Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers
Abstract
:1. Introduction
2. Results and Discussion
2.1. DexMa Hydrogels and DexMa/Ge Semi-IPNs Preparation
2.2. Hydrogel Dynamic Mechanical Characterization
2.3. Rheological Characterization of Hydrogels
2.4. Semi-IPN Dynamic Mechanical Characterization
2.5. Semi-IPN Rheological Analysis
2.6. IPN Formation: Ge Physical Crosslinking
Calcium Quantification
2.7. IPN Characterization
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Synthesis of Dextran Methacrylate (DexMa)
4.2.2. Preparation of DexMa-NPGDA, DexMa-TMPTA, and DexMa-PETA Hydrogels
4.2.3. Preparation of DexMa-NPGDA/Ge, DexMa-TMPTA/Ge, and DexMa-PETA/Ge Semi-IPNs
4.2.4. IPN Formation and Quantification of Removed Glycerol
4.2.5. Rheological and Dynamic Mechanical Characterization of Hydrogels, Semi-IPNs, and IPNs
4.2.6. Quantification of Ca2+ Ions
4.3. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalirajan, C.; Dukle, A.; Nathanael, A.J.; Oh, T.H.; Manivasagam, G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers 2021, 13, 3015. [Google Scholar] [CrossRef]
- Satchanska, G.; Davidova, S.; Petrov, P.D. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers 2024, 16, 1159. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current Hydrogel Advances in Physicochemical and Biological Response-Driven Biomedical Application Diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Feliciano, A.J.; van Blitterswijk, C.; Moroni, L.; Baker, M.B. Realizing Tissue Integration with Supramolecular Hydrogels. Acta Biomater. 2021, 124, 1–14. [Google Scholar] [CrossRef]
- Raucci, M.G.; D’Amora, U.; Ronca, A.; Ambrosio, L. Injectable Functional Biomaterials for Minimally Invasive Surgery. Adv. Healthc. Mater. 2020, 9, e2000349. [Google Scholar] [CrossRef]
- Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical Applications of Hydrogels in Drug Delivery System: An Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. [Google Scholar] [CrossRef]
- Sudheer, S.; Bandyopadhyay, S.; Bhat, R. Sustainable Polysaccharide and Protein Hydrogel-Based Packaging Materials for Food Products: A Review. Int. J. Biol. Macromol. 2023, 248, 125845. [Google Scholar] [CrossRef]
- Yang, Q.; Peng, J.; Xiao, H.; Xu, X.; Qian, Z. Polysaccharide Hydrogels: Functionalization, Construction and Served as Scaffold for Tissue Engineering. Carbohydr. Polym. 2022, 278, 118952. [Google Scholar] [CrossRef]
- Costa, A.M.S.; Mano, J.F. Extremely Strong and Tough Hydrogels as Prospective Candidates for Tissue Repair—A Review. Eur. Polym. J. 2015, 72, 344–364. [Google Scholar] [CrossRef]
- Shi, M.; Kim, J.; Nian, G.; Suo, Z. Highly Entangled Hydrogels with Degradable Crosslinks. Extrem. Mech. Lett. 2023, 59, 101953. [Google Scholar] [CrossRef]
- Hou, X.; Huang, B.; Zhou, L.; Liu, S.; Kong, J.; He, C. An Amphiphilic Entangled Network Design Toward Ultratough Hydrogels. Adv. Mater. 2023, 35, e2301532. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Lin, L.; Li, K.; Jiang, F.; Qiao, D.; Zhang, B.; Xie, F. Towards Superior Biopolymer Gels by Enabling Interpenetrating Network Structures: A Review on Types, Applications, and Gelation Strategies. Adv. Colloid Interface Sci. 2024, 325, 103113. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xue, W.; Yun, Z.; Liu, Q.; Sun, X. Biomedical Applications of Stimuli-Responsive “Smart” Interpenetrating Polymer Network Hydrogels. Mater. Today Bio 2024, 25, 100998. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W.E.; Alhaique, F. Interpenetrating Polymer Networks Polysaccharide Hydrogels for Drug Delivery and Tissue Engineering. Adv. Drug Deliv. Rev. 2013, 65, 1172–1187. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Luo, J.; Gao, Q.; Mao, A.; Li, J. Research Progress on Double-Network Hydrogels. Mater. Today Commun. 2021, 29, 102757. [Google Scholar] [CrossRef]
- Gong, J.P. Materials Both Tough and Soft. Science (1979) 2014, 344, 161–162. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, L.W.E.; Zhou, J. Recent Developments of Polysaccharide-Based Double-Network Hydrogels. J. Polym. Sci. 2023, 61, 7–43. [Google Scholar] [CrossRef]
- Bao, Z.; Xian, C.; Yuan, Q.; Liu, G.; Wu, J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthc. Mater. 2019, 8, e1900670. [Google Scholar] [CrossRef]
- Kim, Y.J.; Min, J. Property Modulation of the Alginate-Based Hydrogel via Semi-Interpenetrating Polymer Network (Semi-IPN) with Poly(Vinyl Alcohol). Int. J. Biol. Macromol. 2021, 193, 1068–1077. [Google Scholar] [CrossRef]
- Wang, P.; Liao, Q.; Zhang, H. Polysaccharide-Based Double-Network Hydrogels: Polysaccharide Effect, Strengthening Mechanisms, and Applications. Biomacromolecules 2023, 24, 5479–5510. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Z. Recent Advances in Polysaccharide-Based Hydrogels for Synthesis and Applications. Aggregate 2021, 2, e21. [Google Scholar] [CrossRef]
- Zhu, T.; Mao, J.; Cheng, Y.; Liu, H.; Lv, L.; Ge, M.; Li, S.; Huang, J.; Chen, Z.; Li, H.; et al. Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces 2019, 6, 1900761. [Google Scholar] [CrossRef]
- Ganguly, S.; Maity, P.P.; Mondal, S.; Das, P.; Bhawal, P.; Dhara, S.; Das, N.C. Polysaccharide and Poly(Methacrylic Acid) Based Biodegradable Elastomeric Biocompatible Semi-IPN Hydrogel for Controlled Drug Delivery. Mater. Sci. Eng. C 2018, 92, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Zoratto, N.; Matricardi, P. Semi-IPNs and IPN-Based Hydrogels. In Polymeric Gels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 91–124. [Google Scholar]
- Chichiricco, P.M.; Matricardi, P.; Colaço, B.; Gomes, P.; Jérôme, C.; Lesoeur, J.; Veziers, J.; Réthoré, G.; Weiss, P.; Struillou, X.; et al. Injectable Hydrogel Membrane for Guided Bone Regeneration. Bioengineering 2023, 10, 94. [Google Scholar] [CrossRef]
- D’Arrigo, G.; Di Meo, C.; Geissler, E.; Coviello, T.; Alhaique, F.; Matricardi, P. Hyaluronic Acid Methacrylate Derivatives and Calcium Alginate Interpenetrated Hydrogel Networks for Biomedical Applications: Physico-Chemical Characterization and Protein Release. Colloid Polym. Sci. 2012, 290, 1575–1582. [Google Scholar] [CrossRef]
- Pescosolido, L.; Piro, T.; Vermonden, T.; Coviello, T.; Alhaique, F.; Hennink, W.E.; Matricardi, P. Biodegradable IPNs Based on Oxidized Alginate and Dextran-HEMA for Controlled Release of Proteins. Carbohydr. Polym. 2011, 86, 208–213. [Google Scholar] [CrossRef]
- Keten, S.; Gönülkirmaz, F.; Karacan, P.; Ceylan, D.; Abdurrahmanoğlu, S. Synergetic Effect of the Crosslinker Size and Polysaccharide Type on the Acrylamide Networks. J. Appl. Polym. Sci. 2024, 141, e55900. [Google Scholar] [CrossRef]
- Seiffert, S. Origin of Nanostructural Inhomogeneity in Polymer-Network Gels. Polym. Chem. 2017, 8, 4472–4487. [Google Scholar] [CrossRef]
- Abdurrahmanoglu, S.; Okay, O. Homogeneous Poly(Acrylamide) Hydrogels Made by Large Size, Flexible Dimethacrylate Cross-Linkers. Macromolecules 2008, 41, 7759–7761. [Google Scholar] [CrossRef]
- Kroll, D.M.; Croll, S.G. Influence of Crosslinking Functionality, Temperature and Conversion on Heterogeneities in Polymer Networks. Polymer 2015, 79, 82–90. [Google Scholar] [CrossRef]
- Zoratto, N.; Matassa, R.; Montanari, E.; Familiari, G.; Petralito, S.; Coviello, T.; Di Meo, C.; Matricardi, P. Glycerol as a Green Solvent for Enhancing the Formulation of Dextran Methacrylate and Gellan-Based Semi-Interpenetrating Polymer Networks. J. Mater. Sci. 2020, 55, 9562–9577. [Google Scholar] [CrossRef]
- Paranjpe, S.S.; Madankar, C.S. Polyester-Based Biolubricants. In Lubricants from Renewable Feedstocks; Wiley: Hoboken, NJ, USA, 2024; pp. 221–258. [Google Scholar]
- Basu, M.; Pradhan, S.C.; Ghosh, S.; Maity, N.C. Recent Development in Water-Based Resins for Surface Coatings. Prog. Org. Coat. 1988, 16, 19–49. [Google Scholar] [CrossRef]
- Deng, L.; Kang, T.; Tang, L.; Qu, J. Preparation of UV-LED Curable Antifouling and Flame Retardant Superhydrophobic Coatings for Polyethylene Terephthalate Surface Protection. Polym. Bull. 2023, 80, 309–330. [Google Scholar] [CrossRef]
- Vining, K.H.; Scherba, J.C.; Bever, A.M.; Alexander, M.R.; Celiz, A.D.; Mooney, D.J. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells. Adv. Mater. 2018, 30, 1704486. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; A, S.; Venet, M.; Gao, Y.; Zhou, D.; Wang, W.; Zeng, M.; Rotella, C.; Li, X.; Wang, X.; et al. Bacteria-Resistant Single Chain Cyclized/Knotted Polymer Coatings. Angew. Chem. 2019, 131, 10726–10730. [Google Scholar] [CrossRef]
- Qin, S.; Wu, M.; Zhao, H.; Li, J.; Yan, M.; Ren, Y.; Qi, Y. An In-Situ Cross-Linked Network PMMA-Based Gel Polymer Electrolyte with Excellent Lithium Storage Performance. J. Mater. Sci. Technol. 2024, 199, 197–205. [Google Scholar] [CrossRef]
- Kulkarni, R.D.; Chaudhari, M.E.; Mishra, S. UV Cure Acrylate Monomers: Synthesis, Analysis and Storage. Pigment Resin Technol. 2013, 42, 53–67. [Google Scholar] [CrossRef]
- Soucek, M.D.; Ren, X. UV-Curable Coating Technologies. In Photocured Materials; The Royal Society of Chemistry: London, UK, 2014; pp. 15–48. [Google Scholar]
- Vejjasilpa, K.; Maqsood, I.; Schulz-Siegmund, M.; Hacker, M.C. Adjustable Thermo-Responsive, Cell-Adhesive Tissue Engineering Scaffolds for Cell Stimulation through Periodic Changes in Culture Temperature. Int. J. Mol. Sci. 2023, 24, 572. [Google Scholar] [CrossRef]
- Mann, J.L.; Grosskopf, A.K.; Smith, A.A.A.; Appel, E.A. Highly Branched Polydimethylacrylamide Copolymers as Functional Biomaterials. Biomacromolecules 2021, 22, 86–94. [Google Scholar] [CrossRef]
- Thukral, D.K.; Dumoga, S.; Arora, S.; Chuttani, K.; Mishra, A.K. Potential Carriers of Chemotherapeutic Drugs: Matrix Based Nanoparticulate Polymeric Systems. Cancer Nanotechnol. 2014, 5, 3. [Google Scholar] [CrossRef]
- Lin, X.; Liao, B.; Li, J.; Huang, J.; Lu, M.; Pang, H. Effect of Crosslinked Polycarboxylate Superplasticizers with Varied Structures on Cement Dispersion Performance. J. Appl. Polym. Sci. 2021, 138, 50012. [Google Scholar] [CrossRef]
- Belqat, M.; Wu, X.; Gomez, L.P.C.; Malval, J.P.; Dominici, S.; Leuschel, B.; Spangenberg, A.; Mougin, K. Tuning Nanomechanical Properties of Microstructures Made by 3D Direct Laser Writing. Addit. Manuf. 2021, 47, 102232. [Google Scholar] [CrossRef]
- Hu, Q.; Lu, Y.; Luo, Y. Recent Advances in Dextran-Based Drug Delivery Systems: From Fabrication Strategies to Applications. Carbohydr. Polym. 2021, 264, 117999. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Szepes, M.; Dibbert, N.; Rios-Camacho, J.C.; Kirschning, A.; Gruh, I.; Dräger, G. Dextran-Based Scaffolds for in-Situ Hydrogelation: Use for next Generation of Bioartificial Cardiac Tissues. Carbohydr. Polym. 2021, 262, 117924. [Google Scholar] [CrossRef]
- Zhao, Y.; Jalili, S. Dextran, as a Biological Macromolecule for the Development of Bioactive Wound Dressing Materials: A Review of Recent Progress and Future Perspectives. Int. J. Biol. Macromol. 2022, 207, 666–682. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Z.; Yan, D.; He, H.; Xi, W.; Hu, J.; Zhang, R.; Yan, Y.; Zhang, Q. Double-Network Composites Based on Inorganic Fillers Reinforced Dextran-Based Hydrogel with High Strength. Carbohydr. Polym. 2022, 296, 119900. [Google Scholar] [CrossRef]
- Cai, L.; Li, J.; Quan, S.; Feng, W.; Yao, J.; Yang, M.; Li, W. Dextran-Based Hydrogel with Enhanced Mechanical Performance via Covalent and Non-Covalent Cross-Linking Units Carrying Adipose-Derived Stem Cells toward Vascularized Bone Tissue Engineering. J. Biomed. Mater. Res. A 2019, 107, 1120–1131. [Google Scholar] [CrossRef]
- Wang, X.; Ou, Y.; Wang, X.; Yuan, L.; He, N.; Li, Z.; Luo, F.; Li, J.; Tan, H. A Biodegradable Injectable Fluorescent Polyurethane-Oxidized Dextran Hydrogel for Non-Invasive Monitoring. J. Mater. Chem. B 2023, 11, 8506–8518. [Google Scholar] [CrossRef]
- Lo, C.; Jiang, H. Photopatterning and Degradation Study of Dextran-glycidyl Methacrylate Hydrogels. Polym. Eng. Sci. 2010, 50, 232–239. [Google Scholar] [CrossRef]
- Van Tomme, S.R.; Hennink, W.E. Biodegradable Dextran Hydrogels for Protein Delivery Applications. Expert Rev. Med. Devices 2007, 4, 147–164. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Carlos Pinto, J.; Cabral-Albuquerque, E.C.M.; Fialho, R.L. Free-Radical Polymerization of Urea, Acrylic Acid, and Glycerol in Aqueous Solutions. Polym. Eng. Sci. 2015, 55, 1219–1229. [Google Scholar] [CrossRef]
- Guimarães, C.F.; Gasperini, L.; Marques, A.P.; Reis, R.L. The Stiffness of Living Tissues and Its Implications for Their Engineering. Nat. Rev. Mater. 2020, 5, 351–370. [Google Scholar] [CrossRef]
- Paoletti, L.; Baschieri, F.; Migliorini, C.; Di Meo, C.; Monasson, O.; Peroni, E.; Matricardi, P. 3D Printing of Gellan-dextran Methacrylate IPNs in Glycerol and Their Bioadhesion by RGD Derivatives. J. Biomed. Mater. Res. A 2024, 112, 1107–1123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.N.; Zheng, Q.; Wu, Z.L. Recent Advances in 3D Printing of Tough Hydrogels: A Review. Compos. B Eng. 2022, 238, 109895. [Google Scholar] [CrossRef]
- Vega, I.; Morris, W.; Robles, J.; Peacock, H.; Marín, A. Water Shut-off Polymer Systems: Design and Efficiency Evaluation Based on Experimental Studies. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar]
- Pereira, K.A.B.; Oliveira, P.F.; Chaves, I.; Pedroni, L.G.; Oliveira, L.A.; Mansur, C.R.E. Rheological Properties of Nanocomposite Hydrogels Containing Aluminum and Zinc Oxides with Potential Application for Conformance Control. Colloid Polym. Sci. 2022, 300, 609–624. [Google Scholar] [CrossRef]
- Salimi-Kenari, H.; Mollaie, F.; Dashtimoghadam, E.; Imani, M.; Nyström, B. Effects of Chain Length of the Cross-Linking Agent on Rheological and Swelling Characteristics of Dextran Hydrogels. Carbohydr. Polym. 2018, 181, 141–149. [Google Scholar] [CrossRef]
- Roas-Escalona, N.; Becquart, F.; Delair, T.; Dutertre, F. Chitosan-Based Hydrogels: Influence of Crosslinking Strategy on Rheological Properties. Carbohydr. Polym. 2024, 341, 122329. [Google Scholar] [CrossRef]
- Gadziński, P.; Froelich, A.; Jadach, B.; Wojtyłko, M.; Tatarek, A.; Białek, A.; Krysztofiak, J.; Gackowski, M.; Otto, F.; Osmałek, T. Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems. Pharmaceutics 2023, 15, 108. [Google Scholar] [CrossRef]
- Kirchmajer, D.; Steinhoff, B.; Warren, H.; Clark, R.; in het Panhuis, M.; Martin, D.; Martin Kirchmajer, D. Enhanced Gelation Properties of Purified Gellan Gum. Carbohydr. Res. 2014, 388, 125–129. [Google Scholar] [CrossRef]
- Wiebe, J.P.; Dinsdale, C.J. Inhibition of Cell Proliferation by Glycerol. Life Sci. 1991, 48, 1511–1517. [Google Scholar] [CrossRef]
- Bondioli, P.; Della Bella, L. An Alternative Spectrophotometric Method for the Determination of Free Glycerol in Biodiesel. Eur. J. Lipid Sci. Technol. 2005, 107, 153–157. [Google Scholar] [CrossRef]
- Korponyai, C.; Szél, E.; Behány, Z.; Varga, E.; Mohos, G.; Dura, Á.; Dikstein, S.; Kemény, L.; Erős, G. Effects of Locally Applied Glycerol and Xylitol on the Hydration, Barrier Function and Morphological Parameters of the Skin. Acta Derm. Venereol. 2017, 97, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, D.R.; Bianco, N.D.; Radwan, A.N.; Zorman, C.A.; Bogie, K.M. An Absorbent, Flexible, Transparent, and Scalable Substrate for Wound Dressings. IEEE J. Transl. Eng. Health Med. 2022, 10, 4900909. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.R.; Nishinari, K.; Rinaudo, M. Gelation of Gellan—A Review. Food Hydrocoll. 2012, 28, 373–411. [Google Scholar] [CrossRef]
- Jung, S.A.; Malyaran, H.; Demco, D.E.; Manukanc, A.; Häser, L.S.; Kučikas, V.; van Zandvoort, M.; Neuss, S.; Pich, A. Fibrin–Dextran Hydrogels with Tunable Porosity and Mechanical Properties. Biomacromolecules 2023, 24, 3972–3984. [Google Scholar] [CrossRef]
- Naficy, S.; Kawakami, S.; Sadegholvaad, S.; Wakisaka, M.; Spinks, G.M. Mechanical Properties of Interpenetrating Polymer Network Hydrogels Based on Hybrid Ionically and Covalently Crosslinked Networks. J. Appl. Polym. Sci. 2013, 130, 2504–2513. [Google Scholar] [CrossRef]
- Van Dijk-Wolthuis, W.N.E.; Franssen, O.; Talsma, H.; Van Steenbergenj, M.J.; Kettenes-Van Den Bosch, J.J.; Henninkt, W.E. Synthesis, Characterization, and Polymerization of Glycidyl Methacrylate Derivatized Dextran. Macromolecules 1995, 28, 6317–6322. [Google Scholar] [CrossRef]
- Pescosolido, L.; Schuurman, W.; Malda, J.; Matricardi, P.; Alhaique, F.; Coviello, T.; Van Weeren, P.R.; Dhert, W.J.A.; Hennink, W.E.; Vermonden, T. Hyaluronic Acid and Dextran-Based Semi-IPN Hydrogels as Biomaterials for Bioprinting. Biomacromolecules 2011, 12, 1831–1838. [Google Scholar] [CrossRef]
Ratio | Hydrogel | Percentage of Deformation After 1′ of Crosslinking (%) | Percentage of Deformation After 5′ of Crosslinking (%) |
---|---|---|---|
DexMa | 44.1 ± 0.2 | 47.7 ± 0.8 | |
10:1 | DexMa10-NPGDA1 | 56.4 ± 0.1 | 57.7 ± 0.4 |
DexMa10-TMPTA1 | 43.0 ± 2.3 | 47.0 ± 0.5 | |
DexMa10-PETA1 | 44.2 ± 0.3 | 46.8 ± 1.5 | |
4:1 | DexMa4-NPGDA1 | 59.2 ± 1.7 | 56.4 ± 1.3 |
DexMa4-TMPTA1 | 46.4 ± 1.4 | 45.0 ± 1.0 | |
DexMa4-PETA1 | 44.8 ± 0.8 | 45.5 ± 1.8 | |
2:1 | DexMa2-NPGDA1 | 56.1 ± 0.7 | 55.1 ± 1.4 |
DexMa2-TMPTA1 | 42.9 ± 0.9 | 43.9 ± 0.7 | |
DexM2a-PETA1 | 42.6 ± 0.5 | 42.0 ± 1.0 |
Ratio | Hydrogel | Percentage of Deformation After 1′ of Crosslinking (%) | Percentage of Deformation After 5′ of Crosslinking (%) |
---|---|---|---|
DexMa/Ge | 63.4 ± 4.8 | 63.6 ± 3.2 | |
4:1 | DexMa4-NPGDA1/Ge | 68.3 ± 2.8 | 62.9 ± 2.1 |
DexMa4-TMPTA1/Ge | 66.3 ± 0.8 | 59.7 ± 1.0 | |
DexMa4-PETA1/Ge | 68.8 ± 0.5 | 68.1 ± 6.9 | |
2:1 | DexMa2-NPGDA1/Ge | 65.6 ± 1.5 | 61.5 ± 1.8 |
DexMa2TMPTA1/Ge | 63.3 ± 2.0 | 61.3 ± 1.8 | |
DexMa2PETA1/Ge | 72.4 ± 8.0 | 70.4 ± 2.9 |
Sample | Ca (ppm) 393.366 Radial | Ca (mg) | Ca (mg/g of Ge-Na+) |
---|---|---|---|
A1 | 19.88 ± 0.25 | 0.99 ± 0.01 | 147.29 ± 1.82 |
A2 | 21.40 ± 0.28 | 1.07 ± 0.01 | 158.50 ± 2.11 |
B1 | 14.58 ± 0.08 | 0.73 ± 0.01 | 124.63 ± 0.67 |
B2 | 14.51 ± 0.15 | 0.73 ± 0.01 | 123.97 ± 1.24 |
C1 | 2.63 ± 0.01 | 0.13 ± 0.01 | 25.87 ± 0.01 |
C2 | 2.79 ± 0.02 | 0.14 ± 0.01 | 27.43 ± 0.22 |
Molar Ratio | NPGDA (mg/mL) | TMPTA (mg/mL) | PETA (mg/mL) |
---|---|---|---|
10:1 | 42 | 59 | 70 |
4:1 | 104 | 145 | 173 |
2:1 | 208 | 290 | 345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoletti, L.; Ferrigno, G.; Zoratto, N.; Secci, D.; Di Meo, C.; Matricardi, P. Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers. Gels 2024, 10, 773. https://doi.org/10.3390/gels10120773
Paoletti L, Ferrigno G, Zoratto N, Secci D, Di Meo C, Matricardi P. Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers. Gels. 2024; 10(12):773. https://doi.org/10.3390/gels10120773
Chicago/Turabian StylePaoletti, Luca, Gianluca Ferrigno, Nicole Zoratto, Daniela Secci, Chiara Di Meo, and Pietro Matricardi. 2024. "Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers" Gels 10, no. 12: 773. https://doi.org/10.3390/gels10120773
APA StylePaoletti, L., Ferrigno, G., Zoratto, N., Secci, D., Di Meo, C., & Matricardi, P. (2024). Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers. Gels, 10(12), 773. https://doi.org/10.3390/gels10120773