2009, 56, 1907–1926. [Google Scholar] [CrossRef]
- Rintoul, S.R.; Bullister, J.L. A late winter hydrographic section from Tasmania to Antarctica. Deep Sea Res. Part (I) 1999, 46, 1417–1454. [Google Scholar] [CrossRef]
- Sloyan, B.M. Antarctic bottom and lower circumpolar deep water circulation in the eastern Indian Ocean. J. Geophy. Res. 2006, 111, C02006. [Google Scholar] [CrossRef]
- Warren, B.A. Transindian hydrographic section at Lat. 18°S: Property distributions and circulation in the South Indian Ocean. Deep-Sea Res. 1981, 28, 759–788. [Google Scholar] [CrossRef]
- Mantyla, A.; Reid, J. On the origins of deep and bottom waters of the Indian Ocean. J. Geophy. Res. 1995, 100, 2417–2439. [Google Scholar] [CrossRef]
- Fukamachi, Y.; Rintoul, S.R.; Church, J.A.; Aoki, S.; Sokolov, S.; Rosenberg, M.A.; Wakatsuchi, M. Strong export of Antarctic Bottom Water east of the Kerguelen plateau. Nat. Geosci. 2010, 3, 327–331. [Google Scholar] [CrossRef]
- Warren, B.A.; Johnson, G.C. The overflows across the Ninety-east Ridge. Deep-Sea Res. (II) 2002, 49, 1423–1439. [Google Scholar]
- Johnson, G.C.; Musgrave, D.L.; Warren, B.A.; Ffield, A.; Olson, D.B. Flow of Bottom and Deep Water in the Amirante Passage and Mascarene Basin. J. Geophy. Res. 1998, 103, 30973–30984. [Google Scholar] [CrossRef]
- Orsi, A.H.; Jacobs, S.S.; Gordon, A.L.; Visbeck, M. Cooling and ventilating the Abyssal Ocean. Geophy. Res. Lett. 2001, 28, 2923–2926. [Google Scholar] [CrossRef]
- Rashid, H.; Wang, Y.; Gourlan, A.T. Impact of climate on past Indian monsoon and circulation: A perspective based on radiogenic and trace metal geochemistry. Atmosphere 2021, 12, 330. [Google Scholar] [CrossRef]
- Reid, J.L. On the total geostrophic circulation of the Indian Ocean: Flow patterns, tracers, and transports. Prog. Oceanogr. 2003, 56, 137–186. [Google Scholar] [CrossRef]
- Srinivasan, A.; Top, Z.; Schlosser, P.; Hohmann, R.; Iskandarani, M.; Olson, D.B.; Lupton, J.E.; Jenkins, W.J. Mantle 3He distribution and deep circulation in the Indian Ocean. J. Geophy. Res. 2004, 109, C06012. [Google Scholar] [CrossRef]
- England, M.H.; Godfrey, J.S.; Hirst, A.C.; Tomczak, M. The mechanism for Antarctic Intermediate Water renewal in a world ocean model. J. Phy. Oceanogr. 1993, 23, 1553–1560. [Google Scholar] [CrossRef]
- Toggweiler, J.R.; Bjornsson, H. Drake Passage and palaeoclimate. J. Quarter. Sci. 2000, 15, 319–328. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Descriptive Physical Oceanography: An Introduction, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2011; p. 555. [Google Scholar]
- Talley, L.D. Antarctic Intermediate Water in the South Atlantic. In The South Atlantic: Present and Past Circulation; Wefer, G., Berger, W.H., Siedler, G., Webb, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 219–238. [Google Scholar]
- Kroopnick, P.M. The distribution of C of δCO2 in the world oceans. Deep-Sea Res. (A) 1985, 32, 57–84. [Google Scholar] [CrossRef]
- Kolla, V.; Bé, A.W.H.; Biscaye, P.E. Calcium carbonate distribution in the surface sediments of the Indian Ocean. J. Geophy. Res. 1976, 15, 2605–2616. [Google Scholar] [CrossRef]
- Peterson, L.C.; Prell, W.L. Carbonate dissolution in Recent sediments of the eastern equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline. Mar. Geol. 1985, 64, 259–290. [Google Scholar] [CrossRef]
- Zhang, H.-D.; Luo, Y.-M.; Yu, J.-M.; Zhang, L.-L.; Xiang, R.; Yu, Z.-J.; Huang, H. Indian Ocean sedimentary calcium carbonate distribution and its implications for the glacial deep ocean circulation. Quat. Sci. Rev. 2022, 28, 107490. [Google Scholar] [CrossRef]
- Kucera, M.; Rosell-Melé, A.; Schneider, R.; Waelbroeck, C.; Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 2005, 24, 813–819. [Google Scholar] [CrossRef]
- Saraswat, R.; Fathima, R.; Salman, M.; Suokhrie, T.; Saalim, S.M. Decoupling of carbon burial from productivity in the northeast Indian Ocean. Sci. Total Environ. 2024, 947, 174587. [Google Scholar] [CrossRef]
- Hutson, W.H. Transfer functions under no-analog conditions: Experiments with Indian Ocean planktonic foraminifera. Quat. Res. 1977, 8, 355–361. [Google Scholar] [CrossRef]
- Pflaumann, U.; Duprat, J.; Pujol, C.; Labeyrie, L. SIMMAX: A modern analog technique to deduce Atlantic Sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 1996, 11, 15–36. [Google Scholar] [CrossRef]
- Waelbroeck, C.; Labeyrie, L.; Duplessy, J.C.; Joel, G.; Labracherie, M.; Leclaire, H.; Duprat, J. Improving paleo-SST estimates based on planktonic fossil faunas. Paleoceanography 1998, 13, 272–283. [Google Scholar] [CrossRef]
- Bé, A.W.H. Foraminifera families: Globigerinidae and Globorotaliidae. In Fiches D’identification du Zooplancton; Charlottenlund Slot; International Council for the Exploration of the Sea: Copenhagen, Denmark, 1967; Sheet 108; pp. 1–9. [Google Scholar]
- Ravelo, A.C.; Fairbanks, R.G. Reconstructing tropical Atlantic hydrography using planktonic foraminifera and an ocean model. Paleoceanography 1990, 5, 409–431. [Google Scholar] [CrossRef]
- Thiede, J.; Junger, B. Faunal and floral indicators of coastal upwelling (NW African and Peruvian Continental Margins). In Upwelling Systems: Evolution Since the Early Miocene; Summerhayes, C.P., Prell, W.L., Emeis, K.C., Eds.; Geological Society of London: London, UK, 1992; Volume 64, pp. 47–76. [Google Scholar] [CrossRef]
- Kroon, D. Distribution of extant planktic foraminiferal assemblages in the Red Sea and northern Indian Ocean surface waters. In Planktonic Foraminifera as Tracers of Ocean Climate History; Brummer, G.J.A., Kroon, D., Eds.; Free University Press: Amsterdam, The Netherlands, 1988; pp. 229–267. [Google Scholar]
- Sautter, L.R.; Thunell, R.C. Planktonic foraminiferal response to upwelling and seasonal hydrographic conditions: Sediment trap results from San Pedro Basin, Southern California Bight. J. Foraminifer. Res. 1991, 21, 347–363. [Google Scholar] [CrossRef]
- Fairbanks, R.G.; Wiebe, P.H. Foraminifera and chlorophyll maximum: Vertical distribution, seasonal succession, and paleoceanographic significance. Science 1980, 209, 1524–1526. [Google Scholar] [CrossRef]
- Fairbanks, R.G.; Sverdlove, M.; Free, R.; Wiebe, P.H.; Bé, A.W.H. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama basin. Nature 1982, 298, 841–844. [Google Scholar] [CrossRef]
- Malmgren, B.A.; Kučera, M.; Nyberg, J.; Waelbroeck, C. Comparison of statistical and artificial neural network techniques for estimating past sea surface temperatures from planktonic foraminifer census data. Paleoceanography 2001, 16, 520–530. [Google Scholar] [CrossRef]
- Singh, H.; Singh, A.; Tripathi, R.; Singh, P.; Verma, K.; Voelker, A.; Hodell, D. Centennial-millennial scale ocean-climate variability in the northeastern Atlantic across the last three terminations. Global Planet. Change 2023, 223, 104100. [Google Scholar] [CrossRef]
- Lisitzin, A.P.; Petelin, V.P. Features of distribution and modification of CaCO3 in bottom sediments of the Pacific Ocean. Lihol. Miner. Resour. 1976, 5, 565–578. [Google Scholar]
- Bramlette, M.N. Pelagic sediments. In Oceanography; Sears, M., Ed.; American Association for the Advancement of Science: Washington, DC, USA, 1961; pp. 345–366. [Google Scholar]
- Broecker, W.S.; Takahashi, T. Neutralization of fossil fuel CO2 by marine calcium carbonate. In The Fate of Fossil CO2 in the Oceans; Springer: New York, NY, USA, 1977. [Google Scholar]
- Broecker, W.S.; Peng, T.-H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeoch. Cycle 1987, 1, 15–29. [Google Scholar] [CrossRef]
- Weiner, A.K.M.; Weinkauf, M.F.G.; Kurasawa, A.; Darling, K.F.; Kucera, M. Genetic and morphometric evidence for parallel evolution of the Globigerinella calida morphotype. Mar. Micropaleo. 2015, 114, 19–35. [Google Scholar] [CrossRef]
- Anand, P.; Kroon, D.; Singh, A.D.; Ganeshram, R.S.; Ganssen, G.; Elderfield, H. Coupled sea surface temperature–seawater δ18O reconstructions in the Arabian Sea at the millennial scale for the last 35 ka. Paleoceanography 2008, 23, PA4207. [Google Scholar] [CrossRef]
- Rashid, H.; Otieno, F.O.; Konfirst, K.M. Comments on “Does the Agulhas Current amplify global temperatures during super-interglacials?”. J. Quat. Sci. 2011, 26, 866–869. [Google Scholar] [CrossRef]
- Saraswat, R.; Lea, D.; Nigam, R.; Mackensen, A.; Naik, D. Deglaciation in the tropical Indian Ocean driven by the interplay between the regional monsoon and global teleconnections. Earth Planet. Sci. Lett. 2013, 375, 166–175. [Google Scholar] [CrossRef]
- Mathew, S.; Mathur, M. Anomalous sea surface temperature over the Southeastern Arabian Sea during contrasting Indian Ocean Dipole years. Clim. Dynam. 2025, 75, 1–18. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Jensen, D.D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 1428. [Google Scholar] [CrossRef]
- Dutt, S.; Gupta, A.K.; Clemens, S.C.; Cheng, H.; Singh, R.K.; Kathayat, G.; Edwards, R.L. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophys. Res. Lett. 2015, 42, 5526–5532. [Google Scholar] [CrossRef]
- Liu, S.-F.; Ye, W.-X.; Chen, M.-T.; Pan, H.-J.; Cao, P.; Zhang, H.; Khokiattiwong, S.; Kornkanitnan, N.; Shi, X.-F. Millennial-scale variability of Indian summer monsoon during the last 42 kyr: Evidence based on foraminiferal Mg/Ca and oxygen isotope records from the central Bay of Bengal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 562, 110112. [Google Scholar] [CrossRef]
- Herbert, T.D.; Peterson, L.C.; Lawrence, K.T.; Liu, Z.-H. Tropical Ocean Temperatures Over the Past 3.5 Million Years. Science 2010, 328, 1530–1534. [Google Scholar] [CrossRef]
- Shakun, J.D.; Lea, D.W.; Lisiecki, L.E.; Raymo, M.E. An 800-kyr record of global surface ocean and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 2015, 428, 58–68. [Google Scholar]
- Stein, R.; Hefter, J.; Grützner, J.; Voelker, A.H.L.; Naafs, B.D.A. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from IODP Site U1313 (MIS 16-9). Paleoceanography 2009, 24, 16–19. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef]
- Rohling, E.J.; Foster, G.L.; Gernon, T.M.; Grant, K.M.; Heslop, D.; Hibbert, F.D.; Roberts, A.P.; Yu, J.-M. Comparison and Synthesis of Sea-Level and Deep-Sea Temperature Variations Over the Past 40 Million Years. Rev. Geophy. 2022, 60, e2022RG000775. [Google Scholar] [CrossRef]
- Malmgren, B.A.; Nordlund, U. Application of artificial neural networks to paleoceanographic data. Palaeogeo. Palaeoclim. Palaeoeco. 1997, 136, 359–373. [Google Scholar] [CrossRef]
- Kucera, M.; Weinelt, M.; Kiefer, T.; Pflaumann, U.; Hayes, A.; Weinelt, M.; Chen, M.-T.; Mix, A.C.; Barrows, T.T.; Cortijo, E.; et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 2005, 24, 951–998. [Google Scholar] [CrossRef]
- Wang, Y. Sediment Dynamics and Paleoclimatic Evolution of the SE Grand Banks During the Past Glacial Cycle. Unpublished Doctoral Dissertation, Shanghai Ocean University, Shanghai, China, 2025; p. 235. [Google Scholar]
- Bé, A.W.H.; Hutson, W.H. Ecology of planktonic foraminifera and biogeographic patterns of life and fossil assemblages in the Indian ocean. Micropaleontology 1977, 23, 369–414. [Google Scholar] [CrossRef]
- Zhang, J.-J. Living planktonic foraminifera from the eastern Arabian Sea. Deep Sea Res. 1985, 32, 789–798. [Google Scholar] [CrossRef]
- Ohkouchi, N.; Eglinton, T.I.; Keigwin, L.D.; Hayes, J.M. Spatial and temporal offsets between proxy records in a sediment drift. Science 2002, 298, 1224–1227. [Google Scholar] [CrossRef]
- Sicre, M.A.; Labeyrie, L.; Ezat, U.; Duprat, J.; Turon, J.L.; Schmidt, S.; Michel, E.; Mazaud, A. Mid-latitude Southern Indian Ocean response to Northern Hemisphere Heinrich events. Earth Planet. Sci. Lett. 2005, 240, 724–731. [Google Scholar] [CrossRef]
- Levi, C.; Labeyrie, L.; Bassinot, F.; Cortijo, E.; Waelbroeck, C.; Caillon, N.; Duprat, J.; de Garidel-Thoron, T.; Elderfield, H. Low-latitude hydrological cycle and rapid climate changes during the last deglaciation. Geochem. Geophy. Geosyst. 2007, 8, Q05N12. [Google Scholar] [CrossRef]
- Diester-Haas, L.; Billups, K.; Lear, C. Productivity changes across the mid-Pleistocene climate transition. Earth-Sci. Rev. 2018, 179, 372–391. [Google Scholar] [CrossRef]
- Bard, E.; Rostek, F.; Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 1997, 385, 707–710. [Google Scholar] [CrossRef]
- Rostek, F.; Bard, E.; Beaufort, L.; Sonzogni, C.; Ganssen, G.M. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep Sea Res. 1997, 44, 1461–1480. [Google Scholar] [CrossRef]
- Pahnke, K.; Sachs, J.P. Sea surface temperatures of southern midlatitudes 0–160 kyr B.P. Paleoceanography 2006, 21, PA2003. [Google Scholar] [CrossRef]
Foraminiferal Species | Climatic Zone | Water Depth | Source |
---|---|---|---|
Globigerinoides ruber | tropical, subtropical | mixed layer | Bé [105], Ravelo and Fairbanks [106], Thiede and Junger [107] |
Globigerinoides sacculifer | tropical, subtropical | mixed layer | Bé [105], Ravelo and Fairbanks [106] |
Globigerinoides trilobus | tropical, subtropical | mixed layer | Bé [105], Ravelo and Fairbanks [106] |
Globigerinoides conglobatus | tropical, subtropical | surface | Bé [105], Bé and Tolderlund [25], Thiede and Junger [107] |
Globarolalia menardii | tropical, subtropical | thermocline | Bé [105], Kroon [108] |
Globorolalia tumida | tropical, subtropical | thermocline | Bé [105], Ravelo and Fairbanks [106] |
Globorolalia crassaformis | subtropical | below 100 m | Bé and Tolderlund [25] |
Pulleniatina obliquiloculata | tropical, subtropical | thermocline | Bé and Tolderlund [25], Ravelo and Fairbanks [106] |
Sphaeroidinella dehiscens | tropical, subtropical | intermediate | Bé [105], Bé and Tolderlund [25] |
Globigerina rubescens | tropical, subtropical | surface | Bé [105] |
Neogloboquadrina pachyderma (dextral) | cold temperate water | thermocline, deep | Bé [105], Sautter and Thunell [109], Fairbanks and Wiebe [110], Fairbanks et al. [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, H.; He, X.; Wang, Y.; Shum, C.K.; Zeng, M. An Overview of the Indian Monsoon Using Micropaleontological, Geochemical, and Artificial Neural Network (ANN) Proxies During the Late Quaternary. Geosciences 2025, 15, 241. https://doi.org/10.3390/geosciences15070241
Rashid H, He X, Wang Y, Shum CK, Zeng M. An Overview of the Indian Monsoon Using Micropaleontological, Geochemical, and Artificial Neural Network (ANN) Proxies During the Late Quaternary. Geosciences. 2025; 15(7):241. https://doi.org/10.3390/geosciences15070241
Chicago/Turabian StyleRashid, Harunur, Xiaohui He, Yang Wang, C. K. Shum, and Min Zeng. 2025. "An Overview of the Indian Monsoon Using Micropaleontological, Geochemical, and Artificial Neural Network (ANN) Proxies During the Late Quaternary" Geosciences 15, no. 7: 241. https://doi.org/10.3390/geosciences15070241
APA StyleRashid, H., He, X., Wang, Y., Shum, C. K., & Zeng, M. (2025). An Overview of the Indian Monsoon Using Micropaleontological, Geochemical, and Artificial Neural Network (ANN) Proxies During the Late Quaternary. Geosciences, 15(7), 241. https://doi.org/10.3390/geosciences15070241