Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goetz, W.; Papageorgiou, S.N. Molecular, cellular and pharmaceutical aspects of synthetic hydroxyapatite bone substitutes for oral and maxillofacial grafting. Curr. Pharmac. Biotechnol. 2017, 18, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Kudoh, K.; Fukuda, N.; Kasugai, S.; Tachikawa, N.; Koyano, K.; Matsushita, Y.; Ogino, Y.; Ishikawa, K.; Miyamoto, Y. Maxillary Sinus Floor Augmentation Using Low-Crystalline Carbonate Apatite Granules with Simultaneous Implant Installation: First-in-Human Clinical Trial. J. Oral Maxillofac. Surg. 2019, 77, 985-e1. [Google Scholar] [CrossRef] [PubMed]
- Duta, L.; Grumezescu, V. The Effect of Doping on the Electrical and Dielectric Properties of Hydroxyapatite for Medical Applications: From Powders to Thin Films. Materials 2024, 17, 640. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Kareiva, A. Sol-gel synthesis of calcium phosphate-based coatings—A review. Chemija 2020, 31, 25–41. [Google Scholar] [CrossRef]
- Gani, M.A.; Lee, G.; Ardianto, C.; Rantam, F.A.; Lestari, M.L.A.D.; Addimaysqi, R.; Adnyana, I.K.; Lee, K.; Khotib, J. Comparative study of bovine and synthetic hydroxyapatite in micro-and nanosized on osteoblasts action and bone growth. PLoS ONE 2025, 20, e0311652. [Google Scholar] [CrossRef]
- Lukaviciute, L.; Lukowiak, A.; Stankeviciute, Z.; Junka, A.; Mortimer, M.; Zarkov, A.; Yang, J.-C.; Ganceviciene, R.; Kareiva, A. Cytocompatible and antibacterial Fe-, Cu- and Zn-substituted calcium hydroxyapatite materials for skin applications. Ceram. Int. 2025, 51, 11286–11296. [Google Scholar] [CrossRef]
- de Andrade, R.; Paim, T.C.; Bertaco, I.; Naasani, L.S.; Buchner, S.; Kovarik, T.; Hajek, J.; Wink, M.R. Hierarchically porous bioceramics based on geopolymer-hydroxyapatite composite as a novel biomaterial: Structure, mechanical properties and biocompatibility evaluation. Appl. Mater. Today 2023, 33, 101875. [Google Scholar] [CrossRef]
- Montesissa, M.; Sassoni, E.; Boi, M.; Borciani, G.; Boanini, E.; Graziani, G. Synthetic or Natural (Bio-Based) Hydroxyapatite? A Systematic Comparison between Biomimetic Nanostructured Coatings Produced by Ionized Jet Deposition. Nanomaterials 2024, 14, 1332. [Google Scholar] [CrossRef]
- Ishikawa, K.; Garskaite, E.; Kareiva, A. Sol-gel synthesis of calcium phosphate-based biomaterials—A review of environmentally benign, simple and effective synthesis routes. J. Sol-Gel Sci. Technol. 2020, 94, 551–572. [Google Scholar] [CrossRef]
- Ahmed, L.O.; Omer, R.A. Hydroxyapatite biomaterials: A comprehensive review of their properties, structures, clinical applications, and producing techniques. Rev. Inorg. Chem. 2024, 44, 599–618. [Google Scholar] [CrossRef]
- Santos, M.H.; de Oliveira, M.; de Freitas Souza, L.P.; Mansur, H.S.; Vasconcelos, W.L. Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater. Res. 2004, 7, 625–630. [Google Scholar] [CrossRef]
- Mobasherpour, I.; Heshajin, M.S.; Kazemzadeh, A.; Zakeri, M. Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J. Alloys Compd. 2007, 430, 330–333. [Google Scholar] [CrossRef]
- Sokolova, M.; Putnins, A.; Kreicbergs, I.; Locs, J. Scale-Up of Wet Precipitation Calcium Phosphate Synthesis. Key Eng. Mater. 2014, 604, 216–219. [Google Scholar] [CrossRef]
- Anandan, D.; Jaiswal, A.K. Synthesis methods of hydroxyapatite and biomedical applications: An updated review. J. Austral. Ceram. Soc. 2024, 60, 663–679. [Google Scholar] [CrossRef]
- Riman, R.E.; Suchanek, W.L. Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 2006, 45, 184–193. [Google Scholar]
- Aminian, A.; Solati-Hashjin, M.; Samadikuchaksaraei, A.; Bakhshi, F.; Gorjipour, F.; Farzadi, A.; Moztarzadeh, F.; Schmücker, M. Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram. Int. 2011, 37, 1219–1229. [Google Scholar] [CrossRef]
- Nagata, F.; Yamauchi, Y.; Tomita, M.; Kato, K. Hydrothermal synthesis of hydroxyapatite nanoparticles and their protein adsorption behavior. J. Ceram. Soc. Jpn. 2013, 121, 797–801. [Google Scholar] [CrossRef]
- Prihanto, A.; Muryanto, S.; Ismail, R.; Jamari, J.; Bayuseno, A.P. Batch hydrothermal synthesis of nanocrystalline, thermostable hydroxyapatite at various pH and temperature levels. Inorg. Chem. Commun. 2023, 157, 111301. [Google Scholar] [CrossRef]
- Kawsar, M.; Hossain, M.S.; Alam, M.K.; Bahadur, N.M.; Shaikh, M.A.A.; Ahmed, S. Synthesis of pure and doped nano-calcium phosphates using different conventional methods for biomedical applications: A review. J. Mater. Chem. B. 2024, 12, 3376–3391. [Google Scholar] [CrossRef]
- Ezerskyte-Miseviciene, A.; Kareiva, A. Everything old is new again: A reinspection of solid-state method for the fabrication of high quality calcium hydroxyapatite bioceramics. Mendel. Commun. 2019, 29, 273–275. [Google Scholar] [CrossRef]
- Viana, J.R.; Mathias, A.A.M.; Santos, A.O.D.; Filho, P.D.F.; Graca, M.P.F.; Valent, M.A.; da Silva, C.C. Comparative analysis of solid state hydroxyapatite synthesis. Matéria 2020, 25, e-12588. [Google Scholar]
- Javadinejad, H.R.; Ebrahimi-Kahrizsangi, R. Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. Int. J. Chem. Kinet. 2021, 53, 583–595. [Google Scholar] [CrossRef]
- Rhee, S.H. Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 2002, 23, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Zhang, Q.; Saito, F. Mechanochemical synthesis of hydroxyapatite from Ca(OH)2-P2O5 and CaO-Ca(OH)2-P2O5 mixtures. J. Mater. Sci. 2000, 35, 5401–5405. [Google Scholar] [CrossRef]
- Amirthalingam, N.; Deivarajan, T.; Paramasivam, M. Mechano chemical synthesis of hydroxyapatite using dolomite. Mater. Lett. 2019, 254, 379–382. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Botelho, M.; Lu, W.; Monmaturapoj, N. Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering. J. Biomed. Mater. Res. Part A 2019, 107, 1654–1666. [Google Scholar] [CrossRef]
- Jeyhani, N.; Masaeli, E.; Mirahmadi-Zare, S.Z.; Alirezaei, S.; Shoaraye-Nejati, A. Effect of precursor on structural and antibacterial behaviour of hydroxyapatite/silver nanocomposites. Mater. Technol. 2022, 37, 1086–1096. [Google Scholar] [CrossRef]
- Brochu, B.M.; Sturm, S.R.; Goncalves, J.A.K.D.; Mirsky, N.A.; Sandino, A.I.; Panthaki, K.Z.; Panthaki, K.Z.; Nayak, V.V.; Daunert, S.; Witek, L.; et al. Advances in Bioceramics for Bone Regeneration: A Narrative Review. Biomimetics 2024, 9, 690. [Google Scholar] [CrossRef]
- Liu, C.R.; Xu, M.C.; Wang, Y.C.; Yin, Q.Y.; Hu, J.; Chen, H.; Sun, Z.W.; Liu, C.; Li, X.Y.; Zhou, W.J.; et al. Exploring the potential of hydroxyapatite-based materials in biomedicine: A comprehensive review. Mater. Sci. Eng. R Rep. 2024, 161, 100870. [Google Scholar] [CrossRef]
- Etinosa, P.O.; Osuchukwu, O.A.; Anisiji, E.O.; Lawal, M.Y.; Mohammed, S.A.; Ibitoye, O.I.; Oni, P.G.; Aderibigbe, V.D.; Aina, T.; Oyebode, D.; et al. In-depth review of synthesis of hydroxyapatite biomaterials from natural resources and chemical regents for biomedical applications. Arab. J. Chem. 2024, 17, 106010. [Google Scholar] [CrossRef]
- Veluswamy, R.; Balasubramaniam, G.; Natarajan, M.; Krishnaswamy, M.; Chinnappan, B.A.; Nagarajan, S.; Subramanian, B.; Velauthapillai, D. Multifunctional and sustainable hydroxyapatite from natural products for biomedical and industrial applications—A comprehensive review. Sust. Chem. Pharm. 2024, 41, 101653. [Google Scholar] [CrossRef]
- Arokiasamy, P.; Abdullah, M.M.A.; Rahim, S.Z.A.; Luhar, S.; Sandu, A.V.; Jamil, N.H.; Nabialek, M. Synthesis methods of hydroxyapatite from natural sources: A review. Ceram. Int. 2022, 48, 14959–14979. [Google Scholar] [CrossRef]
- Koshy, N.A.S.M.P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of hydroxyapatite from natural sources. Heliyon 2019, 5, e01588. [Google Scholar]
- Akram, M.; Ahmed, R.; Shakir, I.; Ibrahim, W.A.W.; Hussain, R. Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 2014, 49, 1461–1475. [Google Scholar] [CrossRef]
- Muntean, F.L.; Olariu, I.; Marian, D.; Olariu, T.; Petrescu, E.L.; Olariu, T.; Draghici, G.A. Hydroxyapatite from Mollusk Shells: Characteristics, Production, and Potential Applications in Dentistry. Dent. J. 2024, 12, 409. [Google Scholar] [CrossRef]
- Trinkunaite-Felsen, J.; Prichodko, A.; Semasko, M.; Skaudzius, R.; Beganskiene, A.; Kareiva, A. Synthesis and characterization of iron-doped/substituted calcium hydroxyapatite from seashells Macoma balthica (L.). Adv. Powder Technol. 2015, 26, 1287–1293. [Google Scholar] [CrossRef]
- Alkaron, W.; Almansoori, A.; Balazsi, K.; Balazsi, C. Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration. Materials 2024, 17, 4117. [Google Scholar] [CrossRef]
- Dogdu, S.A.; Turan, C.; Depci, T.; Ayas, D. Natural hydroxyapatite obtained from pufferfish teeth for potential dental application. J. Ceram. Process. Res. 2021, 22, 356–361. [Google Scholar]
- Dogdu, S.A.; Turan, C.; Depci, T.; Bahceci, E.; Sangun, K.; Ayas, D. Hydroxyapatite production and characterization from four pufferfish species teeth. J. Ceram. Process. Res. 2024, 25, 85–91. [Google Scholar]
- Akindoyo, J.O.; Ghazali, S.; Beg, M.D.H.; Jeyaratnam, N. Characterization and Elemental Quantification of Natural Hydroxyapatite Produced from Cow Bone. Chem. Eng. Technol. 2019, 42, 1805–1815. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S. Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications. Biotechnol. Bioproc. Eng. 2021, 26, 312–324. [Google Scholar] [CrossRef]
- Yong, P.; Macaskie, L.E.; Sammons, R.L.; Marquis, P.M. Synthesis of nanophase hydroxyapatite by a Serratia sp from waste-water containing inorganic phosphate. Biotechnol. Lett. 2004, 26, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, K.A.; Yatim, N.; Ali, N.; Rastegari, H. Recycling phosphorus and calcium from aquaculture waste as a precursor for hydroxyapatite (HAp) production: A review. Environ. Sci. Pollut. Res. 2022, 29, 46471–46486. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoaty, A.; Mousa, S. Synthesis and characterization of hydroxyapatite nanoparticles from calcium hydroxide fouled with gases evolved from smokestack of glass industry. Sci. Rep. 2024, 14, 10969. [Google Scholar] [CrossRef]
- Ummartyotin, S.; Tangnorawich, B. Utilization of eggshell waste as raw material for synthesis of hydroxyapatite. Coll. Polym. Sci. 2015, 293, 2477–2483. [Google Scholar] [CrossRef]
- Razak, A.; Isa, N.M.; Adzila, S. Synthesis of Calcium Phosphate Extracted from Eggshell Waste through Precipitation Method. Biointerface Res. Appl. Chem. 2021, 11, 15058–15067. [Google Scholar]
- Ghouse, R.M.; Natasha, A.N.; Shahedan, N.F.; Ramesh, S.; Bang, L.T. The Properties of Hydroxyapatite Derived from Carbonate Eggshell Waste Through Ball Milling and Heat Treatment Method. Int. J. Integr. Eng. 2024, 16, 112–120. [Google Scholar] [CrossRef]
- Idulhaq, M.; Mudigdo, A.; Utomo, P.; Wasita, B.; Trapsilantya, M.E. Structural Comparison of Hydroxyapatite from Clam Shell Waste and Eggshell Waste Compared to Commercial Synthetic Hydroxyapatite. Malays. Ortop. J. 2024, 18, 27–31. [Google Scholar]
- Zakaria, K.A.; Yatim, N.I.; Ali, N.; Lananan, F.; Kasan, N.A. Extracting valuable compounds from shrimp shell waste: Recovery of high-quality as calcium-centric resources for hydroxyapatite production. J. Aust. Ceram. Soc. 2024, 60, 1019–1029. [Google Scholar] [CrossRef]
- Irfa’i, M.A.; Schmahl, W.W.; Pusparizkita, Y.M.; Muryanto, S.; Prihanto, A.; Ismail, R.; Jamari, J.; Bayuseno, A.P. Hydrothermally synthesized-nanoscale carbonated hydroxyapatite with calcium carbonates derived from green mussel shell wastes. J. Mol. Struct. 2024, 1306, 137837. [Google Scholar] [CrossRef]
- Nunez, D.; Elgueta, E.; Varaprasad, K.; Oyarzun, P. Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes. Mater. Lett. 2018, 230, 64–68. [Google Scholar] [CrossRef]
- Bee, S.L.; Hamid, Z.A.A. Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceram. Int. 2020, 46, 17149–17175. [Google Scholar] [CrossRef]
- Irfa’i, M.A.; Muryanto, S.; Pusparizkita, Y.M.; Prihanto, A.; Vaquer, A.S.; Schmahl, W.W.; Ismail, R.; Jamari, J.; Bayuseno, A.P. Calcination-based direct extraction of hydroxyapatite from bovine bone waste. Environ. Technol. 2024, 45, 6249–6261. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, H.; da Silva, V.H.P.; Ruiz, P.L.M.; Ussui, V.; Lazar, D.R.R.; Renno, A.C.M.; Ribeiro, D.A. Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. J. Mech. Behav. Biomed. Mater. 2018, 80, 137–142. [Google Scholar] [CrossRef]
- Grigoraviciute-Puroniene, I.; Zarkov, A.; Tsuru, K.; Ishikawa, K.; Kareiva, A. A novel synthetic approach for the calcium hydroxyapatite from the food products. J. Sol-Gel Sci. Technol. 2019, 91, 63–71. [Google Scholar] [CrossRef]
- Takei, T.; Imazawa, N.; Miura, A.; Kumada, N.; Ogihara, K. Conversion of calcium sulfite waste to hydroxyapatite. Powder Technol. 2013, 237, 400–405. [Google Scholar] [CrossRef]
- Algamal, Y.; Khalil, N.M.; Saddiq, A.; Baghdadi, A.M. Antimicrobial activity of Hydroxyapatite nanoparticles prepared from marble wastes. Main Group Chem. 2022, 21, 865–873. [Google Scholar] [CrossRef]
- Bajorinaite, E.; Michailova, L.; Jureviciute, S.; Sokol, D.; Stankeviciute, Z.; Grigoraviciute, I.; Kareiva, A. Initial evaluation of waste phosphogypsum for its use as a precursor for bioceramic materials. Chemija 2024, 35, 35–44. [Google Scholar] [CrossRef]
- Raiseliene, R.; Linkaite, G.; Zarkov, A.; Kareiva, A.; Grigoraviciute, I. Large-Scale Green Synthesis of Magnesium Whitlockite from Environmentally Benign Precursor. Materials 2024, 17, 788. [Google Scholar] [CrossRef]
- Sugiura, Y.; Munar, M.L.; Ishikawa, K. Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor. J. Mater. Sci. Mater. Med. 2018, 29, 151. [Google Scholar] [CrossRef]
- Ishikawa, K.; Hayashi, K. Carbonate apatite artificial bone. Sci. Technol. Adv. Mater. 2021, 22, 683–694. [Google Scholar] [CrossRef]
- Garskaite, E.; Alinauskas, L.; Drienovsky, M.; Krajcovic, J.; Cicka, R.; Palcut, M.; Jonusauskas, L.; Malinauskas, M.; Stankeviciute, Z.; Kareiva, A. Fabrication of composite of nanocrystalline carbonated hydroxyapatite (cHAP) with polylactic acid (PLA) and its surface topographical structuring with direct laser writing (DLW). RSC Adv. 2016, 6, 72733–72743. [Google Scholar] [CrossRef]
- Landi, E.; Celotti, G.; Logroscino, G.; Tampieri, A. Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc. 2003, 23, 2931–2937. [Google Scholar] [CrossRef]
- Valenzuela, E.I.; Sanchez-Urzua, J.M.; Mendoza, P.G.Y.G.Y.; Navarro-Marquez, M.; Zayas-Olivares, A.; Gutierrez-Uribe, J.A.; Ortega-Lara, W.; Cervantes-Aviles, P. Recovery of calcium from maize Lime-Cooking wastewater as hydroxyapatite for biomedical applications. Sep. Purif. Technol. 2025, 365, 132777. [Google Scholar] [CrossRef]
- Deng, Q.L.; Bai, J.; Luo, C.L.; Liao, X.Z.; He, Q.R.; Tan, H.B.; Dong, F.Q.; Chen, W.L.; Jiang, J.L. Preparation of calcium-based cementitious material by decomposing phosphogypsum as the sole calcium source utilizing biomass synergized with iron accelerators. Proc. Saf. Environ. Prot. 2025, 195, 106775. [Google Scholar] [CrossRef]
Sample | 1 | 2 | 3 |
---|---|---|---|
>SBET (m2/g) | 60.5 | 58.7 | 15.9 |
Sext (m2/g) | 56.4 | 44.3 | 8.30 |
Vμ (cm3/g) | 0.0013 | 0.0040 | 0.0036 |
Vp (cm3/g) | 0.17 | 0.21 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jursene, E.; Michailova, L.; Jureviciute, S.; Stankeviciute, Z.; Grigoraviciute, I.; Kareiva, A. Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum. Materials 2025, 18, 2869. https://doi.org/10.3390/ma18122869
Jursene E, Michailova L, Jureviciute S, Stankeviciute Z, Grigoraviciute I, Kareiva A. Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum. Materials. 2025; 18(12):2869. https://doi.org/10.3390/ma18122869
Chicago/Turabian StyleJursene, Elzbieta, Laura Michailova, Simona Jureviciute, Zivile Stankeviciute, Inga Grigoraviciute, and Aivaras Kareiva. 2025. "Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum" Materials 18, no. 12: 2869. https://doi.org/10.3390/ma18122869
APA StyleJursene, E., Michailova, L., Jureviciute, S., Stankeviciute, Z., Grigoraviciute, I., & Kareiva, A. (2025). Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum. Materials, 18(12), 2869. https://doi.org/10.3390/ma18122869