Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = IV hysteresis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 19715 KiB  
Article
Microstructure, Mechanical Properties, and Magnetic Properties of 430 Stainless Steel: Effect of Critical Cold Working Rate and Heat Treatment Atmosphere
by Che-Wei Lu, Fei-Yi Hung and Tsung-Wei Chang
Metals 2025, 15(8), 868; https://doi.org/10.3390/met15080868 (registering DOI) - 2 Aug 2025
Viewed by 206
Abstract
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, [...] Read more.
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, F-1.5Si-10%, F-1.5Si-40%, F-1.5Si-10% (MA), F-1.5Si-40% (MA), F-1.5Si-10% (H2), and F-1.5Si-40% (H2)). The results indicate that increasing the cold working rate improves the material’s mechanical properties; however, it negatively impacts its magnetic and corrosion resistance properties. Additionally, the magnetic annealing process improves the mechanical properties, while atmospheric magnetic annealing optimizes the overall magnetic performance. In contrast, magnetic annealing in a hydrogen atmosphere does not enhance the magnetic properties as effectively as atmospheric magnetic annealing. Still, it promotes the formation of a protective layer, preserving the mechanical properties and providing better corrosion resistance. Furthermore, regardless of whether magnetic annealing is conducted in an atmospheric or hydrogen environment, materials with 10% cold work rate (F-1.5Si-10% (MA) and F-1.5Si-10% (H2)) exhibit the lowest coercive force (286 and 293 A/m in the 10 Hz test condition), making them ideal for electromagnetic applications. Full article
(This article belongs to the Special Issue Heat Treatment and Mechanical Behavior of Steels and Alloys)
Show Figures

Graphical abstract

11 pages, 2924 KiB  
Article
Liquid Resistive Switching Devices with Printable Electrodes
by Viet Cuong Nguyen
Micromachines 2025, 16(8), 863; https://doi.org/10.3390/mi16080863 - 26 Jul 2025
Viewed by 230
Abstract
In this work, research on liquid-based resistive switching devices is carried out, using bottom printable electrodes fabricated from Silver (Ag) paste and silver nitrate (AgNO3) solution. The self-crossing I-V curves are observed and repeatedly shown by applying 100 sweep cycles, demonstrating [...] Read more.
In this work, research on liquid-based resistive switching devices is carried out, using bottom printable electrodes fabricated from Silver (Ag) paste and silver nitrate (AgNO3) solution. The self-crossing I-V curves are observed and repeatedly shown by applying 100 sweep cycles, demonstrating repeatability and stability. This liquid device can be refreshed by adding extra droplets of AgNO3 so that self-crossing I-V hysteresis with up to 493 dual sweeps can be obtained. The ability to be refreshed by supplying a new liquid solution demonstrates an advantage of liquid-based memristive devices, in comparison to their solid counterparts, where the switching layer is fixed after fabrication. The switching mechanism is attributed to Ag migration in the liquid, which narrows the gap between electrodes, giving rise to the observed phenomenon. The devices further show some synaptic properties including excitatory post-synaptic current (EPSC) and potentiation-depression, presenting opportunities to utilize the devices in mimicking some functions of biological neurons. The simplicity and cost-effectiveness of these devices may advance research into fluidic memristors, in which devices with versatile forms and shapes could be fabricated. Full article
Show Figures

Figure 1

15 pages, 2876 KiB  
Article
Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum
by Elzbieta Jursene, Laura Michailova, Simona Jureviciute, Zivile Stankeviciute, Inga Grigoraviciute and Aivaras Kareiva
Materials 2025, 18(12), 2869; https://doi.org/10.3390/ma18122869 - 17 Jun 2025
Viewed by 452
Abstract
In this study, phosphogypsum waste collected from a factory dump in Kedainiai, Lithuania, was used for the first time as a starting material in the dissolution–precipitation synthesis of high-quality bioceramic calcium hydroxyapatite (Ca10(PO4)6(OH)2; CHA). The [...] Read more.
In this study, phosphogypsum waste collected from a factory dump in Kedainiai, Lithuania, was used for the first time as a starting material in the dissolution–precipitation synthesis of high-quality bioceramic calcium hydroxyapatite (Ca10(PO4)6(OH)2; CHA). The CHA powders were synthesized using the dissolution–precipitation method, employing phosphogypsum in four different conditions: untreated, dried at 100 °C, dried at 150 °C, and annealed at 1000 °C. Various phosphorus sources were used in the CHA synthesis process: Na2HPO4; a mixture of Na2HPO4 and NaH2PO4; or a combination of Na2HPO4, NaH2PO4, and NaHCO3. These mixtures were allowed to react at 80 °C for 48 h, 96 h, 144 h, and 192 h. X-ray diffraction (XRD) analysis revealed slight variations in the synthesized products depending on the specific starting materials used. Fourier transform infrared spectroscopy (FTIR) was conducted to confirm the structural characteristics of the synthesized CHA samples. The surface microstructure of the synthesized CHA samples differed notably from that of the raw phosphogypsum. All synthesized CHA samples exhibited Type IV nitrogen adsorption–desorption isotherms with H3-type hysteresis loops, indicating the presence of mesoporous structures, typically associated with slit-like pores or aggregates of plate-like particles. To the best of our knowledge, an almost monophasic CHA has been fabricated from phosphogypsum waste for the first time using a newly developed dissolution–precipitation synthesis method. A key challenge in the high-end market is the development of alternative synthesis technologies that are not only more environmentally friendly but also highly efficient. These findings demonstrate that phosphogypsum is a viable and sustainable raw material for CHA synthesis, with promising applications in the medical field, including the production of artificial bone implants. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 16900 KiB  
Article
Synthesis, Structure, and Optoelectronic Properties of a Hybrid Organic–Inorganic Perovskite with a Monoethanolammonium Cation MAxMEA1−xPbI3
by Andrey Ryabko, Maxat Ovezov, Alexandr Tuchkovsky, Oleg Korepanov, Alexandr Maximov, Alexey Komolov, Eleonora Lazneva, Ekaterina Muratova, Igor Vrublevsky, Andrey Aleshin and Vyacheslav Moshnikov
Nanomaterials 2025, 15(7), 494; https://doi.org/10.3390/nano15070494 - 26 Mar 2025
Viewed by 472
Abstract
Hybrid organic–inorganic perovskites have emerged as promising materials for next-generation optoelectronic devices owing to their tunable properties and low-cost fabrication. We report the synthesis of 3D hybrid perovskites with monoethanolammonium cations. Specifically, we investigated the optoelectronic properties and morphological characteristics of polycrystalline films [...] Read more.
Hybrid organic–inorganic perovskites have emerged as promising materials for next-generation optoelectronic devices owing to their tunable properties and low-cost fabrication. We report the synthesis of 3D hybrid perovskites with monoethanolammonium cations. Specifically, we investigated the optoelectronic properties and morphological characteristics of polycrystalline films of hybrid perovskites MAxMEA1−xPbI3, which contain methylammonium (MA) and monoethanolammonium (MEA) cations. MAxMEA1−xPbI3 crystallizes in a tetragonal perovskite structure. The substitution of methylammonium cations with monoethanolammonium ions led to an increase in the lattice parameters and the bandgap energy. Energy level diagrams of the synthesized samples were also constructed. The bandgap of MA0.5MEA0.5PbI3 makes it a promising material for use in tandem solar cells. These polycrystalline films, namely MA0.5MEA0.5PbI3 and MA0.25MEA0.75PbI3 were fabricated using a one-step spin-coating method without an antisolvent. These films exhibit a uniform surface morphology under the specified deposition parameters. Within the scope of this study, no evidence of dendritic structures or pinhole-type defects were observed. All synthesized samples demonstrated photocurrent generation under visible light illumination. Moreover, using monoethanolammonium cations reduced the hysteresis of the I–V characteristics, indicating improved device stability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 2038 KiB  
Article
Type II ZnO-MoS2 Heterostructure-Based Self-Powered UV-MIR Ultra-Broadband p-n Photodetectors
by Badi Zhou, Xiaoyan Peng, Jin Chu, Carlos Malca, Liz Diaz, Andrew F. Zhou and Peter X. Feng
Molecules 2025, 30(5), 1063; https://doi.org/10.3390/molecules30051063 - 26 Feb 2025
Cited by 3 | Viewed by 1250
Abstract
This study presents the fabrication and characterization of ZnO-MoS2 heterostructure-based ultra-broadband photodetectors capable of operating across the ultraviolet (UV) to mid-infrared (MIR) spectral range (365 nm–10 μm). The p-n heterojunction was synthesized via RF magnetron sputtering and spin coating, followed by annealing. [...] Read more.
This study presents the fabrication and characterization of ZnO-MoS2 heterostructure-based ultra-broadband photodetectors capable of operating across the ultraviolet (UV) to mid-infrared (MIR) spectral range (365 nm–10 μm). The p-n heterojunction was synthesized via RF magnetron sputtering and spin coating, followed by annealing. Structural and optical analyses confirmed their enhanced light absorption, efficient charge separation, and strong built-in electric field. The photodetectors exhibited light-controlled hysteresis in their I-V characteristics, attributed to charge trapping and interfacial effects, which could enable applications in optical memory and neuromorphic computing. The devices operated self-powered, with a peak responsivity at 940 nm, which increased significantly under an applied bias. The response and recovery times were measured at approximately 100 ms, demonstrating their fast operation. Density functional theory (DFT) simulations confirmed the type II band alignment, with a tunable bandgap that was reduced to 0.20 eV with Mo vacancies, extending the detection range. The ZnO-MoS2 heterostructure’s broad spectral response, fast operation, and defect-engineered bandgap tunability highlight its potential for imaging, environmental monitoring, and IoT sensing. This work provides a cost-effective strategy for developing high-performance, ultra-broadband, flexible photodetectors, paving the way for advancements in optoelectronics and sensing technologies. Full article
Show Figures

Graphical abstract

10 pages, 1345 KiB  
Article
Conversion of Oil-Containing Residue from Waste Oil Recycling Plant into Porous Carbon Materials Through Activation Method with Phosphoric Acid
by Li-An Kuo, Wen-Tien Tsai, Chien-Chen Pan, Ya-Chen Ye and Chi-Hung Tsai
Materials 2024, 17(24), 6161; https://doi.org/10.3390/ma17246161 - 17 Dec 2024
Cited by 1 | Viewed by 812
Abstract
In the waste oil recycling industry, large amounts of oil-containing sludge are still generated, thus posing a resource depletion issue when disposed of or incinerated without energy recovery or residual oil utilization. In this work, chemical activation experiments using phosphoric acid (H3 [...] Read more.
In the waste oil recycling industry, large amounts of oil-containing sludge are still generated, thus posing a resource depletion issue when disposed of or incinerated without energy recovery or residual oil utilization. In this work, chemical activation experiments using phosphoric acid (H3PO4) were performed at a low temperature (600 °C) for 30 min to produce porous carbon products. From the results of the pore property analysis, an increasing trend with an increasing impregnation ratio from 0.5 to 2.0 was observed. Based on the Brunauer–Emmett–Teller (BET) model, the maximal BET surface area was about 70 m2/g, which was indicative of the hysteresis loop and the type IV isotherms in the resulting carbon product. In addition, the enhancement in the pore properties of the carbon products obtained through acid-washing was superior to that achieved through water-washing and without post-washing. From observations made using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), the carbon products featured a porous structure and inherent magnetism due to their richness of iron oxides. In this regard, they can be used as efficient adsorbents or catalyst supports due to their simple recovery (or separation) when exhausted. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

8 pages, 3255 KiB  
Article
Reduction in Core Loss of Soft Magnetic Composites with TiO2 Coated Fe Powder
by Sunwoo Lee, Sungjoon Choi, Jae-Hyoung You, Jung-Woo Lee, Sang-Im Yoo and Chan Park
J. Compos. Sci. 2024, 8(12), 521; https://doi.org/10.3390/jcs8120521 - 12 Dec 2024
Viewed by 1327
Abstract
This study demonstrates the improvement of core loss through the reduction of eddy current loss in soft magnetic composites (SMCs) composed of TiO2-coated Fe powder and epoxy resin. A thin and uniform TiO2 insulating layer was successfully deposited on the [...] Read more.
This study demonstrates the improvement of core loss through the reduction of eddy current loss in soft magnetic composites (SMCs) composed of TiO2-coated Fe powder and epoxy resin. A thin and uniform TiO2 insulating layer was successfully deposited on the surface of Fe powder via a sol-gel process, employing titanium (IV) butoxide (TBOT) as the precursor. Scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy analyses confirmed the formation of a core/shell Fe/TiO2 structure, with a coating thickness of several tens of nanometers. Increasing the TBOT concentration and coating duration time led to an improved quality factor (Q factor) and a shift of the maximum Q factor values to higher frequency regions. Notably, the permeability was decreased slightly from 14.2 to 13.4, but the core loss, measured at various AC frequencies under 20 mT and then separated into hysteresis loss and eddy current loss at 1 MHz, was significantly reduced from 573 to 435 kW/m3 when the Fe powder was coated with TiO2 using a 2.5 wt.% TBOT solution for 8 h. This reduction in core loss is attributed to the effective suppression of inter-particle eddy currents by the TiO2 insulation layer. Full article
Show Figures

Figure 1

21 pages, 4705 KiB  
Article
Thermal Reaction Process and Thermokinetic Characteristics of Coking Coal Oxidation
by Ruoyu Bao, Changkui Lei, Chengbo Wang and Fubao Zhou
Fire 2024, 7(12), 448; https://doi.org/10.3390/fire7120448 - 29 Nov 2024
Cited by 1 | Viewed by 975
Abstract
The coal–oxygen composite reaction is a complex physicochemical reaction process, and different heating rates have a great influence on this reaction. In order to reveal the influence of different heating rates on the coal–oxygen composite reaction of coking coal, the TG-DSC experimental method [...] Read more.
The coal–oxygen composite reaction is a complex physicochemical reaction process, and different heating rates have a great influence on this reaction. In order to reveal the influence of different heating rates on the coal–oxygen composite reaction of coking coal, the TG-DSC experimental method was adopted to analyze the hysteresis effect of the characteristic temperature, inflection point temperature, and peak temperature under different heating rates. Furthermore, the KAS method was employed to calculate the apparent activation energy, and the Málek method was utilized to infer the most probable mechanism functions and determine the compensation effects at different stages of the coal oxidation process. The results show that with an increase in heating rate, the temperature values corresponding to each characteristic temperature point increase, the characteristic temperature exhibits a hysteresis phenomenon, and the heat flow rate and heat flux rate also show an increasing trend. The apparent activation energy gradually increases in Stages II and III, with a maximum value of 198.7 kJ/mol near the ignition point T3, which first increases and then gradually decreases in Stage IV, where the maximum value is around the temperature point T4 of the maximum mass loss rate, which is 170.02 kJ/mol. The variation trend in the pre-exponential factor is consistent with the apparent activation energy, and the dynamic compensation effect is greater in Stage IV. The three different oxidation stages have different mechanism functions: a three-dimensional diffusion mode is present in Stages II and III, which is ultimately transformed into an accelerated form α-t curve with E1 and n = 1 in Stage IV. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires)
Show Figures

Figure 1

11 pages, 2712 KiB  
Article
Reversible Tuning Electrical Properties in Ferroelectric SnS with NH3 Adsorption and Desorption
by Wanqian Wang, Wei Luo, Sen Zhang, Chayuan Zeng, Fei Xie, Chuyun Deng, Guang Wang and Gang Peng
Nanomaterials 2024, 14(20), 1638; https://doi.org/10.3390/nano14201638 - 12 Oct 2024
Viewed by 1359
Abstract
Two-dimensional (2D) ferroelectrics usually exhibit instability or a tendency toward degradation when exposed to the ambient atmosphere, and the mechanism behind this phenomenon remains unclear. To unravel this affection mechanism, we have undertaken an investigation utilizing NH3 and two-dimensional ferroelectric SnS. Herein, [...] Read more.
Two-dimensional (2D) ferroelectrics usually exhibit instability or a tendency toward degradation when exposed to the ambient atmosphere, and the mechanism behind this phenomenon remains unclear. To unravel this affection mechanism, we have undertaken an investigation utilizing NH3 and two-dimensional ferroelectric SnS. Herein, the adsorption and desorption of NH3 molecules can reversibly modulate the electrical properties of SnS, encompassing I–V curves and transfer curves. The response time for NH3 adsorption is approximately 1.12 s, which is much quicker than that observed in other two-dimensional materials. KPFM characterizations indicate that air molecules’ adsorption alters the surface potentials of SiO2, SnS, metal electrodes, and contacts with minimal impact on the electrode contact surface potential. Upon the adsorption of NH3 molecules or air molecules, the hole concentration within the device decreases. These findings elucidate the adsorption mechanism of NH3 molecules on SnS, potentially fostering the advancement of rapid gas sensing applications utilizing two-dimensional ferroelectrics. Full article
Show Figures

Figure 1

12 pages, 2389 KiB  
Article
Scan-Rate-Dependent Ion Current Rectification in Bipolar Interfacial Nanopores
by Xiaoling Zhang, Yunjiao Wang, Jiahui Zheng, Chen Yang and Deqiang Wang
Micromachines 2024, 15(9), 1176; https://doi.org/10.3390/mi15091176 - 23 Sep 2024
Cited by 1 | Viewed by 1559
Abstract
This study presents a theoretical investigation into the voltammetric behavior of bipolar interfacial nanopores due to the effect of potential scan rate (1–1000 V/s). Finite element method (FEM) is utilized to explore the current–voltage (I–V) properties of bipolar interfacial nanopores at different bulk [...] Read more.
This study presents a theoretical investigation into the voltammetric behavior of bipolar interfacial nanopores due to the effect of potential scan rate (1–1000 V/s). Finite element method (FEM) is utilized to explore the current–voltage (I–V) properties of bipolar interfacial nanopores at different bulk salt concentrations. The results demonstrate a strong impact of the scan rate on the I–V response of bipolar interfacial nanopores, particularly at relatively low concentrations. Hysteresis loops are observed in bipolar interfacial nanopores under specific scan rates and potential ranges and divided by a cross-point potential that remains unaffected by the scan rate employed. This indicates that the current in bipolar interfacial nanopores is not just reliant on the bias potential that is imposed but also on the previous conditions within the nanopore, exhibiting history-dependent or memory effects. This scan-rate-dependent current–voltage response is found to be significantly influenced by the length of the nanopore (membrane thickness). Thicker membranes exhibit a more pronounced scan-rate-dependent phenomenon, as the mass transfer of ionic species is slower relative to the potential scan rate. Additionally, unlike conventional bipolar nanopores, the ion current passing through bipolar interfacial nanopores is minimally affected by the membrane thickness, making it easier to detect. Full article
Show Figures

Figure 1

15 pages, 3174 KiB  
Article
Biochar-Supported Titanium Oxide for the Photocatalytic Treatment of Orange II Sodium Salt
by Laury Kanku, Kassim Olasunkanmi Badmus and Fracois Wewers
Appl. Nano 2024, 5(3), 190-204; https://doi.org/10.3390/applnano5030013 - 19 Sep 2024
Cited by 2 | Viewed by 2051
Abstract
Recent improvements in advanced technology for toxic chemical remediation have involved the application of titanium oxide nanoparticles as a photocatalyst. However, the large energy bandgap associated with titanium oxide nanoparticles (3.0–3.20 eV) is a limitation for their application as a photocatalyst within the [...] Read more.
Recent improvements in advanced technology for toxic chemical remediation have involved the application of titanium oxide nanoparticles as a photocatalyst. However, the large energy bandgap associated with titanium oxide nanoparticles (3.0–3.20 eV) is a limitation for their application as a photocatalyst within the solar spectrum. Various structural modification methods have led to significant reductions in the energy bandgap but not without their disadvantages, such as electron recombination. In the current investigation, biochar was made from the leaves of an invasive plant (Acacia saligna) and subsequently applied as a support in the synthesis of titanium oxide nanoparticles. The characterization of biochar-supported titanium oxide nanoparticles was performed using scanning electron microscopy, Fourier transformer infrared, X-ray diffraction, and Brunauer–Emmett–Teller analyses. The results showed that the titanium oxide was successfully immobilized on the biochar’s external surface. The synthesized biochar-supported titanium oxide nanoparticles exhibited the phenomenon of small hysteresis, which represents the typical type IV isotherm attributed to mesoporous materials with low porosity. Meanwhile, X-ray diffraction analysis revealed the presence of a mixture of rutile and anatase crystalline phase titanium oxide. The synthesis of biochar-supported titanium oxide nanoparticles was highly efficient in the degradation of Orange II Sodium dye under solar irradiation. Moreover, 83.5% degradation was achieved when the biochar-supported titanium oxide nanoparticles were used as photocatalysts in comparison with the reference titanium oxide, which only achieved 20% degradation. Full article
Show Figures

Figure 1

23 pages, 7018 KiB  
Review
2D and Quasi-2D Halide Perovskite-Based Resistive Switching Memory Systems
by Hyojung Kim, Daijoon Hyun, Muhammad Hilal, Zhicheng Cai and Cheon Woo Moon
Electronics 2024, 13(17), 3572; https://doi.org/10.3390/electronics13173572 - 8 Sep 2024
Cited by 7 | Viewed by 2116
Abstract
Resistive switching (RS) memory devices are gaining recognition as data storage devices due to the significant interest in their switching material, Halide perovskite (HP). The electrical characteristics include hysteresis in its current–voltage (IV) relationship. It can be attributed to [...] Read more.
Resistive switching (RS) memory devices are gaining recognition as data storage devices due to the significant interest in their switching material, Halide perovskite (HP). The electrical characteristics include hysteresis in its current–voltage (IV) relationship. It can be attributed to the production and migration of defects. This property allows HPs to be used as RS materials in memory devices. However, 3D HPs are vulnerable to moisture and the surrounding environment, making their devices more susceptible to deterioration. The potential of two-dimensional (2D)/quasi-2D HPs for optoelectronic applications has been recognized, making them a viable alternative to address current restrictions. Two-dimensional/quasi-2D HPs are created by including extended organic cations into the ABX3 frameworks. By adjusting the number of HP layers, it is possible to control the optoelectronic properties to achieve specific features for certain applications. This article presents an overview of 2D/quasi-2D HPs, including their structures, binding energies, and charge transport, compared to 3D HPs. Next, we discuss the operational principles, RS modes (bipolar and unipolar switching), in RS memory devices. Finally, there have been notable and recent breakthroughs in developing RS memory systems using 2D/quasi-2D HPs. Full article
(This article belongs to the Special Issue Advanced Materials for Intelligent Electronics)
Show Figures

Figure 1

21 pages, 6113 KiB  
Article
Exploring Heterointerface Characteristics and Charge-Storage Dynamics in ALD-Developed Ultra-Thin TiO2-In2O3/Au Heterojunctions
by Mohammad Karbalaei Akbari, Nasrin Siraj Lopa and Serge Zhuiykov
Coatings 2024, 14(7), 880; https://doi.org/10.3390/coatings14070880 - 14 Jul 2024
Viewed by 1241
Abstract
Directional ionic migration in ultra-thin metal-oxide semiconductors under applied electric fields is a key mechanism for developing various electronic nanodevices. However, understanding charge transfer dynamics is challenging due to rapid ionic migration and uncontrolled charge transfer, which can reduce the functionality of microelectronic [...] Read more.
Directional ionic migration in ultra-thin metal-oxide semiconductors under applied electric fields is a key mechanism for developing various electronic nanodevices. However, understanding charge transfer dynamics is challenging due to rapid ionic migration and uncontrolled charge transfer, which can reduce the functionality of microelectronic devices. This research investigates the supercapacitive-coupled memristive characteristics of ultra-thin heterostructured metal-oxide semiconductor films at TiO2-In2O3/Au Schottky junctions. Using atomic layer deposition (ALD), we nano-engineered In2O3/Au-based metal/semiconductor heterointerfaces. TEM studies followed by XPS elemental analysis revealed the chemical and structural characteristics of the heterointerfaces. Subsequent AFM studies of the hybrid heterointerfaces demonstrated supercapacitor-like behavior in nanometer-thick TiO2-In2O3/Au junctions, resembling ultra-thin supercapacitors, pseudocapacitors, and nanobatteries. The highest specific capacitance of 2.6 × 104 F.g−1 was measured in the TiO2-In2O3/Au junctions with an amorphous In2O3 electron gate. Additionally, we examined the impact of crystallization, finding that thermal annealing led to the formation of crystalline In2O3 films with higher oxygen vacancy content at TiO2-In2O3 heterointerfaces. This crystallization process resulted in the evolution of non-zero I-V hysteresis loops into zero I-V hysteresis loops with supercapacitive-coupled memristive characteristics. This research provides a platform for understanding and designing adjustable ultra-thin Schottky junctions with versatile electronic properties. Full article
(This article belongs to the Special Issue Advanced Films and Coatings Based on Atomic Layer Deposition)
Show Figures

Figure 1

15 pages, 4366 KiB  
Article
Optimization of Bilayer Resistive Random Access Memory Based on Ti/HfO2/ZrO2/Pt
by Zhendong Sun, Pengfei Wang, Xuemei Li, Lijia Chen, Ying Yang and Chunxia Wang
Materials 2024, 17(8), 1852; https://doi.org/10.3390/ma17081852 - 17 Apr 2024
Viewed by 1764
Abstract
In this paper, the electrothermal coupling model of metal oxide resistive random access memory (RRAM) is analyzed by using a 2D axisymmetrical structure in COMSOL Multiphysics simulation software. The RRAM structure is a Ti/HfO2/ZrO2/Pt bilayer structure, and the SET [...] Read more.
In this paper, the electrothermal coupling model of metal oxide resistive random access memory (RRAM) is analyzed by using a 2D axisymmetrical structure in COMSOL Multiphysics simulation software. The RRAM structure is a Ti/HfO2/ZrO2/Pt bilayer structure, and the SET and RESET processes of Ti/HfO2/ZrO2/Pt are verified and analyzed. It is found that the width and thickness of CF1 (the conductive filament of the HfO2 layer), CF2 (the conductive filament of the ZrO2 layer), and resistive dielectric layers affect the electrical performance of the device. Under the condition of the width ratio of conductive filament to transition layer (6:14) and the thickness ratio of HfO2 to ZrO2 (7.5:7.5), Ti/HfO2/ZrO2/Pt has stable high and low resistance states. On this basis, the comparison of three commonly used RRAM metal top electrode materials (Ti, Pt, and Al) shows that the resistance switching ratio of the Ti electrode is the highest at about 11.67. Finally, combining the optimal conductive filament size and the optimal top electrode material, the I-V hysteresis loop was obtained, and the switching ratio Roff/Ron = 10.46 was calculated. Therefore, in this paper, a perfect RRAM model is established, the resistance mechanism is explained and analyzed, and the optimal geometrical size and electrode material for the hysteresis characteristics of the Ti/HfO2/ZrO2/Pt structure are found. Full article
Show Figures

Figure 1

17 pages, 3006 KiB  
Article
Resistive Memory-Switching Behavior in Solution-Processed Trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) Benzene–PVA-Composite-Based Aryl Acrylate on ITO-Coated PET
by Rachana Kamath, Parantap Sarkar, Sindhoora Kaniyala Melanthota, Rajib Biswas, Nirmal Mazumder and Shounak De
Polymers 2024, 16(2), 218; https://doi.org/10.3390/polym16020218 - 12 Jan 2024
Cited by 1 | Viewed by 1680
Abstract
Resistive switching memories are among the emerging next-generation technologies that are possible candidates for in-memory and neuromorphic computing. In this report, resistive memory-switching behavior in solution-processed trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate on an ITO-coated PET device was studied. A sandwich configuration was selected, [...] Read more.
Resistive switching memories are among the emerging next-generation technologies that are possible candidates for in-memory and neuromorphic computing. In this report, resistive memory-switching behavior in solution-processed trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate on an ITO-coated PET device was studied. A sandwich configuration was selected, with silver (Ag) serving as a top contact and trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate and ITO-PET serving as a bottom contact. The current–voltage (I–V) characteristics showed hysteresis behavior and non-zero crossing owing to voltages sweeping from positive to negative and vice versa. The results showed non-zero crossing in the devices’ current–voltage (I–V) characteristics due to the nanobattery effect or resistance, capacitive, and inductive effects. The device also displayed a negative differential resistance (NDR) effect. Non-volatile storage was feasible with non-zero crossing due to the exhibition of resistive switching behavior. The sweeping range was −10 V to +10 V. These devices had two distinct states: ‘ON’ and ‘OFF’. The ON/OFF ratios of the devices were 14 and 100 under stable operating conditions. The open-circuit voltages (Voc) and short-circuit currents (Isc) corresponding to memristor operation were explained. The DC endurance was stable. Ohmic conduction and direct tunneling mechanisms with traps explained the charge transport model governing the resistive switching behavior. This work gives insight into data storage in terms of a new conception of electronic devices based on facile and low-temperature processed material composites for emerging computational devices. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Figure 1

Back to TopTop