Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = IPN hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1849 KiB  
Article
Stimuli-Responsive Hydrogels of Poly(Methacrylic Acid)/Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Drug Delivery Systems for Promethazine Hydrochloride
by Marin Simeonov, Ioanna Yildirim, Christo T. Tzachev and Elena Vassileva
Gels 2025, 11(4), 240; https://doi.org/10.3390/gels11040240 - 25 Mar 2025
Cited by 1 | Viewed by 587
Abstract
Hydrogels with tunable properties are of great interest for the development of advanced drug delivery systems. In this study, novel hydrogels with an interpenetrating polymer network (IPN) structure were obtained from the pH-responsive poly(methacrylic acid) (PMAA) and the neutral poly(N,N-dimethylacrylamide) (PDMAM). The newly [...] Read more.
Hydrogels with tunable properties are of great interest for the development of advanced drug delivery systems. In this study, novel hydrogels with an interpenetrating polymer network (IPN) structure were obtained from the pH-responsive poly(methacrylic acid) (PMAA) and the neutral poly(N,N-dimethylacrylamide) (PDMAM). The newly synthesized IPN hydrogels were shown to be pH responsive with a 1.5 to 2.5 fold increase in their equilibrium swelling ratio at a pH above 5 which makes them appropriate for targeted intestine drug delivery. Moreover, their pH responsiveness was found to be strongly influenced by the IPN’s composition. The IPN hydrogels were loaded with PMH via swelling and the drug entrapment efficiency was found to depend on their swelling characteristic varying with the IPN’s composition from 20% to 60%. The drug release profiles were investigated under conditions resembling the oral route of drug application. The PMH release profiles appeared to follow Fickian diffusion at a stomach-like pH = 1.2 and sub-diffusion mechanism at an intestine-like pH = 6.8. The results from this study reveal that IPN hydrogels of PMAA and PDMAM are promising candidates for oral delivery of promethazine hydrochloridee demonstrating pH responsiveness and controllable swelling dependent on their composition. Further investigations are planned to fully reveal their potential as smart drug delivery systems. Full article
(This article belongs to the Special Issue Gels in Medicine and Pharmacological Therapies (2nd Edition))
Show Figures

Graphical abstract

21 pages, 3960 KiB  
Article
The Effect of Alginate/Hyaluronic Acid Proportion on Semi-Interpenetrating Hydrogel Properties for Articular Cartilage Tissue Engineering
by Izar Gorroñogoitia, Sheila Olza, Ana Alonso-Varona and Ane Miren Zaldua
Polymers 2025, 17(4), 528; https://doi.org/10.3390/polym17040528 - 18 Feb 2025
Cited by 1 | Viewed by 1248
Abstract
One of the emergent regenerative treatments for the restoration of the articular cartilage is tissue engineering (TE), in which hydrogels can functionally imitate the extracellular matrix (ECM) of the native tissue and create an optimal microenvironment for the restoration of the defective tissue. [...] Read more.
One of the emergent regenerative treatments for the restoration of the articular cartilage is tissue engineering (TE), in which hydrogels can functionally imitate the extracellular matrix (ECM) of the native tissue and create an optimal microenvironment for the restoration of the defective tissue. Hyaluronic acid (HA) is known for its potential in the field of TE as a regenerative material for many tissues. It is one of the major components of the articular cartilage ECM contributing to cell proliferation and migration. HA is the only non-sulphated glycosaminoglycan (GAG). However, herein, we use a HA presenting a high amount of sulphated glycosaminoglycans (sGAGs), altering the intrinsic properties of the material particularly in terms of biological response. Alginate (Alg) is another polysaccharide widely used in TE that allows stiff and stable hydrogels to be obtained when crosslinked with CaCl2. Taking the benefit of the favourable characteristics of each biomaterial, semi-interpenetrating (semi-IPN) hydrogels had been developed by the combination of both materials, in which alginate is gelled, and HA remains uncrosslinked within the hydrogel. Varying the concentration of alginate and HA, the final rheological, viscoelastic, and mechanical properties of the hydrogel can be tailored, always seeking a trade-off between biological and physico-mechanical properties. All developed semi-IPN hydrogels have great potential for biomedical applications. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

22 pages, 2493 KiB  
Article
Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone
by Marin Simeonov, Bistra Kostova, Rositsa Mihaylova and Elena Vassileva
Pharmaceutics 2025, 17(1), 62; https://doi.org/10.3390/pharmaceutics17010062 - 5 Jan 2025
Cited by 2 | Viewed by 994
Abstract
Background/Objectives: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone [...] Read more.
Background/Objectives: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). Methods: The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX. Drug release profiles were studied in Franz diffusion cells in PBS media. Finally, the cytotoxicity of the PHEMA/PDMAM-based IPNs was studied against T-cell lymphoma cells (HUT-78) and a normal murine fibroblast cell line (CCL-1). Results: The rheological properties of these hydrogels show suitable mechanical properties for dermal application, with G′ values of ~10 kPa. From the rheological data, the mesh size of these hydrogels was found to be influenced by the type of the IPN and its composition, varying between 6.5 and 50 nm. The loading capacity of both IPN types and DEX entrapment efficiency were highly influenced by the IPN’s composition. The loading capacity of the IPNs can reach ~3.5%, with a DEX entrapment efficiency of ~35%. The PHEMA/PDMAM IPNs demonstrate an extended release profile with up to ~95% DEX released in 24 h, while PDMAM/PHEMA IPNs release no more than ~25% DEX in 24 h. The drug release profiles follow either non-Fickian diffusion (n~0.6) or case-II transport (n~0.9–1), depending on the IPN’s composition. The PHEMA/PDMAM-based materials were found to be non-cytotoxic against HUT-78 and CCL-1 cells. Conclusions: The study reveals that the IPNs of PHEMA and PDMAM appear to be suitable platforms for dermal delivery of dexamethasone as they have appropriate mechanical properties, providing tools to control drug loading and release, and they are biocompatible with human skin cells. Full article
(This article belongs to the Special Issue Therapeutic Approaches for Wound-Associated Skin Diseases)
Show Figures

Figure 1

20 pages, 3195 KiB  
Article
Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers
by Luca Paoletti, Gianluca Ferrigno, Nicole Zoratto, Daniela Secci, Chiara Di Meo and Pietro Matricardi
Gels 2024, 10(12), 773; https://doi.org/10.3390/gels10120773 - 27 Nov 2024
Cited by 2 | Viewed by 1063
Abstract
The need for new biomaterials to meet the needs of advanced healthcare therapies is constantly increasing. Polysaccharide-based matrices are considered extremely promising because of their biocompatibility and soft structure; however, their use is limited by their poor mechanical properties. In this light, a [...] Read more.
The need for new biomaterials to meet the needs of advanced healthcare therapies is constantly increasing. Polysaccharide-based matrices are considered extremely promising because of their biocompatibility and soft structure; however, their use is limited by their poor mechanical properties. In this light, a strategy for the reinforcement of dextran-based hydrogels and interpenetrated polymer networks (semi-IPNs and IPNs) is proposed, which will introduce multifunctional crosslinkers that can modify the network crosslinking density. Hydrogels were prepared via dextran methacrylation (DexMa), followed by UV photocrosslinking in the presence of diacrylate (NPGDA), triacrylate (TMPTA), and tetraacrylate (PETA) crosslinkers at different concentrations. The effect of these molecules was also tested on DexMa-gellan semi-IPN (DexMa/Ge) and, later, on IPN (DexMa/CaGe), obtained after solvent exchange with CaCl2 in HEPES and the resulting Ge gelation. Mechanical properties were investigated via rheological and dynamic mechanical analyses to assess the rigidity, resistance, and strength of the systems. Our findings support the use of crosslinkers with different functionality to modulate the properties of polysaccharide-based scaffolds, making them suitable for various biomedical applications. While no significative difference is observed on enriched semi-IPN, a clear improvement is visible on DexMa and DexMa/CaGe systems when TMPTA and NPGDA crosslinker are introduced at higher concentrations, respectively. Full article
(This article belongs to the Special Issue Rheological Properties and Applications of Gel-Based Materials)
Show Figures

Graphical abstract

13 pages, 4609 KiB  
Article
Crosslinking and Swelling Properties of pH-Responsive Poly(Ethylene Glycol)/Poly(Acrylic Acid) Interpenetrating Polymer Network Hydrogels
by Uijung Hwang, HoYeon Moon, Junyoung Park and Hyun Wook Jung
Polymers 2024, 16(15), 2149; https://doi.org/10.3390/polym16152149 - 29 Jul 2024
Cited by 12 | Viewed by 3454
Abstract
This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming [...] Read more.
This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming PEG-SN hydrogels using poly(ethylene glycol) diacrylate (PEGDA) through UV-induced free radical polymerization and crosslinking reactions, then immersing them in PAA solutions with two different molar ratios of acrylic acid (AA) monomer and poly(ethylene glycol) dimethacrylate (PEGDMA) crosslinker. A subsequent UV curing step created PAA networks within the pre-fabricated PEG hydrogels. The incorporation of AA with ionizable functional groups imparted pH sensitivity to the hydrogels, allowing the swelling ratio to respond to environmental pH changes. Rheological analysis showed that PEG/PAA IPN hydrogels had a higher storage modulus (G′) than PEG-SN hydrogels, with PEG/PAA-IPN5 exhibiting the highest modulus. Thermal analysis via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated increased thermal stability for PEG/PAA-IPN5 compared to PEG/PAA-IPN1, due to higher crosslinking density from increased PEGDMA content. Consistent with the storage modulus trend, PEG/PAA-IPN hydrogels demonstrated superior mechanical properties compared to PEG-SN hydrogels. The tighter network structure led to reduced water uptake and a higher gel modulus in swollen IPN hydrogels, attributed to the increased density of active network strands. Below the pKa (4.3) of acrylic acid, hydrogen bonds between PEG and PAA chains caused the IPN hydrogels to contract. Above the pKa, ionization of PAA chains induced electrostatic repulsion and osmotic forces, increasing water absorption. Adjusting the crosslinking density of the PAA network enabled fine-tuning of the IPN hydrogels’ properties, allowing comprehensive comparison of single network and IPN characteristics. Full article
(This article belongs to the Special Issue Hydrogels for Biomedical and Structural Applications)
Show Figures

Graphical abstract

22 pages, 4301 KiB  
Review
Characterization Methods to Determine Interpenetrating Polymer Network (IPN) in Hydrogels
by Ceren Cona, Katherine Bailey and Elizabeth Barker
Polymers 2024, 16(14), 2050; https://doi.org/10.3390/polym16142050 - 18 Jul 2024
Cited by 14 | Viewed by 4382
Abstract
Significant developments have been achieved with the invention of hydrogels. They are effective in many fields such as wastewater treatment, food, agriculture, pharmaceutical applications, and drug delivery. Although hydrogels have been used successfully in these areas, there is a need to make them [...] Read more.
Significant developments have been achieved with the invention of hydrogels. They are effective in many fields such as wastewater treatment, food, agriculture, pharmaceutical applications, and drug delivery. Although hydrogels have been used successfully in these areas, there is a need to make them better for future applications. Interpenetrating polymer networks (IPNs) can be created to make hydrogels more adjustable and suitable for a specific purpose. IPN formation is an innovative approach for polymeric systems. It brings two or more polymer networks together with entanglements. The properties of IPNs are controlled by its chemistry, crosslinking density, and morphology. Therefore, it is necessary to understand characterization methods in order to detect the formation of IPN structure and to develop the properties of hydrogels. In recent studies, IPN structure in hydrogels has been determined via chemical, physical, and mechanical methods such as Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), and rheology methods. In this paper, these characterization methods will be explained, recent studies will be scrutinized, and the effectiveness of these methods to confirm IPN formation will be evaluated. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials: Structure Property Relationships)
Show Figures

Figure 1

18 pages, 3506 KiB  
Review
Responsive Acrylamide-Based Hydrogels: Advances in Interpenetrating Polymer Structures
by Lenka Hanyková, Julie Šťastná and Ivan Krakovský
Gels 2024, 10(7), 414; https://doi.org/10.3390/gels10070414 - 21 Jun 2024
Cited by 10 | Viewed by 3125
Abstract
Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types [...] Read more.
Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials)
Show Figures

Figure 1

21 pages, 7137 KiB  
Article
Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro
by Qichan Hu, Steven L. Williams, Alessandra Palladino and Melanie Ecker
Polymers 2024, 16(11), 1572; https://doi.org/10.3390/polym16111572 - 1 Jun 2024
Cited by 2 | Viewed by 2107
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by irreversible cartilage degradation. Current clinical treatment options lack effective pharmaceutical interventions targeting the disease’s root causes. MMP (matrix metalloproteinase) inhibitors represent a new approach to slowing OA progression by addressing cartilage degradation mechanisms. However, [...] Read more.
Osteoarthritis (OA) is a chronic joint disease characterized by irreversible cartilage degradation. Current clinical treatment options lack effective pharmaceutical interventions targeting the disease’s root causes. MMP (matrix metalloproteinase) inhibitors represent a new approach to slowing OA progression by addressing cartilage degradation mechanisms. However, very few drugs within this class are in preclinical or clinical trial phases. Hydrogel-based 3D in vitro models have shown promise as preclinical testing platforms due to their resemblance to native extracellular matrix (ECM), abundant availability, and ease of use. Metalloproteinase-13 (MMP-13) is thought to be a major contributor to the degradation of articular cartilage in OA by aggressively breaking down type II collagen. This study focused on testing MMP-13 inhibitors using a GelMA-alginate hydrogel-based OA model induced by cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α). The results demonstrate a significant inhibition of type II collagen breakdown by measuring C2C concentration using ELISA after treatment with MMP-13 inhibitors. However, inconsistencies in human cartilage explant samples led to inconclusive results. Nonetheless, the study highlights the GelMA-alginate hydrogel-based OA model as an alternative to human-sourced cartilage explants for in vitro drug screening. Full article
(This article belongs to the Special Issue Polymer-Based Biomaterials for Tissue Engineering Applications)
Show Figures

Figure 1

22 pages, 8736 KiB  
Article
Impact of Modifications from Potassium Hydroxide on Porous Semi-IPN Hydrogel Properties and Its Application in Cultivation
by Huynh Nguyen Anh Tuan, Bui Thi Cam Phan, Ha Ngoc Giang, Giang Tien Nguyen, Thi Duy Hanh Le and Ho Phuong
Polymers 2024, 16(9), 1195; https://doi.org/10.3390/polym16091195 - 25 Apr 2024
Cited by 1 | Viewed by 2651
Abstract
This study synthesized and modified a semi-interpenetrating polymer network hydrogel from polyacrylamide, N,N′-dimethylacrylamide, and maleic acid in a potassium hydroxide solution. The chemical composition, interior morphology, thermal properties, mechanical characteristics, and swelling behaviors of the initial hydrogel (SH) and modified [...] Read more.
This study synthesized and modified a semi-interpenetrating polymer network hydrogel from polyacrylamide, N,N′-dimethylacrylamide, and maleic acid in a potassium hydroxide solution. The chemical composition, interior morphology, thermal properties, mechanical characteristics, and swelling behaviors of the initial hydrogel (SH) and modified hydrogel (SB) in water, salt solutions, and buffer solutions were investigated. Hydrogels were used as phosphate fertilizer (PF) carriers and applied in farming techniques by evaluating their impact on soil properties and the growth of mustard greens. Fourier-transform infrared spectra confirmed the chemical composition of SH, SB, and PF-adsorbed hydrogels. Scanning electron microscopy images revealed that modification increased the largest pore size from 817 to 1513 µm for SH and SB hydrogels, respectively. After modification, the hydrogels had positive changes in the swelling ratio, swelling kinetics, thermal properties, mechanical and rheological properties, PF absorption, and PF release. The modification also increased the maximum amount of PF loaded into the hydrogel from 710.8 mg/g to 770.9 mg/g, while the maximum % release of PF slightly increased from 84.42% to 85.80%. In addition, to evaluate the PF release mechanism and the factors that influence this process, four kinetic models were applied to confirm the best-fit model, which included zero-order, first-order, Higuchi, and Korsmeyer–Peppas. In addition, after six cycles of absorption and release in the soil, the hydrogels retained their original shapes, causing no alkalinization or acidification. At the same time, the moisture content was higher as SB was used. Finally, modifying the hydrogel increased the mustard greens’ lifespan from 20 to 32 days. These results showed the potential applications of modified semi–IPN hydrogel materials in cultivation. Full article
Show Figures

Graphical abstract

21 pages, 15600 KiB  
Article
Simultaneous Formation of Polyhydroxyurethanes and Multicomponent Semi-IPN Hydrogels
by Ana I. Carbajo-Gordillo, Elena Benito, Elsa Galbis, Roberto Grosso, Nieves Iglesias, Concepción Valencia, Ricardo Lucas, M.-Gracia García-Martín and M.-Violante de-Paz
Polymers 2024, 16(7), 880; https://doi.org/10.3390/polym16070880 - 22 Mar 2024
Cited by 2 | Viewed by 1778
Abstract
This study introduces an efficient strategy for synthesizing polyhydroxyurethane-based multicomponent hydrogels with enhanced rheological properties. In a single-step process, 3D materials composed of Polymer 1 (PHU) and Polymer 2 (PVA or gelatin) were produced. Polymer 1, a crosslinked polyhydroxyurethane (PHU), grew within a [...] Read more.
This study introduces an efficient strategy for synthesizing polyhydroxyurethane-based multicomponent hydrogels with enhanced rheological properties. In a single-step process, 3D materials composed of Polymer 1 (PHU) and Polymer 2 (PVA or gelatin) were produced. Polymer 1, a crosslinked polyhydroxyurethane (PHU), grew within a colloidal solution of Polymer 2, forming an interconnected network. The synthesis of Polymer 1 utilized a Non-Isocyanate Polyurethane (NIPU) methodology based on the aminolysis of bis(cyclic carbonate) (bisCC) monomers derived from 1-thioglycerol and 1,2-dithioglycerol (monomers A and E, respectively). This method, applied for the first time in Semi-Interpenetrating Network (SIPN) formation, demonstrated exceptional orthogonality since the functional groups in Polymer 2 do not interfere with Polymer 1 formation. Optimizing PHU formation involved a 20-trial methodology, identifying influential variables such as polymer concentration, temperature, solvent (an aprotic and a protic solvent), and the organo-catalyst used [a thiourea derivative (TU) and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU)]. The highest molecular weights were achieved under near-bulk polymerization conditions using TU-protic and DBU-aprotic as catalyst–solvent combinations. Monomer E-based PHU exhibited higher Mw¯ than monomer A-based PHU (34.1 kDa and 16.4 kDa, respectively). Applying the enhanced methodology to prepare 10 multicomponent hydrogels using PVA or gelatin as the polymer scaffold revealed superior rheological properties in PVA-based hydrogels, exhibiting solid-like gel behavior. Incorporating monomer E enhanced mechanical properties and elasticity (with loss tangent values of 0.09 and 0.14). SEM images unveiled distinct microstructures, including a sponge-like pattern in certain PVA-based hydrogels when monomer A was chosen, indicating the formation of highly superporous interpenetrated materials. In summary, this innovative approach presents a versatile methodology for obtaining advanced hydrogel-based systems with potential applications in various biomedical fields. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

17 pages, 4240 KiB  
Article
Fabrication and Characterization of Quad-Component Bioinspired Hydrogels to Model Elevated Fibrin Levels in Central Nervous Tissue Scaffolds
by Ana M. Diaz-Lasprilla, Meagan McKee, Andrea C. Jimenez-Vergara, Swathisri Ravi, Devon Bellamy, Wendy Ortega, Cody O. Crosby, Jennifer Steele, Germán Plascencia-Villa, George Perry and Dany J. Munoz-Pinto
Gels 2024, 10(3), 203; https://doi.org/10.3390/gels10030203 - 17 Mar 2024
Cited by 1 | Viewed by 2680
Abstract
Multicomponent interpenetrating polymer network (mIPN) hydrogels are promising tissue-engineering scaffolds that could closely resemble key characteristics of native tissues. The mechanical and biochemical properties of mIPNs can be finely controlled to mimic key features of target cellular microenvironments, regulating cell-matrix interactions. In this [...] Read more.
Multicomponent interpenetrating polymer network (mIPN) hydrogels are promising tissue-engineering scaffolds that could closely resemble key characteristics of native tissues. The mechanical and biochemical properties of mIPNs can be finely controlled to mimic key features of target cellular microenvironments, regulating cell-matrix interactions. In this work, we fabricated hydrogels made of collagen type I (Col I), fibrin, hyaluronic acid (HA), and poly (ethylene glycol) diacrylate (PEGDA) using a network-by-network fabrication approach. With these mIPNs, we aimed to develop a biomaterial platform that supports the in vitro culture of human astrocytes and potentially serves to assess the effects of the abnormal deposition of fibrin in cortex tissue and simulate key aspects in the progression of neuroinflammation typically found in human pathologies such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and tissue trauma. Our resulting hydrogels closely resembled the complex modulus of AD human brain cortex tissue (~7.35 kPa), promoting cell spreading while allowing for the modulation of fibrin and hyaluronic acid levels. The individual networks and their microarchitecture were evaluated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Human astrocytes were encapsulated in mIPNs, and negligible cytotoxicity was observed 24 h after the cell encapsulation. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization (2nd Edition))
Show Figures

Graphical abstract

19 pages, 6604 KiB  
Article
Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater
by Aurel Diacon, Florin Albota, Alexandra Mocanu, Oana Brincoveanu, Alice Ionela Podaru, Traian Rotariu, Ahmad A. Ahmad, Edina Rusen and Gabriela Toader
Gels 2024, 10(2), 113; https://doi.org/10.3390/gels10020113 - 1 Feb 2024
Cited by 3 | Viewed by 2499
Abstract
This study describes the development of a fast and cost-effective method for the detection and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment [...] Read more.
This study describes the development of a fast and cost-effective method for the detection and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment inside the 3D polymeric matrix). These hydrogels, designed for the simultaneous detection and entrapment of mercury, were obtained through the photopolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) and N-vinyl-2-pyrrolidone (NVP), utilizing N,N′-methylenebisacrylamide (MBA) as crosslinker, in the presence of polyvinyl alcohol (PVA), a rhodamine B derivative, and one of the following chelating agents: phytic acid, 1,3-diamino-2-hydroxypropane-tetraacetic acid, triethylenetetramine-hexaacetic acid, or ethylenediaminetetraacetic acid disodium salt. The rhodamine derivative had a dual purpose in this study: firstly, it was incorporated into the hydrogel to allow the qualitative evaluation of mercury entrapment through its fluorogenic switch-off abilities when sensing Hg2+ ions; secondly, it was used to quantitatively evaluate the level of residual mercury from the decontaminated aqueous solutions, via the UV-Vis technique. The ICP-MS analysis of the hydrogels also confirmed the successful entrapment of mercury inside the hydrogels and a good correlation with the UV-Vis method. Full article
(This article belongs to the Special Issue Gels for Water Treatment)
Show Figures

Graphical abstract

18 pages, 5490 KiB  
Article
UV-Crosslinked Poly(N-isopropylacrylamide) Interpenetrated into Chitosan Structure with Enhancement of Mechanical Properties Implemented as Anti-Fouling Materials
by Isala Dueramae, Fumihiko Tanaka, Naoki Shinyashiki, Shin Yagihara and Rio Kita
Gels 2024, 10(1), 20; https://doi.org/10.3390/gels10010020 - 25 Dec 2023
Cited by 3 | Viewed by 2769
Abstract
High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this [...] Read more.
High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this study, the viscoelastic behaviors of prepared materials in both solution and gel states were extensively examined, considering the UV exposure time and crosslinker concentration as key factors. The effect of these factors on gel formation, hydrogel structures, thermal stabilities of networks, and HeLa cell adhesion were studied sequentially. The sol–gel transition was effectively demonstrated through the scaling law, which agrees well with Winter and Chambon’s theory. By subjecting the CS hydrogel to the process operation in an ethanol solution, its properties can be significantly enhanced with increased crosslinker concentration, including the shear modulus, crosslinking degree, gel strength, and thermal stability in its swollen state. The IPN samples exhibit a smooth and dense surface with irregular pores, allowing for much water absorption. The HeLa cells were adhered to and killed using the CS surface cationic charges and then released through hydrolysis by utilizing the hydrophilic/hydrophobic switchable property or thermo-reversible gelation of the PNiPAM network. The results demonstrated that IPN is a highly attractive candidate for anti-fouling materials. Full article
(This article belongs to the Special Issue Recent Advances in Crosslinked Gels)
Show Figures

Graphical abstract

2 pages, 201 KiB  
Abstract
Unveiling the Efficiency of Biodegradable Chitosan-Based Hydrogel Composites for Wastewater Treatment
by Iulia Elena Neblea, Anita-Laura Chiriac, Anamaria Zaharia, Tanța-Verona Iordache, Ana-Mihaela Gavrilă, Andreea Miron, Sorin-Viorel Dolana, Ana-Lorena Neagu, Andreea Olaru and Mircea Teodorescu
Proceedings 2023, 90(1), 1; https://doi.org/10.3390/proceedings2023090001 - 5 Dec 2023
Viewed by 1014
Abstract
This work presents the efficiency of interpenetrated chitosan-based hydrogels (IPNs) in the treatment of WW in a laboratory micro-pilot device which allowed both the use of a larger volume of compounds and an improved stirring of the samples throughout the test period. Full article
16 pages, 5846 KiB  
Article
Composite Hydrogels Based on Bacterial Cellulose and Poly-1-vinyl-1,2,4-triazole/Phosphoric Acid: Supramolecular Structure as Studied by Small Angle Scattering
by Ruslan Y. Smyslov, Artem I. Emel’yanov, Ksenia V. Ezdakova, Svetlana A. Korzhova, Yulia E. Gorshkova, Albert K. Khripunov, Alexandra V. Migunova, Natalia V. Tsvigun, Galina F. Prozorova, Varvara O. Veselova, Gennady P. Kopitsa, Lijun Lu, Yanchao Mao and Alexander S. Pozdnyakov
Biomimetics 2023, 8(7), 520; https://doi.org/10.3390/biomimetics8070520 - 2 Nov 2023
Cited by 1 | Viewed by 1687
Abstract
New composite hydrogels (CH) based on bacterial cellulose (BC) and poly-1-vinyl-1,2,4-triazole (PVT) doped with orthophosphoric acid (oPA), presenting interpenetrating polymeric networks (IPN), have been synthesized. The mesoscopic study of the supramolecular structure (SMS) of both native cellulose, produced by the strain Komagataeibacter rhaeticus [...] Read more.
New composite hydrogels (CH) based on bacterial cellulose (BC) and poly-1-vinyl-1,2,4-triazole (PVT) doped with orthophosphoric acid (oPA), presenting interpenetrating polymeric networks (IPN), have been synthesized. The mesoscopic study of the supramolecular structure (SMS) of both native cellulose, produced by the strain Komagataeibacter rhaeticus, and the CH based on BC and containing PVT/oPA complex were carried out in a wide range of momentum transfer using ultra- and classical small-angle neutron scattering techniques. The two SMS hierarchical levels were revealed from 1.6 nm to 2.5 μm for the objects under investigation. In addition, it was shown that the native BC had a correlation peak on the small-angle scattering curves at 0.00124 Å−1, with the correlation length ξ being equal to ca. 510 nm. This motive was also retained in the IPN. The data obtained allowed the estimation of the fractal dimensions and ranges of self-similarity and gave new information about the BC mesostructure and its CH. Furthermore, we revealed them to be in coincidence with Brown’s BC model, which was earlier supported by Fink’s results. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers)
Show Figures

Figure 1

Back to TopTop