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Abstract: High-performance properties of interpenetration polymer network (IPN) hydrogels, based
on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide)
(PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited
mechanical properties of the single CS network. In this study, the viscoelastic behaviors of prepared
materials in both solution and gel states were extensively examined, considering the UV exposure
time and crosslinker concentration as key factors. The effect of these factors on gel formation, hydrogel
structures, thermal stabilities of networks, and HeLa cell adhesion were studied sequentially. The
sol–gel transition was effectively demonstrated through the scaling law, which agrees well with Winter
and Chambon’s theory. By subjecting the CS hydrogel to the process operation in an ethanol solution,
its properties can be significantly enhanced with increased crosslinker concentration, including the
shear modulus, crosslinking degree, gel strength, and thermal stability in its swollen state. The
IPN samples exhibit a smooth and dense surface with irregular pores, allowing for much water
absorption. The HeLa cells were adhered to and killed using the CS surface cationic charges and
then released through hydrolysis by utilizing the hydrophilic/hydrophobic switchable property or
thermo-reversible gelation of the PNiPAM network. The results demonstrated that IPN is a highly
attractive candidate for anti-fouling materials.

Keywords: chitosan; poly(N-isopropylacrylamide); thermo-reversible gelation; interpenetration
polymer network; viscoelastic property; anti-fouling materials

1. Introduction

Hydrogels are hydrophilic polymer networks that can retain a large amount of water
within their structure without dissolving or losing their three-dimensional (3D) shape. This
is possible due to their chemically or physically crosslinked networks. Both natural and syn-
thetic polymers have gained significant attention in various biomedical applications due to
their biocompatibility, making them similar to living tissues [1–3]. Additionally, hydrogels
have been utilized in fields such as 3D printing [4], wearable devices [5], actuators [5,6], and
energy storage devices [7,8]. However, many applications frequently encounter issues with
the mechanical properties of hydrogels, both in dry and swollen states. This is particularly
true for single-network hydrogels. In a recent study, we presented a simple yet effective
approach to enhance the mechanical properties of single-network hydrogels. This was
achieved by introducing a second network structure, using the interpenetrating polymer
networks (IPNs) method [9]. The IPNs involve the creation of two or more intertwined
polymer networks that are not chemically bonded to each other [9,10]. Numerous studies
have been conducted on preparing IPN hydrogels by using various hydrophilic polymers
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or their precursors. The main classes of these polymers include natural polymers and
their derivatives (such as polysaccharides and proteins), as well as synthetic polymers that
contain hydrophilic functional groups like -COOH, -OH, -CONH2, -SO3H, amines, and
-R4N+, and ether [10].

Chitosan (CS) is a polysaccharide obtained through the deacetylation process of
chitin. Chitin is a linear copolymer consisting of linked β(1→ 4) glucosamine (2-amino-
2-deoxy-D-glucose) and N-acetyl-D-glucosamine (2-acetamido-2-deoxy-D-glucose). The
remarkable characteristics of excellent biocompatibility and admirable biodegradability,
coupled with ecological safety and low toxicity, along with versatile biological activities
like antimicrobial activity and low immunogenicity, have opened up numerous opportu-
nities for further development [11]. CS hydrogels can be chemically constructed using
crosslinking reagents such as glutaraldehyde. Alternatively, CS gels can be formed sim-
ply through physical crosslinking, which occurs through H-bonds, ionic bonds, dipole
interactions, or hydrophobic associations with hydrophobic substituted glucose units,
similar to acetylated substituted dextran-based polysaccharides [12,13]. Although these
physical gels might dissociate when deformed, they still provide an energy dissipative
mechanism that helps prevent sudden shocks or impacts that could harm materials in
the application device [14].

Poly(N-isopropylacrylamide) (PNiPAM) is a widely recognized thermo-responsive
polymer that undergoes a reversible conformational transition from a coil to a globule state
at a lower critical solution temperature (LCST) of approximately 32.0 ◦C in an aqueous
solution. This temperature is relatively close to the human body temperature [15]. Similarly,
the PNiPAM hydrogel is a well-known temperature-sensitive gel that exhibits a volume
phase transition temperature (VPTT) at around 34 ◦C [16]. Below this temperature, the
gel undergoes swelling due to the formation of strong hydrogen bonds between the hy-
drophilic amide groups and water. As the temperature is raised, the hydrogel undergoes a
shrinkage due to the disruption of hydrogen bonds and the significant strengthening of
hydrophobic interactions among the hydrophobic groups. This polymer chain collapse
results in the hydrogel network’s phase transition [17,18]. Both linear and hydrogel struc-
tures possess attractive features that make them suitable biomedical polymers. These
features include biocompatibility and non-toxicity and have garnered significant attention
in diverse applications [19–23].

CS/PNiPAM hydrogels have garnered significant attention due to their exceptional
properties for biomedical and related applications [20,21,24–29]. However, it is worth
noting that these applications have typically been explored without thoroughly examining
the hydrogels’ mechanical properties [20,21,24–27]. For instance, a temperature-sensitive
polymer consisting of palmatine (PA)-loaded cysteine (Cys)-modified chitosan (Cs) grafted
with PNIPAM (Cs-Cys-PN/PA) was prepared. This polymer was developed as a fluores-
cent probe for living cell temperature sensors and for its antibacterial application. The
materials have been successfully polymerized, exhibiting aggregation-induced emission
enhancement (AIEE) properties, resulting in a reversible hydrogel formation in an aqueous
solution. These hydrogels demonstrate low cytotoxicity and do not require any mechanical
reinforcement [24]. Excellent mechanical properties are crucial in biomedical fields. How-
ever, the inherent mechanical weakness of hydrogels is a significant drawback that limits
their applications. Liu et al. evaluated the mechanical properties of the hydrogels via a
rheological analysis. The addition of chitosan to alginate-g-poly(N-isopropylacrylamide)
(Alg-PN31-77%) resulted in an enhancement of the elastic modulus, making it approxi-
mately 3.5 times larger than that of the Alg-PN31-77% copolymer hydrogel. However,
the magnitudes were reported unsatisfactorily to be about 180 Pa [20]. To fine-tune the
mechanical behavior, crosslinking agents such as glutaraldehyde were commonly used to
crosslink chitosan chemically. Additionally, linear PNiPAM was initially functionalized
before grafting onto the chitosan structure. As mentioned in previous reports, the hydrogel
formation was undoubtedly complex.
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We recently demonstrated a facile and versatile approach to constructing the se-
quential IPN of CS and PNiPAM. This is typically achieved by swelling the chitosan
hydrogel in a solution containing a mixture of N-isopropylacrylamide monomer (NiPAM),
N,N-methylenebisacrylamide crosslinker (BIS), and 2-hydroxyl-4-(2-hydroxyethoxy)-2-
methylpropiophenone photo-initiator (I2965). These components are dissolved in two
different solvents: deionized water and ethanol. The CS hydrogel is formed through physi-
cal crosslinking. The 3D network of PNiPAM is crosslinked using ultraviolet light (UV),
as shown in Supplementary Figure S1. Theoretically, the preparation method, polymer
concentration, and concentration of crosslinking agent can significantly contribute to the
development of new hydrogel systems and increase the practical value [30]. Therefore,
controlling the degree of the crosslinking agent in the PNiPAM structure is expected to
enhance the mechanical properties of the single CS network, addressing the gaps in previ-
ous research. Further studies were conducted to analyze the rheological and viscoelastic
properties, network structure formation, microstructure, thermal properties, and swelling
properties. Additionally, HeLa cell adhesion was examined to ensure that the designed
material can be used as an anti-fouling material. The HeLa cells that were selected demon-
strated higher protein quantification in comparison to other cells [31]. These cells were
also utilized as an indicator of protein adsorption. Protein adsorption plays a crucial role
in assessing the anti-fouling properties, as it represents the initial phenomenon of cell
adhesion to the material’s surface [3]. These efforts aim to provide valuable insights and
advancements in this field.

2. Results and Discussion
2.1. UV-Induced Sol-to-Gel Transition of PNiPAM Solution

Before constructing the IPN network, the conditions for PNiPAM gel formation
were optimized. Unlike other systems where temperatures varied from around 50 ◦C
to as high as 75 ◦C [17,32], the IPN preparation was operated explicitly at room temper-
ature. Therefore, the gelation time needed to be identified to ensure the formation of
a three-dimensional network. Several techniques, such as light scattering (LS) [12,33],
beam diffraction [13], and rheology [34–36], have been widely used to elucidate the
mechanism of material gelation and its molecular structure. In this work, the rheological
technique was used to investigate the crosslinking behavior due to its direct correla-
tion with the evolving physical and mechanical properties of the system during the
crosslinking process.

Figure 1a illustrates the relationship between the zero-shear viscosity (η0), obtained
from Supplementary Figure S2, and UV irradiation time (t) for the mixture of NiPAM
(1 M) and BIS (0.01 M) containing I2965 (0.02 M). The η0 gradually increased with the
increasing UV irradiation time within 0–60 min. Subsequently, it exhibited a rapid
increase after exposure to UV radiation for more than 60 min. The relationship between
η0 and t distinctly changed within a UV irradiation time of 120–240 min, exhibiting
linearity. The gel point (tg) is tentatively identified as the intersection at 120 min. In
another experiment, the gelation point was also associated with the parallel lines of shear
and loss modulus (G′ and G′′), as shown in Figure 1b. As gelation proceeds beyond the
sol–gel transition, log–log plots of G′ and G′′ versus angular frequency produce a parallel
line at t = 120 min, with the corresponding relaxation exponent, n, for G′~G′′~ωn [37].
The slope, n, was found to be 0.29, which corresponds to the chemical gel in previous
work (n < 0.5) [38]. Therefore, a UV irradiation time of 120 min is considered to be
an appropriate condition for initiating the formation of the gel network of PNiPAM in
our experimental condition. However, to achieve a fully developed three-dimensional
network of PNiPAM, subsequent material construction was carried out using a UV
irradiation time of 180 min.
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Figure 1. Investigation of sol–gel transition for PNIPAM solutions containing a BIS concentration of
1.45 wt% (0.01 M) measured at room temperature: (a) zero-shear viscosity (η0) vs. UV irradiation
time (t); (b) the frequency-dependent behavior of the moduli, i.e., G′~G′′~ωn at t = 120 min.

2.2. Effect of Crosslinker Concentration on Viscoelastic and Mechanical Behaviors of Single and
Interpenetrating Polymer Networks

The composition of the starting materials and the abbreviations for the resulting
hydrogels are listed in Table 1. The viscoelastic properties of the hydrogels were analyzed
by studying the frequency-dependent behavior of the shear modulus, G′; loss modulus, G′′;
and tan δ at room temperature. As shown in Figure 2 (and Supplementary Figures S3–S6,
in detail), the G′ was significantly higher than the G′′, and both G′ and G′′ exhibited
slight variations with increasing frequency for all IPN hydrogels. This indicated that the
hydrogels have a stable network with elastic characteristics owing to the high molecular
intra- and/or inter-actions level. The results demonstrate that the viscoelastic properties of
chitosan are significantly enhanced by incorporating the PNiPAM chain structure.

Table 1. Characteristics of the single gels (chitosan and PNiPAM) and IPN hydrogels.

Name NiPAM
(M)

BIS
(M, wt%)

Photo-Initiator
/I2959 (M)

Prepared
Solvent

Cell Content
(103 Cell/cm2) a

Single polymer network
CS (Chitosan) 0 0 0 4.50 ± 0.54

PNiPAME 1 0.04 (5.16) 0.02 Ethanol N/A
PNiPAMW 1 0.04 (5.16) 0.02 Water N/A

Interpenetrated polymer network of CS/PNiPAM prepared in ethanol
IPNE1 1 0.01 (1.45) 0.02

Ethanol

3.70 ± 0.29
IPNE2 1 0.02 (2.65) 0.02 3.30 ± 0.50
IPNE3 1 0.04 (5.16) 0.02 2.40 ± 0.52
IPNE4 1 0.20 (21.4) 0.02 2.40 ± 0.43

Interpenetrated polymer network of CS/PNiPAM prepared in water
IPNw1 1 0.01 (1.45) 0.02

Water
(DI) N/A

IPNw2 1 0.02 (2.65) 0.02
IPNw3 1 0.04 (5.16) 0.02
IPNw4 1 0.20 (21.4) 0.02

The subscribed E and W represent the ethanol and deionized water, respectively, as solvents. a Data are shown as
the mean, derived from 3 repeats.



Gels 2024, 10, 20 5 of 18

Gels 2024, 10, x FOR PEER REVIEW 5 of 17 
 

 

* The subscribed E and W represent the ethanol and deionized water, respectively, as solvents. a Data 
are shown as the mean, derived from 3 repeats. 

 
Figure 2. Frequency dependence of the (a) G′ and (b) G″ of the hydrogels at 25 °C, with a BIS 
crosslinker content of 0 wt.% (CS hydrogel) (○), 1.45 wt.% IPNE1 (●), 2.65 wt.% IPNE2 (■), 5.16 wt.% 
IPNE3 (▲), and 21.42 wt.% IPNE4 (♦). 

At a single frequency of 1 Hz (6.28 rad s−1), the G′ of all the hydrogels was compared 
as a function of the crosslinker content, as shown in Figure 3a. The G′ of CS hydrogel 
increased significantly with an increase in the crosslinking agent. This can be attributed to 
the inherent structure of pure PNiPAM, as illustrated in the inset of Figure 3b, where the 
G′ of pure PNiPAM prepared in an ethanol solution also showed a significant increase 
with an increase in the crosslinking agent. These hydrogels prepared in ethanol (IPNE 
systems) provided a higher value of G′ compared to those prepared in deionized water 
(IPNw systems). Interestingly, the G′ of the IPNE system showed a substantial 
concentration dependency for the crosslinker content, whereas that of the IPNw system 
remained almost constant value even when the crosslinker increased. This might be due 
to the excess crosslinker content above 0.01 M (1.45wt%) in the aqueous solution, where 
the conversion of NiPAM to PNiPAM remained almost constant regardless of the 
crosslinking agent used in this polymerization condition. The G′ of the IPN hydrogels 
(0.6–3.37 MPa) was approximately 70-to-400 times higher than that of the CS hydrogel. 
Previous studies have shown that the G′ value for the hydrogel containing polyvinyl 
pyrrolidone/carboxymethyl cellulose at a 1:4 ratio was approximately 0.43 MPa [39]. On 
the other hand, the G′ of Salecan and poly(2-acrylamido-2-methylpropanesulfonic acid-
co-N-hydroxymethyl acrylamide) semi-IPN hydrogels ranged from 0.27 to1.14 kPa [40]. 
This indicates a relatively high modulus for the hydrogels prepared in this study. 

The theory of rubber elasticity states that the elastic modulus of a soft polymer 
network is directly proportional to the density of the crosslink points. In the case of a 
phantom network, the G′ of gels is determined by the crosslinking density (ve) and the 
extent of solvent swelling, as depicted in Equations (1) and (2) [40]: 

G’ = (1 −  2𝜙 )veRTv2
2/3 (1)

v2 = 1 + qF − 1 ρ
d

1

 
(2)

Figure 2. Frequency dependence of the (a) G′ and (b) G′′ of the hydrogels at 25 ◦C, with a BIS
crosslinker content of 0 wt% (CS hydrogel) (#), 1.45 wt% IPNE1 (•), 2.65 wt% IPNE2 (�), 5.16 wt%
IPNE3 (N), and 21.42 wt% IPNE4 (�).

At a single frequency of 1 Hz (6.28 rad s−1), the G′ of all the hydrogels was compared
as a function of the crosslinker content, as shown in Figure 3a. The G′ of CS hydrogel
increased significantly with an increase in the crosslinking agent. This can be attributed
to the inherent structure of pure PNiPAM, as illustrated in the inset of Figure 3b, where
the G′ of pure PNiPAM prepared in an ethanol solution also showed a significant increase
with an increase in the crosslinking agent. These hydrogels prepared in ethanol (IPNE
systems) provided a higher value of G′ compared to those prepared in deionized water
(IPNw systems). Interestingly, the G′ of the IPNE system showed a substantial concentration
dependency for the crosslinker content, whereas that of the IPNw system remained almost
constant value even when the crosslinker increased. This might be due to the excess
crosslinker content above 0.01 M (1.45 wt%) in the aqueous solution, where the conversion
of NiPAM to PNiPAM remained almost constant regardless of the crosslinking agent
used in this polymerization condition. The G′ of the IPN hydrogels (0.6–3.37 MPa) was
approximately 70-to-400 times higher than that of the CS hydrogel. Previous studies have
shown that the G′ value for the hydrogel containing polyvinyl pyrrolidone/carboxymethyl
cellulose at a 1:4 ratio was approximately 0.43 MPa [39]. On the other hand, the G′ of Salecan
and poly(2-acrylamido-2-methylpropanesulfonic acid-co-N-hydroxymethyl acrylamide)
semi-IPN hydrogels ranged from 0.27 to1.14 kPa [40]. This indicates a relatively high
modulus for the hydrogels prepared in this study.

The theory of rubber elasticity states that the elastic modulus of a soft polymer network
is directly proportional to the density of the crosslink points. In the case of a phantom
network, the G′ of gels is determined by the crosslinking density (ve) and the extent of
solvent swelling, as depicted in Equations (1) and (2) [40]:

G′ = (1− 2
φ
)veRTv2/3

2 (1)

v2 =

[
1 +

(qF − 1)ρ
d

]−1
(2)

where v2 is the volume fraction of crosslinked polymer in the hydrogel; R and T are the gas
constant and absolute temperature, respectively; φ is the functionality of the crosslinks. The
qF represents the mass of swollen gel in equilibrium divided by the constant weight of the
hydrogel after solvent evaporation. This value increases as the crosslinker content increases
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and reaches its maximum at 2.65 wt% crosslinker. The details of this phenomenon are
discussed in Section 2.5, specifically referred to as the equilibrium swelling ratio (SRe). The
symbol ρ represents the polymer density, and d represents the density of the solvent [40].
The crosslink densities, ve, were calculated from Equations (1) and (2), and they are depicted
in Figure 3b for the IPNE system. At the concentration of 21.4 wt% of BIS content (IPNE4),
the ve increased further, but the G′ decreased, suggesting a high degree of brittleness in the
IPNE4 structures. It has been reported that adding an excess amount of crosslinking agent
enhances the density of the CS network and decreases the flexibility of the chains due to
the reinforced chain entanglements [41].
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Figure 3. (a) Shear modulus, G′, obtained at 1 Hz (6.28 rad s−1) with various crosslinker contents. G′

of IPNs prepared in ethanol solution (IPNE system) (•) and IPN prepared in aqueous solution (IPNW

system) (•). The inset shows G′ of PNiPAM hydrogels prepared in ethanol solution (PNiPAME)
(•) and in aqueous solution (PNiPAMW) (•) as a function of crosslinker content (Table 1 involves
5.16 wt% BIS only for PNiPAME and PNiPAMW systems). (b) The crosslinking density, ve, as a
function of crosslinker content for IPNE system. The inset shows a schematic IPN network model in
which gray and blue networks represent the CS and PNiPAM chains, respectively. Yellow circles are
the crosslinking points. Curves are drawn to guide eyes.

To gain insights into the influence of BIS concentration on the viscoelastic properties of
liquid and solid gels, we scrutinized important parameters such as the relaxation exponent
and gel strength of the materials. Following the Winter–Chambon criterion [42], the power
law relation is also evident in dynamic mechanical experiments, as expressed below:

G′ =
G
′′

tan δ
= SωnΓ(1 − n) cos δ (3)

where Γ(1 − n) represents the gamma function; n denotes the relaxation exponent; and δ is
the phase angle that remains independent of frequency but is proportional to the relaxation
exponent, given by δ = nπ/2. Additionally, S represents the gel strength parameter, which
relies on the crosslinking density and molecular chain flexibility.

The power law of mechanical behavior represents the self-similar (fractal) structure
of clusters at the gel point (GP) [37,43]. The statistical self-similarity of a polymer is
quantitatively represented by a fractal dimension, df, which describes the relation between
the mass of a molecular cluster (M) in the network to its radius (R) through the expression
of Rd

f~M. Muthukumar established an expression for the relaxation exponent, n, in terms
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of the df for polydisperse material, where the excluded volume effect of the polymer chain
is completely screened. The equation is given as follows [43]:

n =
d
(

d + 2− 2d f

)
2
(

d + 2− d f

) (4)

where d (=3) is the spatial dimension. As mentioned earlier, the values of the relaxation
exponent, n, are determined by analyzing a log–log plot and the scaling relation of the G′

and G′′. The df values are obtained in the range of 2.22–2.44 for IPNE, which is close to 2.50
of complete screening of excluded volume interactions. It indicates the development of a
tight and compact network structure [44].

The effect of different amounts of BIS on the gel strength, S, in Equation (3) is shown
in Figure 4. When ethanol was used as a solvent, a clear dependence of the S value
on the crosslinker concentration was observed. The gel strength, S, of CS hydrogel was
outstandingly enhanced with the crosslinker content. Interestingly, the IPNE3 showed a
synergistic character resulting from the crosslinking density. At low concentrations of BIS,
the gel network becomes fragile and susceptible to additional crosslinks, resulting in an
increase in the strength parameter, S. However, at the highest concentration of BIS, the
strength of the network is primarily influenced by polymer entanglements, and the impact
of additional crosslinks on the gel strength parameter is not as significant, as it is at lower
levels of polymer crosslinking. These investigations have shown that the parameter S is
sensitive to changes in the strand length between crosslinks. When the strand length shrinks
(e.g., due to increased BIS concentration), the crosslinking density increases, resulting in a
“harder” gel with a higher S value.

Gels 2024, 10, x FOR PEER REVIEW 7 of 17 
 

 

quantitatively represented by a fractal dimension, df, which describes the relation between 
the mass of a molecular cluster (M) in the network to its radius (R) through the expression 
of Rdf~M. Muthukumar established an expression for the relaxation exponent, n, in terms 
of the df for polydisperse material, where the excluded volume effect of the polymer chain 
is completely screened. The equation is given as follows [43]: 

n = d d + 2 − 2df

2 d + 2 − df
 (4)

where d (=3) is the spatial dimension. As mentioned earlier, the values of the relaxation 
exponent, n, are determined by analyzing a log–log plot and the scaling relation of the G′ 
and G″. The df values are obtained in the range of 2.22–2.44 for IPNE, which is close to 2.50 
of complete screening of excluded volume interactions. It indicates the development of a 
tight and compact network structure [44]. 

The effect of different amounts of BIS on the gel strength, S, in Equation (3) is shown 
in Figure 4. When ethanol was used as a solvent, a clear dependence of the S value on the 
crosslinker concentration was observed. The gel strength, S, of CS hydrogel was 
outstandingly enhanced with the crosslinker content. Interestingly, the IPNE3 showed a 
synergistic character resulting from the crosslinking density. At low concentrations of BIS, 
the gel network becomes fragile and susceptible to additional crosslinks, resulting in an 
increase in the strength parameter, S. However, at the highest concentration of BIS, the 
strength of the network is primarily influenced by polymer entanglements, and the impact 
of additional crosslinks on the gel strength parameter is not as significant, as it is at lower 
levels of polymer crosslinking. These investigations have shown that the parameter S is 
sensitive to changes in the strand length between crosslinks. When the strand length 
shrinks (e.g., due to increased BIS concentration), the crosslinking density increases, 
resulting in a “harder” gel with a higher S value. 

 
Figure 4. Gel strength, S, as a function of the BIS concentration of hydrogels for IPNE system (●), 
IPNw system (●), and PNiPAME system (●). Curves are drawn to guide eyes. 

2.3. Temperature Dependence on Mechanical Stability of Swollen Hydrogel Networks 
Hydrogels typically contain a significant amount of moisture, which results in poor 

mechanical properties. This is due to the high degree of swelling and low density of the 
polymer chains. Consequently, this poses a significant challenge for their practical 
application. We manipulated the water content (%) within the hydrogels to assess their 
mechanical stability in their swollen state. Figure 5 (and Supplementary Figure S7, in 
detail) illustrates the temperature influence on the G′ and G″ for the chitosan hydrogel, 

Figure 4. Gel strength, S, as a function of the BIS concentration of hydrogels for IPNE system (•),
IPNw system (•), and PNiPAME system (•). Curves are drawn to guide eyes.

2.3. Temperature Dependence on Mechanical Stability of Swollen Hydrogel Networks

Hydrogels typically contain a significant amount of moisture, which results in poor
mechanical properties. This is due to the high degree of swelling and low density of
the polymer chains. Consequently, this poses a significant challenge for their practical
application. We manipulated the water content (%) within the hydrogels to assess their
mechanical stability in their swollen state. Figure 5 (and Supplementary Figure S7, in detail)
illustrates the temperature influence on the G′ and G′′ for the chitosan hydrogel, comparing
it with IPNE3 hydrogel in the 30–80 ◦C temperature range. In the case of the chitosan
hydrogel (Figure 5a), the slope of log G′ vs. log ω increased with the temperature rise. For
example, the G′ decreases more rapidly as the frequency decreases at 80 ◦C, compared to
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the other temperatures. The difference between the G′ and G′′ at low frequency became
smaller as the temperature increased from 30 to 80 ◦C. At 80 ◦C, a crossover between the
G′ and G′′ occurred at approximately 0.06 Hz. On the other hand, the crossover of the
G′ and G′′ was not observed for IPNE3 hydrogel (Figure 5b). The network structure of
chitosan relies on several key interactions: hydrophobic forces, molecular entanglements,
and secondary forces such as ionic and hydrogen bonding. These interactions become more
time-sensitive under stress. When we decrease the testing frequency, which corresponds to
longer experimental durations, the elastic property of the gel, represented as G′, decreases,
and its viscous nature, G′′, increases. At high temperatures and low frequencies, the G′

and G′′ become more similar, eventually crossing over. At this point, the G′′ takes over,
indicating a shift from a solid-like to a liquid-like behavior due to a thermal disruption in
the physical network.
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The IPNE3 exhibits a stable network when subjected to stress at varying temperatures.
This characteristic of our system can be suggested for utilization in the development of
shape-memory hydrogels. Applying temperature or stress can cause the permanent shape
of IPNE3 to disengage, transforming it into a temporary shape. This temporary shape can
be restored by cooling the deformed sample while under load or reducing stress. Shape
recovery occurs when the gel in its temporary shape is reheated and/or when a sufficiently
large stress is applied to break the physical network. From a molecular perspective, the
shape memory cycle regulates the relaxation times of the temporary shape through the
amplitude of stress and/or temperature.

2.4. Chemical Structure of Single and IPN Hydrogels

We assessed the chemical structures of the materials by using Fourier-transform in-
frared spectroscopy (FTIR). Figure 6 shows the FTIR spectra of the NiPAM monomer,
PNiPAME hydrogel, CS hydrogels, and IPNE3. Several changes became apparent in the
FTIR spectrum of the PNiPAME hydrogel compared to the NiPAM monomer, as illustrated
in Figure 6a,b. The sharp peak at 3274 cm−1 in the NiPAM monomer, attributed to the
N-H stretching vibrations, became significantly broader in the PNiPAME hydrogel. This
broadening was due to overlap with O-H vibrations from alcohol residues in the solvent.
The distinctive spectral peaks of the NiPAM monomer at 1618 and 960 cm−1, associated
with C=C bending and the vinyl group, vanished in the PNiPAME hydrogel, indicating
polymerization proceeds. Moreover, specific peaks related to the isopropyl group vibra-
tions appeared at 1386 and 1367 cm−1, shifting to a lower wavelength than the monomer
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(1400 cm−1), suggesting that these isopropyl groups act as crosslinking points. This for-
mation of crosslinking points was supported by interactions between the tert-C atom of
the side isopropyl group and the main chain isopropyl group, as explained in a previous
study [45].
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For the CS hydrogel presented in Figure 6c, we found overlapping peaks at 3356
and 3288 cm−1, indicating -OH stretching, symmetric N-H vibration, and intermolecular
H-bonds between polysaccharide chains. The carbonyl stretching vibration (amide-I),
N-H stretching vibration (amide-II), and C-N stretching vibration (amide-III) of CS were
observed at 1643, 1556, and 1311 cm−1, respectively. Additionally, the symmetrical defor-
mation of the methyl (CH3) groups of CS was identified at 1373 cm−1, consistent with prior
research [46].

The characteristic peaks of the IPN hydrogel indicate the presence of functional
groups from both neat hydrogels. Some shifts in peak positions were observed, as shown
in Figure 6d. These shifts suggest that the initial reactants could penetrate the CS hydrogel,
and upon exposure to UV light, the PNiPAM structure was formed. Further shifts in the
wavenumber and band broadening indicate the formation of intermolecular associations
between these pure hydrogels, which display the compatible characteristics of both the CS
and PNiPAM hydrogels.

2.5. Equilibrium Swelling Ratio (SRe) of Hydrogel Networks

Figure 7 shows the swelling ratio, SRe, of the CS and IPN hydrogels with varying
crosslinker contents, calculated using Equation (5) [47].

SRe(g/g) =
we − wd

wd
(5)

where wd and we represent the weight of dried hydrogels before being immersed in
deionized water and the swollen sample reaching its equilibrium state at room tempera-
ture, respectively.
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The interpenetration of the PNiPAM network resulted in an increased SRe for the CS
hydrogel. The CS hydrogel is formed through physical crosslinking, primarily held together
by the hydrophobic interactions of the N-acetyl group and inter- and/or intra-molecular
hydrogen bondings. This results in a polymer network that can easily deform, leading to
the releasing or/and de-swelling of the absorbed water. Moreover, the CS network lacks
stable crosslinking points, making it capable of absorbing less water than the IPNs, which
have a stable network with chemically crosslinked structures.

The hydrophilicity of CS improved when the PNiPAM network was introduced,
leading to an increased SRe with a rise in the crosslinker content. The network struc-
ture exhibited high hydrophilicity, interacting with water molecules most effectively at a
crosslinker content of 2.65 wt%, resulting in the highest water uptake. It is well known
that the SRe of the hydrogels depends not only on the hydrophilic ability of the functional
groups but also on the network space of the hydrogels. In general, hydrogels with a higher
network space exhibit a higher water content. Therefore, it can be suggested that IPN with
a crosslinker content of 2.65 wt% exhibits a greater amount of space between the polymeric
chains, allowing for increased absorption of water molecules compared to the IPN with a
crosslinker content of 1.45 wt%. However, the SRe decreased at crosslinking concentrations
exceeding 2.65 wt% due to the increased density of crosslinks and the entanglement of
polymer chains within the gel network. This led to a dense structure that hindered further
swelling, consistent with our crosslink density findings. As a result, water molecules
diffused more slowly into the network, limiting the relaxation of network chains in the
hydrogels [48].

The IPNE system exhibited a higher magnitude of SRe than the IPNw system. This
is because less water could penetrate the dense IPNw structure, whereas the IPNE net-
works had a more porous structure, illustrating the morphology in FE-SEM results. The
mechanism of water absorption will be thoroughly investigated in our future research.
The irregular swelling performance is distinct from that of conventional gels. Previous
investigations into the mechanism have shown that the equilibrated swelling ratio in good
solvents exhibits a negative correlation with the crosslink density [49]. Interestingly, this
phenomenon is consistent with findings from previously reported systems [50–53], such as
a series of polyacrylate hydrogels, including poly(methyl acrylate), poly(benzyl acrylate),
and poly(methoxyethyl acrylate) [51]. It has been suggested that the mechanism behind
the swelling of this IPN system is not yet clearly understood at this moment. However,
extensive research has been conducted on the mechanisms and kinetic phenomena associ-
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ated with swelling behaviors. Moreover, additional experimental evidence will be further
validated using dielectric relaxation spectroscopy in the near future.

2.6. Microstructure of the CS and IPN Hydrogels

We used FE-SEM to examine the surface and cross-sectional structures of the fresh
hydrogels. Figure 8 illustrates the morphologies of CS and IPN hydrogels with different
BIS concentrations. The CS hydrogel exhibited a network of interconnected fibers with
both coarse and smooth surfaces, consistent with previous findings [54]. Such surface
structures are typical of polyelectrolyte components like CS and sodium alginate, as well
as their mixtures [55]. When the PNiPAM network was added, the surface of the CS
hydrogel became smoother and more uniform as the BIS crosslinker content increased. The
roughness of the hydrogel’s surface played a crucial role in altering its morphology. A
smoother surface enhances the anti-fouling properties of hydrogel materials, making them
more resistant to unwanted adhesion (and Supplementary Figure S8, in detail).
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ogy of IPN hydrogels with different crosslinking agents: (a,a′) 0 wt% CS hydrogel, (b,b′) 1.45 wt%
IPNE1, (c,c′) 5.16 wt% IPNE2, and (d,d′) 21.42 wt% IPNE4.

Cross-sectional images of the samples revealed different structures based on the BIS
concentration. The CS hydrogel exhibited a well-defined lamellar structure due to the
system’s homogeneity, allowing the NiPAM solution to penetrate easily. In the IPNs, a
smooth and dense structure with irregular pores was observed, indicating excellent com-
patibility between the two polymers. The lamellar layer of the CS hydrogel was replaced
by the PNiPAM network, creating a porous structure ideal for absorbing wound fluid and
facilitating oxygen supply, which promotes faster wound healing [56]. Furthermore, it is a
useful material for loading and releasing preservative substances in food-processing appli-
cations [57]. The IPN structure becomes denser with a higher crosslinker content, resulting
from the increased crosslink density of PNiPAM within the CS network. Moreover, this
material finds application in food processing for loading and releasing preservatives [57].
With a higher crosslinker content, the IPN structure became denser due to the increased
crosslink density of PNiPAM within the CS network. This homogeneity confirmed the
compatibility between CS and PNiPAM, contributing to the high mechanical properties
observed in the G′ results

2.7. HeLa Cell Adhesion and Proliferation on the Hydrogels’ Surface

The biocompatibility of biomaterials can be assessed by examining how cells adhere
to them. In this study, HeLa cells, a commonly used immortalized human cancer cell line
in research labs worldwide, were used [58]. The morphology of HeLa cells on both the CS
and IPNE hydrogels was observed and compared to those on the PS control surface after
1 h of cell seeding, as shown in Figure 9a–c. No significant differences were observed in cell
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morphology between the control and hydrogel surfaces. However, it was evident that the
hydrogel surfaces had more cell colonies than the control surface. The positively charged
sites in the CS structure likely enhanced electrostatic interactions with the negatively
charged cell membranes and proteins, facilitating cell adhesion to the CS surface [59].
Additionally, the hydrophobic nature of PNiPAM-based IPN might contribute to its cell
adhesion properties, as it can switch from a hydrophilic to a hydrophobic state above
its VPTT (37 ◦C), as shown in Supplementary Figure S9. The appearance of the swollen
IPNE3 in the PBS solution changed from transparent at room temperature to opaque at the
incubation temperature (37 ◦C).
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After 24 h of cell culture initiation, HeLa cell proliferation was observed. Cells on
the polystyrene (PS) control surface displayed a flattened morphology, indicating strong
cell adhesion to the surface, as shown in Figure 9a′. In contrast, cells on the hydrogel
surfaces exhibited a rounder morphology, with lower adhesion and less proliferation, as
shown in Figure 9b′,c′. Cell populations were counted after detaching from the mate-
rial surface, revealing that more cells had grown and spread on the PS control’s surface
(3.6 ± 0.10 × 106 cells/cm3) compared to the hydrogels (Table 1). The hydrogels likely had
a significant impact on the strength of interactions with HeLa cells, leading to improved
resistance against fouling [60]. The number of adhered cells on the IPN surfaces was
slightly lower than on the CS surface, possibly due to the smoother surface, as indicated
by the FE-SEM results. In general, cells adhere well to stiff surfaces [61,62], and materials
with higher roughness are more prone to fouling, as contaminants tend to accumulate in
the “valleys” of rough surfaces [63,64]. These results indicate that IPNE3 exhibits satisfac-
tory biocompatibility due to its anti-biofouling properties. Therefore, the IPNE3 hydrogel
appears to be effective in providing biocompatibility and anti-biofouling characteristics
to hydrogel materials in general. Furthermore, the surface of IPNE3 underwent a thermal
reversal, transitioning from a hydrophobic state at the incubation temperature (37 ◦C) to its
original hydrophilic state at room temperature (hydrophilic/hydrophobic switchable prop-
erty). This demonstrated the detachment or release of HeLa cells from the surface. In other
words, the excellent thermo-reversible gelation of this material offers numerous benefits
for various applications. The gel’s strength is significantly enhanced when the IPNE3 is
swollen and used above the VPTT, as described in Section 2.3 and in the Supplementary
Materials. Conversely, it can be reversed to its original transparent state when cooled down
below the VPTT.
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3. Conclusions

We explored a straightforward and versatile method for crafting hydrogel-based inter-
penetrating polymer networks (IPNs) with several notable advantages, such as enhanced
mechanical properties, multifunctionality, and anti-fouling attributes. The process involves
a sequential approach in which a CS hydrogel is swollen in a solution containing NiPAM
monomer in ethanol or an aqueous solution of a BIS crosslinking agent, employing the
I2965 photo-initiator. The PNiPAM network is then established as a crosslinked structure
through UV polymerization at room temperature. The gel formation is evident through the
sol–gel transition, as confirmed by the scaling law of the Winter and Chambon hypothesis.

Furthermore, we investigated the impact of BIS concentration on the resulting hy-
drogels’ properties. Increasing the BIS concentration from 1.45 to 21.72 wt% led to im-
provements in all analyzed rheological and viscoelastic properties of the CS hydrogel.
However, exceeding the maximum BIS concentration had a detrimental effect. Higher
degrees of crosslinking resulted in the formation of stiffer modules. Among all BIS concen-
trations, intermediate values of the crosslinking agent (5.16 wt%) demonstrated the best
performance.

The incorporation of the PNiPAM network into the CS hydrogel induced the formation
of a porous structure, increasing water uptake within the hydrogel networks. Additionally,
these materials exhibited significantly greater thermal and mechanical stabilities when
exposed to varying temperatures and applied forces, compared to the CS hydrogel, which
was vulnerable to thermal disruption. These materials are anticipated to demonstrate
exceptional performance characteristics. They can effectively adhere to and eliminate living
organisms through the cationic properties of the CS surface while also releasing undesirable
molecules through hydrolysis, thanks to the hydrophilic/hydrophobic switchable property
of the PNiPAM network.

4. Materials and Methods
4.1. Materials

All reagents used in this study were analytical grade. Medium molecular-weight
CS of 75–85% deacetylation, N-isopropylacrylamide, N,N-methylenebisacrylamide (BIS),
and 2-hydroxyl-4-(2-hydroxyethoxy)-2-methylpropiophenone (I2965) were purchased from
Sigma-Aldrich. BIS was utilized as a crosslinker, while I2965 served as a photo-initiator. All
solvents, including acetic acid, 1,3-propanediol, and ethanol, were purchased from Wako
Pure Chemicals, Osaka, Japan.

4.2. Characterization of the Samples
4.2.1. Fourier-Transform Infrared Spectroscopy (FTIR)

The chemical structure of the single network and IPN hydrogels was characterized
using FTIR analysis, which was conducted on a Horiba FTIR 720 spectrometer equipped
with an attenuated total reflectance accessory. The obtained spectra were averaged from
64 scans at a resolution of 4 cm−1, within the spectral range of 650–4000 cm−1.

4.2.2. Rheological Test

The viscoelastic behavior of fresh and equilibrated samples was evaluated using a TA
instrument TRIOS, employing a parallel plate of 25 mm in diameter. The measurements
were conducted within the linear viscoelasticity region. The shear modulus (G′), loss
modulus (G′′), and loss tangent (tan δ) were measured as a function of the frequency,
within a frequency range of 0.1–100 rad s−1 with 0.01% strain at 25 ◦C. Each hydrogel was
automatically loaded at the normal force of 1.0 N. Thermal and mechanical stabilities of
the hydrogels in fresh and swollen states were investigated via the measurement of G′ as a
function of frequency over the temperature range of 30–80 ◦C.
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4.2.3. Field Emission-SEM (FE-SEM)

The surface and cross-section morphology of the CS and IPNE samples were examined
using FE-SEM (Hitachi SU-4800), operated with an accelerating voltage of 3.0 kV and
emission current of 10 mA. Before measurement, the fracture surfaces of the materials were
sputter-coated with gold.

4.2.4. Measurement of Equilibrium Swelling Ratio (SRe)

The swelling characteristics of the hydrogels were measured gravimetrically. The dried
hydrogels were weighed before being immersed in deionized water at room temperature
(wd). The swollen hydrogels were then removed from the water at regular intervals and
weighed after excess water on the hydrogel surfaces was removed using filter paper (wt).
The average value of three measurements was taken for each hydrogel to minimize errors.
The water absorption of the hydrogel was continuously measured to allow it to reach its
equilibrium swelling value (we). The equilibrium swelling ratio (SRe) was calculated using
Equation (5) [46].

SRe(g/g) =
we − wd

wd
(6)

4.2.5. Cell Adhesion Test

HeLa cells (JCRB, #JCRB9004), an immortal cell line derived from human cervical
cancer cells, were cultured in a complete medium (CM). The CM consisted of Dulbecco’s
Modified Eagle’s medium supplemented with 2 mM L-glutamine and 10% (v/v) fetal
bovine serum (Biowest, France). After rinsing with phosphate-buffered saline (PBS) at a
pH of 7.2, the sub-cultured cells were harvested from a tissue culture polystyrene dish,
using a 0.25% (w/v) trypsin/1 mM-EDTA solution. The cells were then recovered via
centrifugation at 500× g for 5 min. Subsequently, the cells were seeded on polymer sheets
at a density of 1.0 × 104 cells/cm2. The polymer sheets, free from any solvent contaminants
and unreactive components, were pre-equilibrated in PBS for 2 h before being cultured
in complete medium (CM) for 24 h at 37 ◦C under 5% (v/v) CO2. After being washed
with PBS, the medium was replaced with fresh CM, and the cells were imaged using a
Nikon BW-S507 fluorescence microscope at Tokai University Imaging Center for Advanced
Research. The cell numbers were counted after adding trypsin blue solution to a final
0.2% (v/v).

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/gels10010020/s1, Figure S1. The fabrication process of (a) chitosan
hydrogels, (b) PNiPAM hydrogels, and (c) the physical appearance of gels. Figure S2. Rheological
measurement of ethanol system of NiPAM monomer and photo-initiator containing BIS concentration
of 1.45 wt% at different UV irradiation times. (a) Shear-rate dependence of viscosity; UV irradiation
times are 0 min (black), 30 min (red), 60 min (blue), 120 min (yellow), 180 min (olive), and 240 min
(cyan). (b) Frequency dependence of G′ (filled circles) and G′′ (hollow circles); UV irradiation times
are 0 min (black) and 240 min (cyan). Figure S3. Frequency dependence of G′ (filled circles) and G′′

(hollow circles) at room temperature for CS hydrogel (black) and PNiPAME hydrogels at various BIS
concentrations as 1.48 wt% (red), 2.65 wt% (blue), 5.16 wt% (olive), and 21.42 wt% (yellow). Figure S4.
Frequency dependence of the tan δ for hydrogels of CS and IPNE series with various crosslinker
content of CS hydrogel (0 wt% (#)), IPNE1 (1.45 wt% (•)), IPNE2 (2.65 wt% (�)), and IPNE3 (5.16 wt%
(N)) measured at room temperature. Figure S5. The physical appearance of PNiPAM hydrogels
prepared in different solvents after UV irradiation for 3 h: (a) ethanol and (b) deionized water. Insets
show the transparency of NiPAM, BIS, and I2965 solution mixtures in both solvents before UV
irradiation. Figure S6. The physical appearance of PNiPAME hydrogels prepared in ethanol solvents
with a crosslinker content of (a) 1.45 wt%, (b) 2.65 wt%, (c) 5.16 wt%, and (d) 21.42 wt%. Figure S7.
The frequency dependence on the G′ (filled circles) and G′′ (hollow circles) of (a) CS (chitosan) and
(b) IPNE3 hydrogels measured at different temperatures. Figure S8. Frequency dependence on the
shear modulus of the swollen state of CS (black) and IPNE3 (blue) hydrogels at the temperatures
30 ◦C (•), 40 ◦C (�), and 60 ◦C (�). Figure S9. The physical appearance for hydrogels of CS (left

https://www.mdpi.com/article/10.3390/gels10010020/s1
https://www.mdpi.com/article/10.3390/gels10010020/s1
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side) and thermo-reversible behavior of IPNE3 (right side). (a) At room temperature before cell
seeding. (b) During the incubation process at 37 ◦C. (c) Room temperature after incubation process.
References [38,65–73] are cited in the Supplementary Materials.
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