Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization GelMA-Alginate IPN Hydrogel
2.1.1. Synthesis of GelMA-Alginate IPN Hydrogel
2.1.2. Microstructure of GelMA-Alginate IPN Hydrogel
2.1.3. Compressive Modulus of GelMA-Alginate IPN Hydrogel
2.1.4. Swelling Degree of GelMA-Alginate IPN Hydrogel
2.2. Cell Viability in GelMA-Alginate IPN Hydrogels
2.2.1. Cell Culture and Encapsulation
2.2.2. Live/Dead Staining
2.2.3. AlamarBlue™ Assay
2.3. Chondrogenic Differentiation
2.3.1. Optimization of Chondrogenic Differentiation Medium in 2D Culture
2.3.2. Induction of Chondrogenic Differentiation in GelMA-Alginate IPN Hydrogel
2.3.3. Real-Time Quantitative PCR (qRT-PCR)
2.3.4. Immunofluorescence Staining of Type II Collagen
2.3.5. Alcian Blue/Nuclear Fast Red Staining of Sulphated Glycosaminoglycans (sGAGs)
2.4. Evaluation of Cytokines
2.4.1. Cytotoxicity of Cytokines by MTT
2.4.2. Induction of MMP-13 Expression in TC28a2 Chondrocytes by Cytokines
2.5. Evaluation of MMP-13 Inhibitors
2.5.1. Cytotoxicity of MMP-13 Inhibitors by MTT
2.5.2. Inhibition Rate of MMP-13 Inhibitors
2.6. Screening of MMP-13 Inhibitors Using GelMA-Alginate Cartilage Constructs with OA-like Conditions
2.7. Histological Analysis of Human Articular Cartilage
2.8. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of GelMA-Alginate IPN Hydrogel
3.2. Cell Viability in GelMA-Alginate IPN Hydrogels
3.3. Chondrogenic Differentiation in GelMA-Alginate IPN Hydrogels
3.4. Evaluation of Cytokines for MMP-13 Induction
3.5. Evaluation of MMP-13 Inhibitors
3.6. Screening of MMP-13 Inhibitors Using GelMA-Alginate Cartilage Constructs with OA-like Conditions
3.7. Histological Analysis of Human Articular Cartilage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garner, M.; Alshameeri, Z.; Khanduja, V. Osteoarthritis: Genes, Nature-Nurture Interaction and the Role of Leptin. Int. Orthop. 2013, 37, 2499–2505. [Google Scholar] [CrossRef]
- Murphy, S.L.; Robinson-Lane, S.G.; Niemiec, S.L.S. Knee and Hip Osteoarthritis Management: A Review of Current and Emerging Non-Pharmacological Approaches. Curr. Treat. Options Rheumatol. 2016, 2, 296–311. [Google Scholar] [CrossRef]
- Song, Z.; Li, Y.; Shang, C.; Shang, G.; Kou, H.; Li, J.; Chen, S.; Liu, H. Sprifermin: Effects on Cartilage Homeostasis and Therapeutic Prospects in Cartilage-Related Diseases. Front. Cell Dev. Biol. 2021, 9, 786546. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Freire, A.O.; Bonfim, B.F.; Cartágenes, M.S.S.; Garcia, J.B.S. Strontium Ranelate as a Possible Disease-Modifying Osteoarthritis Drug: A Systematic Review. Braz. J. Med. Biol. Res. 2018, 51, e7440. [Google Scholar] [CrossRef] [PubMed]
- Ginnetti, A.T.; Paone, D.V.; Nanda, K.K.; Li, J.; Busuek, M.; Johnson, S.A.; Lu, J.; Soisson, S.M.; Robinson, R.; Fisher, J.; et al. Lead Optimization of Cathepsin K Inhibitors for the Treatment of Osteoarthritis. Bioorg. Med. Chem. Lett. 2022, 74, 128927. [Google Scholar] [CrossRef]
- Mehana, E.S.E.; Khafaga, A.F.; El-Blehi, S.S. The Role of Matrix Metalloproteinases in Osteoarthritis Pathogenesis: An Updated Review. Life Sci. 2019, 234, 116786. [Google Scholar] [CrossRef]
- Hu, Q.; Ecker, M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 1742. [Google Scholar] [CrossRef] [PubMed]
- Baragi, V.M.; Becher, G.; Bendele, A.M.; Biesinger, R.; Bluhm, H.; Boer, J.; Deng, H.; Dodd, R.; Essers, M.; Feuerstein, T.; et al. A New Class of Potent Matrix Metalloproteinase 13 Inhibitors for Potential Treatment of Osteoarthritis: Evidence of Histologic and Clinical Efficacy without Musculoskeletal Toxicity in Rat Models. Arthritis Rheum. 2009, 60, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Piecha, D.; Weik, J.; Kheil, H.; Becher, G.; Timmermann, A.; Jaworski, A.; Burger, M.; Hofmann, M.W. Novel Selective MMP-13 Inhibitors Reduce Collagen Degradation in Bovine Articular and Human Osteoarthritis Cartilage Explants. Inflamm. Res. 2009, 59, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Bupphathong, S.; Quiroz, C.; Huang, W.; Chung, P.F.; Tao, H.Y.; Lin, C.H. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications—A Review on Material Modifications. Pharmaceuticals 2022, 15, 171. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-Based Hydrogels as Drug Delivery Vehicles in Cancer Treatment and Their Applications in Wound Dressing and 3D Bioprinting. J. Biol. Eng. 2020, 14, 8. [Google Scholar]
- Ma, C.; Kim, Y.K.; Lee, M.H.; Jang, Y.S. Development of Gelatin Methacryloyl/Sodium Alginate Interpenetrating Polymer Network Hydrogels for Bone Regeneration by Activating the Wnt/β-Catenin Signaling Pathway via Lithium Release. Int. J. Mol. Sci. 2023, 24, 13613. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zhang, B.; Nie, X.; Cheng, Y.; Hu, Z.; Liao, M.; Li, S. A Sodium Alginate-Based Sustained-Release IPN Hydrogel and Its Applications. RSC Adv. 2020, 10, 39722–39730. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Torres, M.A.; Pan, H.; Williams, S.L.; Ecker, M. Precision Engineering of Chondrocyte Microenvironments: Investigating the Optimal Reaction Conditions for Type B Gelatin Methacrylate Hydrogel Matrix for TC28a2 Cells. J. Funct. Biomater. 2024, 15, 77. [Google Scholar] [CrossRef] [PubMed]
- Saletti, M.; Paolino, M.; Ballerini, L.; Giuliani, G.; Leone, G.; Lamponi, S.; Andreassi, M.; Bonechi, C.; Donati, A.; Piovani, D.; et al. Click-Chemistry Cross-Linking of Hyaluronan Graft Copolymers. Pharmaceutics 2022, 14, 1041. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.A.; Idrus, R.B.H.; Bin Saim, A.; Sathappan, S.; Chua, K.H. Characterization of Human Adipose-Derived Stem Cells and Expression of Chondrogenic Genes during Induction of Cartilage Differentiation. Clinics 2012, 67, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Qian, L.; Hu, Y.; Shou, J.Z.; Wang, C.; Giffen, C.; Wang, Q.H.; Wang, Y.; Goldstein, A.M.; Emmert-Buck, M.; et al. Quantitative Real-Time RT-PCR Validation of Differential MRNA Expression of SPARC, FADD, Fascin, COL7A1, CK4, TGM3, ECMI, PPL and EVPL in Esophageal Squamous Cell Carcinoma. BMC Cancer 2006, 6, 33. [Google Scholar] [CrossRef]
- Schmitz, N.; Laverty, S.; Kraus, V.B.; Aigner, T. Basic Methods in Histopathology of Joint Tissues. Osteoarthr. Cartil. 2010, 18, S113–S116. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (Resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Kumahashi, N.; Swärd, P.; Larsson, S.; Lohmander, L.S.; Frobell, R.; Struglics, A. Type II Collagen C2C Epitope in Human Synovial Fluid and Serum after Knee Injury—Associations with Molecular and Structural Markers of Injury. Osteoarthr. Cartil. 2015, 23, 1506–1512. [Google Scholar] [CrossRef]
- Hersel, U.; Dahmen, C.; Kessler, H. RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond. Biomaterials 2003, 24, 4385–4415. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Sun, X.; Wang, Z.; Guo, S.; Yu, G.; Yang, H. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers 2018, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Karthiga Devi, G.; Senthil Kumar, P.; Sathish Kumar, K. Green Synthesis of Novel Silver Nanocomposite Hydrogel Based on Sodium Alginate as an Efficient Biosorbent for the Dye Wastewater Treatment: Prediction of Isotherm and Kinetic Parameters. Desalin. Water Treat. 2016, 57, 27686–27699. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges. Glob. Cardiol. Sci. Pract. 2013, 2013, 316–342. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B. Culture of Immortalized Chondrocytes and Their Use as Models of Chondrocyte Function. Methods Mol. Med. 2004, 100, 37–52. [Google Scholar] [CrossRef]
- Finger, F.; Schörle, C.; Zien, A.; Gebhard, P.; Goldring, M.B.; Aigner, T. Molecular Phenotyping of Human Chondrocyte Cell Lines T/C-28a2, T/C-28a4, and C-28/I2. Arthritis Rheum. 2003, 48, 3395–3403. [Google Scholar] [CrossRef]
Target Gene | Accession Number | Forward Primer (5′–3′) | Reverse Primer (3′–5′) |
---|---|---|---|
Col II | NM_001844 (https://www.ncbi.nlm.nih.gov/nuccore/NM_001844) | CTATCTGGACGAAGCAGCTGGCA | ATGGGTGCAATGTCAATGATGG |
Col X | NM_000493 (https://www.ncbi.nlm.nih.gov/nuccore/NM_000493) | GCTAAGGGTGAAAGGGGTTC | CTCCAGGATCACCTTTTGGA |
ACAN | NM_001135 (https://www.ncbi.nlm.nih.gov/nuccore/NM_001135) | CACTGTTACCGCCACTTCCC | ACCAGCGGAAGTCCCCTTCG |
SOX9 | NM_000346 (https://www.ncbi.nlm.nih.gov/nuccore/NM_000346) | GCGGAGGAAGTCGGTGAAGA | CCCTCTCGCTTCAGGTCAGC |
GAPDH | NM_002046 (https://www.ncbi.nlm.nih.gov/nuccore/NM_002046) | TCCCTGAGCTGAACGGGAAG | GGAGGAGTGGGTGTCGCTGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Williams, S.L.; Palladino, A.; Ecker, M. Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro. Polymers 2024, 16, 1572. https://doi.org/10.3390/polym16111572
Hu Q, Williams SL, Palladino A, Ecker M. Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro. Polymers. 2024; 16(11):1572. https://doi.org/10.3390/polym16111572
Chicago/Turabian StyleHu, Qichan, Steven L. Williams, Alessandra Palladino, and Melanie Ecker. 2024. "Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro" Polymers 16, no. 11: 1572. https://doi.org/10.3390/polym16111572
APA StyleHu, Q., Williams, S. L., Palladino, A., & Ecker, M. (2024). Screening of MMP-13 Inhibitors Using a GelMA-Alginate Interpenetrating Network Hydrogel-Based Model Mimicking Cytokine-Induced Key Features of Osteoarthritis In Vitro. Polymers, 16(11), 1572. https://doi.org/10.3390/polym16111572