Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (782)

Search Parameters:
Keywords = INCONEL718

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9155 KiB  
Article
Microstructure Evolution in Homogenization Heat Treatment of Inconel 718 Manufactured by Laser Powder Bed Fusion
by Fang Zhang, Yifu Shen and Haiou Yang
Metals 2025, 15(8), 859; https://doi.org/10.3390/met15080859 (registering DOI) - 31 Jul 2025
Abstract
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain [...] Read more.
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain boundaries aligned with the build direction. Laves phase dissolution demonstrates dual-stage kinetics: initial rapid dissolution (0–15 min) governed by bulk atomic diffusion, followed by interface reaction-controlled deceleration (15–60 min) after 1 h at 1150 °C. Complete dissolution of the Laves phase is achieved after 3.7 h at 1150 °C. Recrystallization initiates preferentially at serrated grain boundaries through boundary bulging mechanisms, driven by localized orientation gradients and stored energy differentials. Grain growth kinetics obey a fourth-power time dependence, confirming Ostwald ripening-controlled boundary migration via grain boundary diffusion. Such a study is expected to be helpful in understanding the microstructural development of L-PBF-built IN718 under heat treatments. Full article
(This article belongs to the Section Additive Manufacturing)
20 pages, 8312 KiB  
Article
Experimental Investigation of Magnetic Abrasive Finishing for Post-Processing Additive Manufactured Inconel 939 Parts
by Michał Marczak, Dorota A. Moszczyńska and Aleksander P. Wawrzyszcz
Appl. Sci. 2025, 15(15), 8233; https://doi.org/10.3390/app15158233 - 24 Jul 2025
Viewed by 234
Abstract
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a [...] Read more.
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a pressing need for advanced, adaptable finishing techniques that can operate effectively on complex geometries. This research focuses on optimizing the process parameters—eccentricity, rotational speed, and machining time—to enhance surface integrity following preliminary vibratory machining. Custom-designed samples underwent sequential machining, including heat treatment and 4 h vibratory machining, before MAF was applied under controlled conditions using ferromagnetic Fe-Si abrasives. Surface roughness measurements demonstrated a significant reduction, achieving Ra values from 1.21 µm to below 0.8 µm in optimal conditions, representing more than a fivefold improvement compared to the as-printed state (5.6 µm). Scanning Electron Microscopy (SEM) revealed progressive surface refinement, with MAF effectively removing adhered particles left by prior processing. Statistical analysis confirmed the dominant influence of eccentricity on the surface profile parameters, particularly Rz. The findings validate the viability of MAF as a precise, controllable, and complementary finishing method for LPBF-manufactured Inconel 939 components, especially for geometrically complex or hard-to-reach surfaces. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

19 pages, 4649 KiB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 159
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

14 pages, 7044 KiB  
Article
Microstructure, Wear and Corrosion Properties of Inconel 718-CeO2 Composite Coatings
by Yu Liu, Guohui Li, Hui Liang, Zhanhui Zhang, Zeyu Li and Haiquan Jin
Coatings 2025, 15(7), 783; https://doi.org/10.3390/coatings15070783 - 2 Jul 2025
Viewed by 287
Abstract
Based on laser cladding technology, six composite coatings with different amounts of Inconel 718 and 0~5% CeO2 were successfully prepared on the 316L stainless steel substrate. The effect of different amounts of CeO2 particles was investigated and discussed, such as microstructure, [...] Read more.
Based on laser cladding technology, six composite coatings with different amounts of Inconel 718 and 0~5% CeO2 were successfully prepared on the 316L stainless steel substrate. The effect of different amounts of CeO2 particles was investigated and discussed, such as microstructure, phases, elemental distribution, microhardness, wear resistance and corrosion resistance. The results show that the phases are composed of γ~(Fe, Ni), Ni3Nb, (Nb0.03Ti0.97)Ni3, and MCX(M = Cr, Nb and Mo). When the amount of CeO2 particles is higher than 1%, some Ce2O3 compounds can be detected in coatings. The average microhardness values of N0~N5 are 604.6, 754.5, 771.6, 741.4, 694.5 and 677.3 HV0.2, respectively. There is a trend that the microhardness increases firstly and then decreases, because an appropriate amount of CeO2 can improve the solid solution strength. The average wear rate values of N0~N5 are 2.97 × 10−5, 1.22 × 10−5, 0.94 × 10−5, 1.53 × 10−5, 1.81 × 10−5 and 2.26 × 10−5 mm3∙N−1∙min−1, respectively. The N2 coating has the smallest corrosion current density of 2.05 × 10−4 A·cm−2, which is about 56% of the N0 coating. When the amount of CeO2 particles is 2%, the coating has the best wear resistance and corrosion resistance due to fine grains and Cr, Nb and Mo compounds. Full article
Show Figures

Figure 1

22 pages, 3879 KiB  
Article
Dimensional and Surface Quality Evaluation of Inconel 718 Alloy After Grinding with Environmentally Friendly Cooling-Lubrication Technique and Graphene Enriched Cutting Fluid
by Déborah de Oliveira, Raphael Lima de Paiva, Mayara Fernanda Pereira, Rosenda Valdés Arencibia, Rogerio Valentim Gelamo and Rosemar Batista da Silva
Appl. Mech. 2025, 6(3), 50; https://doi.org/10.3390/applmech6030050 - 2 Jul 2025
Viewed by 342
Abstract
Properly refrigerating hard-to-cut alloys during grinding is key to achieve high quality, strict tolerances, and good surface finishing. Nonetheless, literature about the influence of cooling-lubrication conditions (CLCs) on dimensional accuracy of ground components is still scarce. Thus, this work aims to evaluate surface [...] Read more.
Properly refrigerating hard-to-cut alloys during grinding is key to achieve high quality, strict tolerances, and good surface finishing. Nonetheless, literature about the influence of cooling-lubrication conditions (CLCs) on dimensional accuracy of ground components is still scarce. Thus, this work aims to evaluate surface quality, grinding power, and dimensional accuracy of Inconel 718 workpieces after grinding with silicon carbide grinding wheel at different grinding conditions. Four different CLCs were tested: flood, minimum quantity of lubrication (MQL) without graphene, and with multilayer graphene (MG) at two distinct concentrations: 0.05 and 0.10 wt.%. Different radial depths of cut values were also tested. The results showed that the material’s removed height increased with radial depth of cut, leading to coarse tolerance (IT) grades. Machining with the MQL WG resulted in higher dimensional precision with an IT grade varying between IT6 and IT7, followed by MQL MG 0.10% (IT7), MQL MG 0.05% (IT7-IT8), and flood (IT8). The lower tolerances achieved with MG were attributed to the lowering in the friction coefficient of the workpiece material sliding through the abrasive grits with no material removal (micro-plowing mechanism), thereby reducing grinding power and the removed height in comparison to the other CLC tested. Full article
Show Figures

Figure 1

12 pages, 3473 KiB  
Article
Microstructure and Mechanical Properties of Laser-Clad Inconel 718 Coatings on Continuous Casting Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Ruoyu Xu, Nan Ma, Hui Liang, Jian Lin, Wenqing Xiang and Zhanhui Zhang
Lubricants 2025, 13(7), 289; https://doi.org/10.3390/lubricants13070289 - 28 Jun 2025
Viewed by 388
Abstract
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that [...] Read more.
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that the coatings exhibit a defect-free structure with metallurgical bonding to the substrate. The coating primarily consists of a γ-(Fe, Ni, Cr) solid solution and carbides (M23C6 and M6C). Notably, elongated columnar Laves phases and coarse Cr–Mo compounds were distributed along grain boundaries, significantly enhancing the coating’s microhardness and high-temperature stability. The coating exhibited an average microhardness of 491.7 HV0.5, which is approximately 6.8 times higher than that of the copper plate. At 400 °C, the wear rate of the coating was 4.7 × 10−4 mm3·N−1·min−1, significantly lower than the substrate’s wear rate of 8.86 × 10−4 mm3·N−1·min−1, which represents only 53% of the substrate’s wear rate. The dominant wear mechanisms were adhesive wear, abrasive wear, and oxidative wear. The Inconel 718 coating demonstrates superior hardness and excellent high-temperature wear resistance, effectively improving both the surface properties and service life of mold copper plates. Full article
Show Figures

Figure 1

20 pages, 10605 KiB  
Article
Evaluation of the Corrosion Behavior of Inconel 718 Alloy Processed by SLM Additive Manufacturing Method After 5000 h of Immersion in Natural Seawater
by Elena Ionela Neacsu, Cristina Donath, Loredana Preda, Mihai Anastasescu, Alexandra Banu, Alexandru Paraschiv, Adrian Bibis and Maria Marcu
Metals 2025, 15(7), 713; https://doi.org/10.3390/met15070713 - 26 Jun 2025
Viewed by 376
Abstract
The corrosion behavior of Inconel 718 alloy, developed through two different methods—forging (S1) and additive manufacturing (S2)—was evaluated in a seawater environment, and the results were compared with those of Inconel 825 alloy (S3). The corrosion performance of the alloys was examined according [...] Read more.
The corrosion behavior of Inconel 718 alloy, developed through two different methods—forging (S1) and additive manufacturing (S2)—was evaluated in a seawater environment, and the results were compared with those of Inconel 825 alloy (S3). The corrosion performance of the alloys was examined according to ISO 8044/2024, using open circuit potential (OCP), potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS), in natural seawater at 25 °C over an extended immersion period. After 5000 h of immersion, the corrosion rate (Rcorr) estimated from anodic polarization tests was found to be lower for the wrought Inconel 718 alloy (1.21 µm y−1) compared to the wrought 825 alloy (4.1 µm y−1) and to the SLM Inconel 718 alloy (35.1 µm y−1), indicating high corrosion resistance for wrought Inconel 718. A morphological analysis of the alloy’s surface conducted using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed a continuous, compact film with localized salt deposits on wrought Inconel 718 and Incoloy 825. In contrast, SLM Inconel 718 exhibited a porous, inhomogeneous film, leading to reduced protective capabilities and lower corrosion resistance. The results demonstrate that wrought Inconel 718 exhibits excellent corrosion resistance in seawater, making it a promising alloy for marine applications. Full article
Show Figures

Figure 1

15 pages, 2384 KiB  
Article
ANN-Based Prediction of Corrosion Behavior of Alloy 600: Implications for an Anti-Corrosion Coating Design in PWSCC Environments
by Muhammad Ishtiaq, Xiao-Song Wang, Annabathini Geetha Bhavani, Hyuk Jong Bong and Nagireddy Gari Subba Reddy
Coatings 2025, 15(7), 749; https://doi.org/10.3390/coatings15070749 - 24 Jun 2025
Viewed by 379
Abstract
The modeling of the corrosion rate of Alloy 600 in primary water stress corrosion cracking conditions (PWSCC) is a challenging task for existing as well as new structures due to the wide deviation of its composition across the worldwide PWSCC environment. The major [...] Read more.
The modeling of the corrosion rate of Alloy 600 in primary water stress corrosion cracking conditions (PWSCC) is a challenging task for existing as well as new structures due to the wide deviation of its composition across the worldwide PWSCC environment. The major parameters influencing the rate are temperature, stress intensity factor, pH, conductivity, ECP, Yield strength, B3(OH)3, and LiOH. The individual effects of these parameters on corrosion are known to some extent; however, the combined effect of these parameters together is complex, nonlinear, and unpredictable. Herein, we developed an Artificial Neural Network to predict the corrosion crack growth rate for any combination of the above five parameters and to better understand the effects of these parameters jointly on corrosion behavior. Three-dimensional mappings clearly reveal the complex interrelationship between the temperature and stress intensity factor at different variables, and the effect of the variables rather than a single variable on the corrosion rate of Inconel alloy 600 in PWSCC conditions. Moreover, the index of relative importance for these variables has also been presented providing deep insights for anti-corrosion coating designs in PWSCC environments. Full article
(This article belongs to the Special Issue Anti-corrosion Coatings of Metals and Alloys—New Perspectives)
Show Figures

Graphical abstract

14 pages, 3487 KiB  
Article
Additive Manufacturing of Ceramic-Reinforced Inconel 718: Microstructure and Mechanical Characterization
by Yang Qi, Bo Hu, Lei Wang, Yanwei Ma, Mei Yang, Yihang Ma and Pengfei Li
Crystals 2025, 15(7), 585; https://doi.org/10.3390/cryst15070585 - 20 Jun 2025
Viewed by 388
Abstract
This study investigates the microstructure and mechanical properties of Inconel 718, a nickel-based alloy, reinforced with ceramic phases via additive manufacturing. Two reinforcement strategies were explored: in situ formation of ceramic phases through titanium powder addition, and direct incorporation of Cr2O [...] Read more.
This study investigates the microstructure and mechanical properties of Inconel 718, a nickel-based alloy, reinforced with ceramic phases via additive manufacturing. Two reinforcement strategies were explored: in situ formation of ceramic phases through titanium powder addition, and direct incorporation of Cr2O3 and TiO2 ceramic particles. Both approaches significantly modified the alloy’s microstructure and elemental distribution. The in situ formation method produced leaf-like Ti-rich precipitates (up to 70.13 wt%), while direct ceramic addition suppressed the preferred orientation of the Laves phase and promoted the formation of NbC precipitates. Microhardness increased by 19.4% with titanium addition, compared to a modest 1.3% improvement with direct ceramic addition. Tensile testing revealed that titanium powder enhanced ultimate tensile strength but reduced elongation, whereas direct ceramic addition led to decreases in both strength and ductility. Wear resistance evaluation showed that direct ceramic addition yielded superior performance, evidenced by the lowest friction coefficient (0.514) and smallest wear volume (16,290,782 μm3). These findings demonstrate the effectiveness of ceramic reinforcement strategies in optimizing the mechanical and tribological behavior of additively manufactured Inconel 718, and offer valuable guidance for the development of wear-resistant components such as those used in hydraulic support systems. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

20 pages, 39672 KiB  
Article
Enhanced Mechanical Performance of SLM-Printed Inconel 718 Lattice Structures Through Heat Treatments
by María J. Briones-Montemayor, Rigoberto Guzmán-Nogales, Parisa Majari, Jorge A. Estrada-Díaz, Alex Elías-Zúñiga, Daniel Olvera-Trejo, Oscar Martínez-Romero and Imperio A. Perales-Martínez
Metals 2025, 15(7), 686; https://doi.org/10.3390/met15070686 - 20 Jun 2025
Viewed by 360
Abstract
Selective laser melting (SLM) allows the production of complex lattice structures with tunable mechanical properties. This study proposes an integrated approach to enhance the mechanical properties of Inconel 718 (IN718) lightweight structures by applying distinct heat treatment protocols and tailoring key printing parameters. [...] Read more.
Selective laser melting (SLM) allows the production of complex lattice structures with tunable mechanical properties. This study proposes an integrated approach to enhance the mechanical properties of Inconel 718 (IN718) lightweight structures by applying distinct heat treatment protocols and tailoring key printing parameters. Four lattice geometries—body-centered cube (BCC), diamond, inverse woodpile (IWP), and gyroid—were selected for evaluation. Three heat treatment protocols were applied to assess their effect on mechanical behavior. Additionally, the influence of key SLM parameters such as laser power, scan speed, hatch spacing, and layer thickness on structural performance was investigated. By combining process tailoring and post-processing strategies, this work demonstrates a method to improve the mechanical response of complex IN718 lattices. The results highlight significant improvements in yield strength and energy absorption for high-performance applications in aerospace and automotive engineering. Full article
Show Figures

Figure 1

24 pages, 8807 KiB  
Article
Further Studies into the Growth of Small Naturally Occurring Three-Dimensional Cracks in Additively Manufactured and Conventionally Built Materials
by Shareen Chan, Daren Peng, Andrew S. M. Ang, Michael B. Nicholas, Victor K. Champagne, Aron Birt, Alex Michelson, Sean Langan, Jarrod Watts and Rhys Jones
Crystals 2025, 15(6), 544; https://doi.org/10.3390/cryst15060544 - 6 Jun 2025
Viewed by 824
Abstract
MIL-STD-1530D and the United States Air Force (USAF) Structures Bulletin EZ-SB-19-01 require an ability to predict the growth of naturally occurring three-dimensional cracks with crack depths equal to what they term an equivalent initial damage size (EIDS) of 0.254 mm. This requirement holds [...] Read more.
MIL-STD-1530D and the United States Air Force (USAF) Structures Bulletin EZ-SB-19-01 require an ability to predict the growth of naturally occurring three-dimensional cracks with crack depths equal to what they term an equivalent initial damage size (EIDS) of 0.254 mm. This requirement holds for both additively manufactured and conventionally built parts. The authors have previously presented examples of how to perform such predictions for additively manufactured (AM) Ti-6Al-4V; wire arc additively manufactured (WAAM) 18Ni 250 Maraging steel; and Boeing Space, Intelligence and Weapon Systems laser bed powder fusion (LPBF) Scalmalloy®, which is an additively manufactured Aluminium-Scandium-Mg alloy, using the Hartman-Schijve crack growth equation. In these studies, the constants used were as determined from ASTM E647 standard tests on long cracks, and the fatigue threshold term in the Hartman-Schijve equation was set to a small value (namely, 0.1 MPa √m). This paper illustrates how this approach can also be used to predict the growth of naturally occurring three-dimensional cracks in WAAM CP-Ti (commercially pure titanium) specimens built by Solvus Global as well as in WAAM-built Inconel 718. As in the prior studies mentioned above, the constants used in this analysis were taken from prior studies into the growth of long cracks in conventionally manufactured CP-Ti and in AM Inconel 718, and the fatigue threshold term in these analyses was set to 0.1 MPa √m. These studies are complemented via a prediction of the growth of naturally occurring three-dimensional cracks in conventionally built M300 steel. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 1690 KiB  
Article
Identifying Ultrasonic Testing Based Nondestructive Qualification Parameters for Laser DED Processed IN718
by Guillermo Huanes-Alvan, Himanshu Sahasrabudhe and Sunil Kishore Chakrapani
NDT 2025, 3(2), 12; https://doi.org/10.3390/ndt3020012 - 5 Jun 2025
Viewed by 362
Abstract
This article explores the use of ultrasonic nondestructive evaluation for qualification of laser-DED IN718 samples. The main goal of this article is to identify potential ultrasonic parameters which have highest sensitivity to microstructral changes that result from fabrication of DED samples. The ultrasonic [...] Read more.
This article explores the use of ultrasonic nondestructive evaluation for qualification of laser-DED IN718 samples. The main goal of this article is to identify potential ultrasonic parameters which have highest sensitivity to microstructral changes that result from fabrication of DED samples. The ultrasonic qualification parameters were extracted from ultrasonic testing including velocity and attenuation measurement, and C-Scan imaging. These measurements were further used to extract parameters that quantify the anisotropy, microstructural heterogeneity, and grain scattering. Two laser-DED IN718 samples fabricated with slightly different processing parameters were evaluated to observe the influence of the laser power and scan speed on the qualification parameters. The identified qualification parameters were compared for these two samples, along with a hot-rolled sample that was also used as reference. The results suggest that the anisotropy, attenuation, and heterogeneity were highest in the DED samples compared to the reference sample. The identified qualification parameters seem to capture these changes, suggesting they could be potentially used for qualification of AM parts. Full article
Show Figures

Figure 1

18 pages, 2167 KiB  
Article
High-Cycle Fatigue Life Prediction of Additive Manufacturing Inconel 718 Alloy via Machine Learning
by Zongxian Song, Jinling Peng, Lina Zhu, Caiyan Deng, Yangyang Zhao, Qingya Guo and Angran Zhu
Materials 2025, 18(11), 2604; https://doi.org/10.3390/ma18112604 - 3 Jun 2025
Cited by 1 | Viewed by 634
Abstract
This study established a machine learning framework to enhance the accuracy of very-high-cycle fatigue (VHCF) life prediction in selective laser melted Inconel 718 alloy by systematically comparing the use of generative adversarial networks (GANs) and variational auto-encoders (VAEs) for data augmentation. We quantified [...] Read more.
This study established a machine learning framework to enhance the accuracy of very-high-cycle fatigue (VHCF) life prediction in selective laser melted Inconel 718 alloy by systematically comparing the use of generative adversarial networks (GANs) and variational auto-encoders (VAEs) for data augmentation. We quantified the influence of critical defect parameters (dimensions and stress amplitudes) extracted from fracture analyses on fatigue life and compared the performance of GANs versus VAEs in generating synthetic training data for three regression models (ANN, Random Forest, and SVR). The experimental fatigue data were augmented using both generative models, followed by hyperparameter optimization and rigorous validation against independent test sets. The results demonstrated that the GAN-generated data significantly improved the prediction metrics, with GAN-enhanced models achieving superior R2 scores (0.91–0.97 vs. 0.86 ± 0.87) and lower MAEs (1.13–1.62% vs. 2.00–2.64%) compared to the VAE-based approaches. This work not only establishes GANs as a breakthrough tool for AM fatigue prediction but also provides a transferable methodology for data-driven modeling of defect-dominated failure mechanisms in advanced materials. Full article
(This article belongs to the Special Issue High Temperature-Resistant Ceramics and Composites)
Show Figures

Figure 1

17 pages, 5744 KiB  
Article
Evaluation of Mechanical Characteristics of Tungsten Inert Gas (TIG) Welded Butt Joint of Inconel 600
by Arash Moradi, Fatemeh Marashi Najafi, Yong Chen and Mahmoud Chizari
J. Manuf. Mater. Process. 2025, 9(6), 177; https://doi.org/10.3390/jmmp9060177 - 28 May 2025
Viewed by 533
Abstract
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques [...] Read more.
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques for joining these alloys. Therefore, the investigation of the mechanical behaviour after the welding process is crucial for selecting the appropriate technique for joining Inconel 600 sheets. This research focuses on investigating the microstructure and mechanical behaviour of TIG-welded Inconel 600 through a series of tests, such as tensile, fatigue, creep, and hardness evaluations. In addition, microstructural analysis is combined with these mechanical evaluations to simulate the operating conditions experienced by turbine blades. Key parameters such as yield strength, tensile strength, and elongation have been evaluated through these analyses. The Ramberg–Osgood relationship has been investigated using the engineering and true stress–strain curves obtained from the welded specimens. The results of the fatigue test illustrate the relationship between strain amplitude and the number of cycles to failure for single and double-edge notched specimens. The test was performed at two different loads including 400 MPa and 250 MPa at a constant temperature of 650 °C, and the corresponding strain-time curves were recorded. The results showed rapid creep failure at 650 °C, suggesting that TIG welding may need to be optimized for high temperature applications. Full article
Show Figures

Figure 1

19 pages, 6709 KiB  
Article
Influence of Cutting Parameters and MQL on Surface Finish and Work Hardening of Inconel 617
by Rachel Lai, Andres Hurtado Carreon, Jose M. DePaiva and Stephen C. Veldhuis
Appl. Sci. 2025, 15(11), 5869; https://doi.org/10.3390/app15115869 - 23 May 2025
Viewed by 439
Abstract
Inconel 617 is a nickel-based superalloy that is a primary candidate for use in next-generation nuclear applications such as the Gen IV Molten Salt Reactor (MSR) and Very-High-Temperature Reactor (VHTR) due to its corrosion and oxidation resistance and high strength in elevated temperatures. [...] Read more.
Inconel 617 is a nickel-based superalloy that is a primary candidate for use in next-generation nuclear applications such as the Gen IV Molten Salt Reactor (MSR) and Very-High-Temperature Reactor (VHTR) due to its corrosion and oxidation resistance and high strength in elevated temperatures. However, Inconel 617 machinability is poor due to its hardness and tendency to work harden during manufacturing. While the machinability of its sister grade, Inconel 718, has been widely studied and understood due to its applications in aerospace, there is a lack of knowledge regarding the behaviour of Inconel 617 in machining. To address this gap, this paper investigates the influence of cutting parameters in the turning of Inconel 617 and compares the impact of Minimum Quantity Lubrication (MQL) turning against conventional coolant. This investigation was performed through three distinct studies: Study A compared the performance of commercial coatings, Study B investigated the influence of cutting parameters on the surface finish, and Study C compared the performance of MQL to flood coolant. This work demonstrated that AlTiN coatings performed the best and doubled the tool life of a standard tungsten carbide insert compared to its uncoated form. Additionally, the feed rate had the largest impact on the surface roughness, especially at high feeds, with the best surface quality found at the lowest feed rate of 0.075 mm/rev. The utilization of MQL had mixed results compared to a conventional flood coolant in the machining of Inconel 617. Surface finish was improved as high as 47% under MQL conditions compared to the flood coolant; however, work hardening at the surface was also shown to increase by 10–20%. Understanding this, it is possible that MQL can completely remove the need for a conventional coolant in the machining of Inconel 617 components for the manufacturing of next-generation reactors. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

Back to TopTop