Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,611)

Search Parameters:
Keywords = ITS rRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3192 KB  
Article
Exosomal miRNAs Mediate Immune–Metabolic Interactions in the Hemocytes of the Pearl Oyster Pinctada fucata martensii
by Ping Wang, Chaoxuan Wu, Yalin Xu, Minxin Liang, Wanqi Tan, Qingheng Wang, Yuewen Deng and Zhe Zheng
Animals 2025, 15(20), 2955; https://doi.org/10.3390/ani15202955 (registering DOI) - 13 Oct 2025
Abstract
Mollusks, such as bivalves, face increasing threats, such as disease, in aquaculture. Exosomes, widely derived from living cells carrying diverse bioactive molecules, affect the immune response. To overcome these challenges, bivalves utilize exosomal miRNAs as critical regulators of immune responses. This study investigates [...] Read more.
Mollusks, such as bivalves, face increasing threats, such as disease, in aquaculture. Exosomes, widely derived from living cells carrying diverse bioactive molecules, affect the immune response. To overcome these challenges, bivalves utilize exosomal miRNAs as critical regulators of immune responses. This study investigates the role of exosomal miRNAs in modulating immune and metabolic responses in Pinctada fucata martensii following lipopolysaccharide (LPS) stimulation. Exosomes (75–150 nm) were isolated from hemolymph and characterized. High-throughput sequencing identified 30 differentially expressed miRNAs (DEMs) and 1349 differentially expressed genes (DEGs) in LPS-treated oysters, with significant enrichment in TNF, TLR/NF-κB, and metabolic pathways. This study revealed exosomal miRNA-mediated regulation of immune genes (IκBα, TRAF6, IRAK1, and BIRC2/3) and metabolic enzymes (PCK and CYP2J), demonstrating their role in apoptosis, inflammation, and metabolic reprogramming. Network analysis highlighted miRNA–mRNA interactions, including miR-7/IκBα (TNF pathway) and miR-34_5/IRAK1 (TLR pathway). Additionally, exosomal miRNAs (miR-92_2 and novel_mir5) were found to regulate oxidative stress (SOD1) and gluconeogenesis (PCK), linking immune defense with metabolic adaptation. These findings provide novel insights into exosomal miRNA-mediated immune regulation in bivalves, revealing conserved mechanisms with potential implications for molluscan health and disease management. Full article
(This article belongs to the Special Issue Developmental Genetics of Adaptation in Aquatic Animals)
Show Figures

Figure 1

16 pages, 3297 KB  
Article
Larazotide Acetate Protects the Intestinal Mucosal Barrier from Anoxia/Reoxygenation Injury via Various Cellular Mechanisms
by Jain Kim, Jay P. Madan, Sandeep Laumas, B. Radha Krishnan and Younggeon Jin
Biomedicines 2025, 13(10), 2483; https://doi.org/10.3390/biomedicines13102483 (registering DOI) - 12 Oct 2025
Abstract
Background/Objective: Larazotide acetate (LA) is a synthetic octapeptide under development as a therapeutic candidate for celiac disease, acting to reduce intestinal permeability and regulate tight junctions (TJs). Although several studies have shown barrier-protective effects, the cellular mechanisms underlying LA’s actions in the [...] Read more.
Background/Objective: Larazotide acetate (LA) is a synthetic octapeptide under development as a therapeutic candidate for celiac disease, acting to reduce intestinal permeability and regulate tight junctions (TJs). Although several studies have shown barrier-protective effects, the cellular mechanisms underlying LA’s actions in the intestinal epithelium remain unclear. This study aimed to elucidate the mechanistic roles of LA in maintaining intestinal epithelial integrity during cellular injury. Methods: C2BBe1 and leaky IPEC-J2 cell monolayers were pretreated with 10 mM LA and subjected to anoxia/reoxygenation (A/R) injury. Transepithelial electrical resistance (TEER), TJ protein localization, and phosphorylation of myosin light chain-2 (MLC-2) were analyzed. In addition, RNA sequencing was conducted to identify differentially expressed genes and signaling pathways affected by LA treatment. Results: LA pretreatment significantly increased TEER and preserved TJ protein organization during A/R injury. Transcriptomic analysis revealed enrichment of genes related to barrier regulation, small GTPase signaling, protein phosphorylation, proliferation, and migration. LA pretreatment markedly reduced MLC-2 phosphorylation, likely through modulation of the ROCK pathway, consistent with RNA-seq findings. Moreover, LA enhanced cellular proliferation, validating transcriptomic predictions. Conclusions: LA exerts a protective effect on intestinal epithelial integrity by stabilizing tight junctions, reducing MLC-2 phosphorylation, and promoting epithelial proliferation. These findings highlight a novel mechanism for LA and support its therapeutic potential in treating gastrointestinal disorders associated with “leaky gut” and mucosal injury. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

9 pages, 289 KB  
Protocol
Changes in Gut Microbiome According to Probiotic Intake in Rectal Cancer Patients Undergoing Diverting Stoma Repair: Study Protocol
by Hyeung-min Park, Jaram Lee, Soo Young Lee, Chang Hyun Kim and Hyeong Rok Kim
J. Clin. Med. 2025, 14(20), 7190; https://doi.org/10.3390/jcm14207190 (registering DOI) - 12 Oct 2025
Abstract
Background: The gut microbiome is crucial in sustaining intestinal balance and general health. Following rectal cancer surgery, the creation of a diverting stoma to protect the anastomosis results in a defunctioned colon, leading to dysbiosis. The effect of probiotic intake on gut [...] Read more.
Background: The gut microbiome is crucial in sustaining intestinal balance and general health. Following rectal cancer surgery, the creation of a diverting stoma to protect the anastomosis results in a defunctioned colon, leading to dysbiosis. The effect of probiotic intake on gut dysbiosis following ileostomy repair remains uncertain. Thus, this study aims to determine the changes in gut microbiota based on the intake of probiotics after diverting stoma repair. Methods: This single-center, parallel, prospective pilot study will include patients with primary rectal cancer planning to undergo a diverting stoma during rectal cancer surgery. The study will comprise 20 patients, with 10 patients receiving synbiotics after stoma repair and 10 patients not receiving probiotics. The primary endpoint is the change in the gut microbiota of the resting colon based on the intake of probiotics, assessed through fecal testing at the following time points: before bowel resection, immediately after diverting stoma repair, and 3 weeks after diverting stoma repair. Changes in gut microbiota will be evaluated using alpha- and beta-diversity analyses based on 16S rRNA sequencing of fecal samples. Discussion: This study is the first prospective cohort trial investigating changes in the gut microbiota of the resting colon based on oral probiotic administration in patients undergoing diverting stoma repair. This trial is anticipated to clarify the impact of probiotic intake in these patients. Trial registration: Clinical Research Information Service (CRIS) of the Republic of Korea, KCT0008392, Registered on 27 April 2023. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
23 pages, 3898 KB  
Article
Phase-Specific Alterations in Gut Microbiota and Their Associations with Energy Intake and Nutritional Clustering in Competitive Weightlifters
by Chun-Yu Kuo, Yu-Ching Lo, Wei-Ling Chen and Yi-Ju Hsu
Nutrients 2025, 17(20), 3199; https://doi.org/10.3390/nu17203199 (registering DOI) - 11 Oct 2025
Abstract
Background/Objectives: This study investigated how phase-specific dietary strategies and weight regulation influence gut microbiota composition and diversity in competitive weightlifters. Particular emphasis was placed on integrating energy intake, macronutrient clustering, and weight fluctuations across distinct training phases. Methods: Thirteen competitive weightlifters [...] Read more.
Background/Objectives: This study investigated how phase-specific dietary strategies and weight regulation influence gut microbiota composition and diversity in competitive weightlifters. Particular emphasis was placed on integrating energy intake, macronutrient clustering, and weight fluctuations across distinct training phases. Methods: Thirteen competitive weightlifters were recruited, with 10–12 contributing complete data per phase. Fecal and dietary samples were collected during the preparation, competition, and transition phases. Gut microbiota was profiled via 16S rRNA gene sequencing, and alpha/beta diversity was analyzed using QIIME2. K-means clustering based on caloric/macronutrient intake identified dietary patterns. Taxonomic differences were assessed using DESeq2, and microbial structures were compared across training phases, weight classes, and weight-change categories. Results: Overall phylum- and genus-level profiles and diversity indices remained stable across training phases, indicating community-level resilience. However, specific genera varied with dietary and physiological factors. Enterococcus was higher during the preparation phase, whereas Lactobacillus was enriched during the competition and transition phases as well as in the high-calorie cluster. Lightweight and heavyweight athletes also showed distinct microbial structures, and pre- and post-competition weight changes were associated with shifts in selected taxa. Notably, the low-calorie group exhibited higher Shannon diversity than the high-calorie group (p = 0.0058), with Lactobacillus dominance contributing to reduced evenness in high-energy diets. Conclusions: Despite overall microbial stability, dietary energy availability and body-weight regulation modulated specific taxa relevant to performance and recovery. By integrating dietary clustering, weight-class comparison, and pre- and post-competition weight changes, this study provides novel insight into the microbiota of resistance-trained athletes, a population underrepresented in previous research. Despite the modest sample size and single-season scope, this study offers new evidence linking dietary strategies, weight regulation, and gut microbiota in weightlifters, and highlights the need for validation in broader cohorts. Full article
(This article belongs to the Special Issue Advanced Research on Nutrition and Gut–Brain Axis)
37 pages, 3801 KB  
Review
Molecular Signature in Focal Cortical Dysplasia: A Systematic Review of RNA and Protein Data
by Jalleh Shakerzadeh, Radim Jaroušek, Zita Goliášová and Milan Brázdil
Int. J. Mol. Sci. 2025, 26(20), 9909; https://doi.org/10.3390/ijms26209909 (registering DOI) - 11 Oct 2025
Abstract
Focal cortical dysplasia (FCD) is a major cause of drug-resistant epilepsy, yet its molecular basis remains poorly understood. Numerous studies have analyzed RNA, protein, and microRNA alterations, but results are often inconsistent across subtypes and methodologies. To address this gap, we conducted a [...] Read more.
Focal cortical dysplasia (FCD) is a major cause of drug-resistant epilepsy, yet its molecular basis remains poorly understood. Numerous studies have analyzed RNA, protein, and microRNA alterations, but results are often inconsistent across subtypes and methodologies. To address this gap, we conducted a systematic review integrating transcriptomic, proteomic, and microRNA data from 117 human studies of FCD subtypes I–III. Differentially expressed factors were extracted, categorized by subtype, and analyzed using pathway enrichment and network approaches. Our integrative analysis revealed convergent dysregulation of neuroinflammatory, synaptic, cytoskeletal, and metabolic pathways across FCD subtypes. Consistently altered genes, including IL1B, TLR4, BDNF, HMGCR, and ROCK2, together with dysregulated microRNAs such as hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-132-3p, were linked to PI3K–Akt–mTOR, Toll-like receptor, and GABAergic signaling, emphasizing shared pathogenic mechanisms. Importantly, we identified overlapping transcript–protein patterns and subtype-specific molecular profiles that may refine diagnosis and inform therapeutic strategies. This review provides the first cross-omics molecular framework of FCD, demonstrating how convergent pathways unify heterogeneous findings and offering a roadmap for biomarker discovery and targeted interventions. Full article
(This article belongs to the Section Macromolecules)
13 pages, 6985 KB  
Article
Investigation of the Role of miR-1236-3p in Heat Tolerance of American Shad (Alosa sapidissima) by Targeted Regulation of hsp90b1
by Mingkun Luo, Ying Liu, Wenbin Zhu, Bingbing Feng, Wei Xu and Zaijie Dong
Int. J. Mol. Sci. 2025, 26(20), 9908; https://doi.org/10.3390/ijms26209908 (registering DOI) - 11 Oct 2025
Abstract
High temperatures are one of the most important abiotic stressors affecting the survival and growth of American shad (Alosa sapidissima). Building on previous omics sequencing studies of A. sapidissima liver and gills under high temperature stress, this study focused on investigating [...] Read more.
High temperatures are one of the most important abiotic stressors affecting the survival and growth of American shad (Alosa sapidissima). Building on previous omics sequencing studies of A. sapidissima liver and gills under high temperature stress, this study focused on investigating the regulatory role of miR-1236-3p and its target gene hsp90b1. The results indicate that the full-length cDNA of the hsp90b1 gene is 2023 bp and comprises a 5’ end of 58 bp, a 3’ end of 84 bp, and a coding region of 1881 bp, encoding 626 amino acids. Sequence alignment and phylogenetic tree analysis reveal that the hsp90b1 sequence is highly conserved across species. In situ hybridization showed that hsp90b1 is mainly localized in the cytoplasm. Software prediction identified a potential binding site between miR-1236-3p and hsp90b1. Through the construction of wild-type and mutant 3’UTR hsp90b1 dual luciferase reporter plasmids, the targeted relationship between the two was confirmed. In addition, the spatiotemporal expression levels of the hsp90b1 was found to be highest in the multicellular stage and liver tissue at a cultivation temperature of 27 °C; miR-1236-3P was highly expressed in the hatching stage and heart tissue at 30 °C. These findings provide a theoretical foundation for further investigating the regulatory role of non-coding RNA in A. sapidissima heat stress and offer data for subsequent molecular breeding studies. Full article
Show Figures

Figure 1

21 pages, 5214 KB  
Article
microRNA-22 Inhibition Stimulates Mitochondrial Homeostasis and Intracellular Degradation Pathways to Prevent Muscle Wasting
by Simone Tomasini, Emanuele Monteleone, Anna Altieri, Francesco Margiotta, Fereshteh Dardmeh, Hiva Alipour, Anja Holm, Sakari Kauppinen and Riccardo Panella
Int. J. Mol. Sci. 2025, 26(20), 9900; https://doi.org/10.3390/ijms26209900 (registering DOI) - 11 Oct 2025
Abstract
MicroRNA-22 (miR-22) is a negative regulator of mitochondrial biogenesis, as well as lipid and glucose metabolism, in metabolically active tissues. Silencing miR-22 holds promise as a potential treatment of obesity and metabolic syndrome, as it restores metabolic capacity—enhancing oxidative metabolism—and reduces ectopic fat [...] Read more.
MicroRNA-22 (miR-22) is a negative regulator of mitochondrial biogenesis, as well as lipid and glucose metabolism, in metabolically active tissues. Silencing miR-22 holds promise as a potential treatment of obesity and metabolic syndrome, as it restores metabolic capacity—enhancing oxidative metabolism—and reduces ectopic fat accumulation in chronic obesity, a driver of impaired metabolic flexibility and muscle mass loss. Intramuscular adipose accumulation and defective mitochondrial function are features associated with obese-mediated muscle atrophy and hallmarks of neuromuscular disorders such as Duchenne muscular dystrophy. Therefore, miR-22 could represent a compelling molecular target to improve muscle health across various muscle-wasting conditions. This study describes a pharmacological strategy for the inhibition of miR-22 in skeletal muscle by employing a mixmer antisense oligonucleotide (ASO, anti-miR-22). Administration of the ASO in a mouse model of obesity positively modulated myogenesis while protecting dystrophic mice from muscle function decline, enhancing fatigue resistance, and limiting pathological fibrotic remodeling. Mechanistically, we show that anti-miR-22 treatment promotes derepression of genes involved in mitochondrial homeostasis, favoring oxidative fiber content regardless of the disease model, thus promoting a more resilient phenotype. Furthermore, we suggest that miR-22 inhibition increases autophagy by transcriptional activation of multiple negative regulators of mammalian target of rapamycin (mTOR) signaling to decrease immune infiltration and fibrosis. These findings position miR-22 as a promising therapeutic target for muscle atrophy and support its potential to restore muscle health. Full article
(This article belongs to the Special Issue MicroRNAs as Biomarkers and Therapeutic Targets in Human Diseases)
Show Figures

Figure 1

13 pages, 3161 KB  
Article
Hepatocyte Growth Factor Differentially Modulates Oral Microbiota in Early vs. Late Experimental Periodontitis
by Ruotong Ji, Xiaomin Zhao, Zhen Chen, Yifei Ge, Zhicong Wu and Xinhong Wang
Biology 2025, 14(10), 1393; https://doi.org/10.3390/biology14101393 (registering DOI) - 11 Oct 2025
Abstract
Background: Periodontitis is a chronic disease triggered by disturbed oral microbiota. We have previously reported that hepatocyte growth factor (HGF) could mitigate early-stage experimental periodontitis but exacerbate the condition in its late stage. Here, we investigated the impact of HGF on the periodontal [...] Read more.
Background: Periodontitis is a chronic disease triggered by disturbed oral microbiota. We have previously reported that hepatocyte growth factor (HGF) could mitigate early-stage experimental periodontitis but exacerbate the condition in its late stage. Here, we investigated the impact of HGF on the periodontal microbiome during periodontitis progression. Methods: We established ligation-induced periodontitis in wild-type (WT) mice and HGF high-expression transgenic (HGF-Tg) mice. We quantified the levels of IL-6 and TNF-α in periodontal tissues, as well as the serum concentrations of CTXI and PINP. Ligatures were collected on days 0, 7, and 28 after ligation for 16S rRNA sequencing and microbial analysis. Results: HGF significantly altered the diversity of ligatures during periodontitis. Interestingly, specific microbial genera, such as Lactobacillus, exhibited opposing trends between the two disease stages of HGF-Tg mice, aligning with the different effects of HGF on periodontitis progression. We also identified some taxa, such as Sphingomonas, associated with IL-6, TNF-α, CTXI, and PINP. The predicted inflammatory pathways (e.g., IL-17 signaling pathways) were enriched in HGF-Tg mice on day 28 but decreased on day 7. Conclusions: HGF exerted different influences on the microbiota of ligatures during early and late stages of periodontitis, which may account for the divergent effects of HGF on periodontitis progression. Full article
Show Figures

Figure 1

17 pages, 3890 KB  
Article
Lacticaseibacillus rhamnosus AC1 Aggravates Bone Loss in a Male Rat Model of Deoxycorticosterone Acetate (DOCA)-Salt-Induced Osteoporosis
by Xiaoqing Kuang, Haicui Wu, Tim Fat Shum, Chunyi Wen and Jiachi Chiou
Nutrients 2025, 17(20), 3198; https://doi.org/10.3390/nu17203198 (registering DOI) - 11 Oct 2025
Abstract
Background/Objectives: Osteoporosis is a prevalent and debilitating skeletal disease characterized by a progressive loss of bone mass and deterioration of bone microarchitecture. Probiotics have emerged as a potential therapeutic tool for treating osteoporosis through modulation of the gut microbiota. In this study, [...] Read more.
Background/Objectives: Osteoporosis is a prevalent and debilitating skeletal disease characterized by a progressive loss of bone mass and deterioration of bone microarchitecture. Probiotics have emerged as a potential therapeutic tool for treating osteoporosis through modulation of the gut microbiota. In this study, we aimed to examine the effects of live Lacticaseibacillus rhamnosus AC1 (LR-AC1), isolated from a fecal sample from a newborn in Hong Kong, on deoxycorticosterone acetate (DOCA)-induced bone loss in a rat model. Methods: Bone mass and microarchitecture were assessed using micro-computed tomography (micro-CT). Immunostaining for CD31+ and osterix, markers of endothelial cells and osteoblast precursors, respectively, was performed. Gut microbiota composition was analyzed via 16S rRNA sequencing. The effects of an LR-AC1 cell-free conditioned supernatant (CCS) on osteoclastogenesis, angiogenesis, and migration of bone marrow mesenchymal stem cells (BMSCs) were evaluated in vitro using RT-qPCR and wound healing assays. Results: LR-AC1 administration did not induce adverse effects in healthy rats; however, it exacerbated bone loss in rats with DOCA-salt-induced osteoporosis. Correspondingly, the number of CD31-positive endothelial cells and osterix-positive osteoprogenitors decreased with bone loss. In vitro, LR-AC1 CCS promoted osteoclastogenesis and angiogenesis, while in the presence of DOCA, LR-AC1 CCS inhibited BMSC migration. Gut microbiota analysis revealed that the relative abundances of the genera g_RF39 and g_Clostridia_UCG-014 correlated with the severity of bone loss. Conclusions: While several studies suggest that probiotics can prevent and treat osteoporosis, our findings indicate that in a male rat model of DOCA-salt-induced osteoporosis, live LR-AC1 aggravated bone loss. This effect is associated with alterations in gut microbiota and disruption of the coupling process in bone remodeling. Full article
Show Figures

Figure 1

20 pages, 1732 KB  
Article
The Impact of Bacterial–Fungal Interactions on Childhood Caries Pathogenesis
by Shiyan Huang, Haojie Wang, Jing Tian, Man Qin, Ruixiang Gao, Bingqian Zhao, Jingyan Wang, Huajun Wu and He Xu
Pathogens 2025, 14(10), 1033; https://doi.org/10.3390/pathogens14101033 (registering DOI) - 11 Oct 2025
Abstract
Caries is the most prevalent chronic disease affecting oral health in preschool children. In this 12-month prospective cohort study of 3–4-year-olds, we investigated the community-level bacterial–fungal interkingdom interactome and its role in cariogenic microenvironments, using 16S rRNA gene (bacterial) sequencing and ITS2 gene [...] Read more.
Caries is the most prevalent chronic disease affecting oral health in preschool children. In this 12-month prospective cohort study of 3–4-year-olds, we investigated the community-level bacterial–fungal interkingdom interactome and its role in cariogenic microenvironments, using 16S rRNA gene (bacterial) sequencing and ITS2 gene (fungal) sequencing of unstimulated saliva. Longitudinal analysis identified 19 key bacterial and fungal species that were associated with both caries progression and clinical features. Salivary bacteria Desulfovibrio, Bacteroides heparinolyticus, Alloprevotella, Anaerobiospirillum, and fungus Candida tropicalis not only showed altered abundances during caries development but also correlated with severity of caries, establishing diagnostic microbial signatures for caries prediction. The salivary mycobiome exhibited highly active and complex intra-network interactions in the caries-active state, suggesting that fungal networks may drive the broader community-wide microbiota interaction network in the caries state. Metabolic profiling further revealed distinct pathway shifts before and after caries onset. The findings demonstrate that caries progression follows ecological succession governed by cross-domain interactions. This study highlighted the fungal network’s important role in driving dysbiosis, advancing the current understanding of early childhood caries beyond bacterial-centric models, and also highlighted fungi not only as modulators but as active contributors to cariogenesis, which could guide future antimicrobial strategies. Full article
16 pages, 1716 KB  
Review
The Impact of Non-Coding RNA on Inflammation and Airway Remodeling in Asthma Related to Obesity: State-of-the-Art and Therapeutic Perspectives
by Maria Kachel, Wojciech Langwiński and Aleksandra Szczepankiewicz
J. Clin. Med. 2025, 14(20), 7161; https://doi.org/10.3390/jcm14207161 (registering DOI) - 11 Oct 2025
Abstract
Asthma is a chronic respiratory disease affecting over 262 million people worldwide, with obesity-associated asthma emerging as a distinct endotype of increasing prevalence characterized by metabolic inflammation and airway remodeling. Unlike allergic asthma, this phenotype is driven by chronic low-grade inflammation, originating from [...] Read more.
Asthma is a chronic respiratory disease affecting over 262 million people worldwide, with obesity-associated asthma emerging as a distinct endotype of increasing prevalence characterized by metabolic inflammation and airway remodeling. Unlike allergic asthma, this phenotype is driven by chronic low-grade inflammation, originating from hypertrophic and hypoxic adipose tissue. This dysregulated state leads to the activation of pro-inflammatory pathways and the secretion of cytokines, contributing to airway dysfunction and remodeling. Recent evidence highlights non-coding RNAs (ncRNAs) as key regulators of these processes. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) influence inflammation and remodeling by modulating immune cell polarization, cytokine secretion, extracellular matrix composition, and airway smooth muscle cell (ASMC) proliferation. Notably, H19, MEG3, GAS5, miR-26a-1-3p, and miR-376a-3p have been implicated in both asthma and obesity, suggesting their role in linking metabolic dysfunction with airway pathology. Moreover, ncRNAs regulate Treg/Th17 balance, fibroblast activation, and autophagy-related pathways, further influencing airway remodeling. Our in silico analysis highlighted the IGF1R signaling pathway as a key enriched mechanism, linking selected ncRNAs with metabolic dysregulation and inflammation in obesity-related asthma. This paper reviews how ncRNAs regulate inflammation and airway remodeling in obesity-associated asthma, emphasizing their potential molecular links between metabolic dysfunction and airway pathology. Full article
(This article belongs to the Special Issue New Clinical Advances in Chronic Asthma)
Show Figures

Figure 1

16 pages, 965 KB  
Review
Cardiometabolic Therapies Shape Non-Coding RNA Landscapes in Cardiovascular Fibrosis
by Erica Floris, Francesco Nutile, Claudia Cozzolino, Virginia Pontecorvi, Antonella Bordin, Elena De Falco, Vittorio Picchio, Isotta Chimenti and Francesca Pagano
Metabolites 2025, 15(10), 664; https://doi.org/10.3390/metabo15100664 (registering DOI) - 11 Oct 2025
Abstract
Background: Cardiometabolic syndromes, including diabetes, obesity, and metabolic syndrome, significantly contribute to cardiovascular fibrosis, a major driver of heart failure. Non-coding RNAs (ncRNAs)—notably microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)—have emerged as critical epigenetic regulators of fibrotic remodeling. Recent [...] Read more.
Background: Cardiometabolic syndromes, including diabetes, obesity, and metabolic syndrome, significantly contribute to cardiovascular fibrosis, a major driver of heart failure. Non-coding RNAs (ncRNAs)—notably microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)—have emerged as critical epigenetic regulators of fibrotic remodeling. Recent studies indicate that widely used metabolic modulators can influence ncRNA expression, potentially impacting on cardiovascular fibrosis. This review synthesizes evidence on the interplay between metabolic therapies and ncRNA regulation, with emphasis on therapeutic and biomarker potential of miRNAs. Methods: A literature search was manually curated and conducted on PubMed for studies published mainly in the last decade and evaluating the effects of metformin, sodium-glucose cotransporter-2 (SGLT2) inhibitors, peroxisome proliferator-activated receptor gamma (PPARγ) agonists, glucagon-like peptide 1 (GLP-1) receptor agonists, and fatty acid oxidation inhibitors on ncRNA expression in the context of cardiovascular fibrosis. Data from in vitro, in vivo, and clinical studies were extracted and categorized by drug class, ncRNA target, and functional outcomes. Results: Several metabolic modulators specifically downregulate pro-fibrotic (miR-21, miR-92, H19, and metastasis associated lung adenocarcinoma transcript 1 (MALAT1)) and upregulate anti-fibrotic ncRNAs (miR-29, miR-133a, miR-711, miR-133a, miR-30a and miR-200 family). This results in global attenuation of the transforming growth factor- beta (TGF-β) signaling, which limits extracellular matrix (ECM) accumulation thus improving myocardial compliance. Across drug classes, changes in ncRNA profiles paralleled improvements in fibrosis-related endpoints. Conclusions: Metabolic modulators exert anti-fibrotic effects partly through ncRNA regulation, offering novel therapeutic strategies and potential biomarkers for cardiovascular fibrosis in cardiometabolic disease. Targeting metabolic–ncRNA crosstalk may enable more precise and synergistic interventions for preventing or reversing pathological remodeling. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

22 pages, 22839 KB  
Article
Foodborne Helminths in Imported Fish: Molecular Evidence from Fish Products in the Kazakhstan Market
by Ainura Smagulova, Aitbay Bulashev, Karina Jazina, Rabiga Uakhit, Lyudmila Lider, Aiganym Bekenova, Dana Valeeva and Vladimir Kiyan
Foods 2025, 14(20), 3466; https://doi.org/10.3390/foods14203466 (registering DOI) - 11 Oct 2025
Abstract
The increasing reliance on imported fish products in Kazakhstan raises concerns about the presence of fish-borne parasitic infections, particularly zoonotic helminths that pose risks to public health. This study aimed to assess the diversity and prevalence of helminths in commercially imported marine fish [...] Read more.
The increasing reliance on imported fish products in Kazakhstan raises concerns about the presence of fish-borne parasitic infections, particularly zoonotic helminths that pose risks to public health. This study aimed to assess the diversity and prevalence of helminths in commercially imported marine fish using both traditional and molecular diagnostic methods. A total of 670 specimens representing 17 fish species were collected from retail markets in Astana, Almaty, and Karaganda. Macroscopic inspection and muscle compression techniques were used to detect larval parasites, followed by DNA extraction and PCR amplification targeting the ITS-2, 5.8S, 18S rRNA, and mitochondrial COX gene regions. Sequencing and phylogenetic analysis confirmed the presence of cestodes (Eubothrium crassum, Hepatoxylon trichiuri, Nybelinia surmenicola), acanthocephalans (Echinorhynchus gadi), and nematodes, with a predominance of zoonotic species from the Anisakidae family, including Anisakis simplex, A. pegreffii, Pseudoterranova decipiens, and Contracaecum osculatum. The highest levels of infection were detected in Atka mackerel (97.1%), herring (96.0%), mackerel (92.0%), and blue whiting (88.1%), while the lowest rates were recorded in smelt (6.8%), flounder (10.2%), and haddock (16.0%). This is the first molecular-based survey of fish helminths in Kazakhstan and highlights the need to integrate genetic screening into food safety control systems to better protect consumers and improve parasite monitoring of imported seafood. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

25 pages, 635 KB  
Review
Beyond Antioxidants: The Emerging Role of Nrf2 Activation in Amyotrophic Lateral Sclerosis (ALS)
by Minoo Sharbafshaaer, Roberta Pepe, Rosaria Notariale, Fabrizio Canale, Gioacchino Tedeschi, Alessandro Tessitore, Paolo Bergamo and Francesca Trojsi
Int. J. Mol. Sci. 2025, 26(20), 9872; https://doi.org/10.3390/ijms26209872 - 10 Oct 2025
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving the progressive degeneration of upper and lower motor neurons. While oxidative stress, RNA-binding protein (RBP) pathology, mitochondrial dysfunction, and glial–neuronal dysregulation is involved in ALS pathogenesis, current therapies provide limited benefit, underscoring the need [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving the progressive degeneration of upper and lower motor neurons. While oxidative stress, RNA-binding protein (RBP) pathology, mitochondrial dysfunction, and glial–neuronal dysregulation is involved in ALS pathogenesis, current therapies provide limited benefit, underscoring the need for multi-target disease-modifying strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), classically regarded as a master regulator of redox homeostasis, has recently emerged as a central integrator of cellular stress responses relevant to ALS. Beyond its canonical antioxidant function, Nrf2 regulates critical pathways involved in mitochondrial quality control, proteostasis, nucleocytoplasmic transport, RNA surveillance, and glial reactivity. Experimental models demonstrate that astrocyte-specific Nrf2 activation enhances glutathione metabolism, suppresses neuroinflammation, promotes stress granule disassembly, and reduces RBP aggregation. In C9orf72-linked ALS, Nrf2 activation mitigates dipeptide repeat protein toxicity and restores RNA processing fidelity via modulation of nonsense-mediated decay and R-loop resolution. Recent advances in Nrf2-targeted interventions including Keap1–Nrf2 protein–protein interaction inhibitors, dual Nrf2/HSF1 activators, and cell-type-selective Adeno-associated virus 9 (AAV9) vectors show promise in preclinical ALS models. These multimodal approaches highlight Nrf2’s therapeutic versatility and potential to address the upstream convergence points of ALS pathogenesis. Taken together, positioning Nrf2 as a systems-level regulator offers a novel framework for developing precision-based therapies in ALS. Integrating Nrf2 activation with RNA- and glia-directed strategies may enable comprehensive modulation of disease progression at its molecular roots. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 10124 KB  
Article
Cold Exposure Induces Swine Brown Adipocytes to Display an Island-like Distribution with Atypical Characteristics
by Zhenhua Guo, Lei Lv, Hong Ma, Liang Wang, Bo Fu, Fang Wang, Shuo Yang, Di Liu and Dongjie Zhang
Int. J. Mol. Sci. 2025, 26(20), 9871; https://doi.org/10.3390/ijms26209871 (registering DOI) - 10 Oct 2025
Abstract
The original purpose of this study was to compare human and pig scRNA-seq data to determine why pigs do not have brown adipocytes. However, during the experiment, we identified brown adipocytes in pigs. Therefore, we aimed to confirm that these adipocytes were brown [...] Read more.
The original purpose of this study was to compare human and pig scRNA-seq data to determine why pigs do not have brown adipocytes. However, during the experiment, we identified brown adipocytes in pigs. Therefore, we aimed to confirm that these adipocytes were brown adipocytes via a comparative analysis using typical mouse brown adipose tissue sections. We found that swine brown adipocytes were distributed in an island-like pattern, with three typical characteristics: (1) numerous mitochondria and small lipid droplets, (2) a cellular volume smaller than that of white adipocytes, and (3) expression of specific marker genes (EBF2 and ATP2B4). The expression levels of the thermogenesis-related genes UCP2/3 were not significantly increased. Thus, we conducted ceRNA network analysis, revealing that high expression of the key microRNA miR-10383 increased the thermogenic efficiency of UCP3 in the cold exposure group. In addition, the epigenetic memory of UCP3 was disrupted. Chromatin accessibility and Whole-Transcriptome Sequencing of Groin Adiposesibility results revealed peaks in the promoter regions of the UCP2/3 genes. In our discussion of the study’s limitations, we explain how to repeat the experiment to significantly increase the UCP2/3 protein content. This study fills a research gap regarding brown fat in pigs and can provide a reference for future studies on fat metabolism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop