ANN-Based Prediction of Corrosion Behavior of Alloy 600: Implications for an Anti-Corrosion Coating Design in PWSCC Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Collection of Experimental Data
2.3. Correlation Analysis
2.4. ANN Model Development
2.5. Choice of Hyperparameters
2.5.1. Hidden Layers and Neurons
2.5.2. Momentum Term and Learning Rate
2.5.3. Number of Iterations
3. Results and Discussion
3.1. Development and Evaluation of a GUI-Based ANN Model for CGR Prediction and Extrapolation Performance
Single Variable Sensitivity Analysis
3.2. Two Variable Sensitivity Analysis
3.3. Quantitative Estimation of Input Parameters on the CGR
3.4. Index of Relative Importance (IRI)
3.5. Graphical User Interface (GUI)
3.6. Limitations and Future Scope of Model Interpretability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PWSCC | primary water stress corrosion cracking |
IGSCC | Intergranular stress corrosion cracking |
CGR | Corrosion crack growth rate |
ANN | Artificial neural network |
ECP | Electrochemical corrosion potential |
YS | Yield strength |
MSE | Mean square error |
References
- Briceño, D.G.; Castaño, M.L.; García, M.S. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead. Nucl. Eng. Des. 1996, 165, 161–169. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Ishtiaq, M.; Jung, J.E.; Bae, H.J.; Yun, D.W.; Kang, S.-G.; Zargaran, A.; Lee, Y.-K.; Choi, Y.-S.; Seol, J.B. Observation of interface disruption and Lomer-Cottrell locks in a crept L12-strengthened Ni-based superalloy. Mater. Sci. Eng. A 2025, 940, 148570. [Google Scholar] [CrossRef]
- Viskari, L.; Hörnqvist, M.; Moore, K.L.; Cao, Y.; Stiller, K. Intergranular crack tip oxidation in a Ni-base superalloy. Acta Mater. 2013, 61, 3630–3639. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Q.B.; Yao, D.W. The Research and Application Status of Inconel 600 Alloy under Extremely Situation. Key Eng. Mater. 2017, 730, 21–27. [Google Scholar] [CrossRef]
- Mechehoud, F.; Benaioun, N.E.; Hakiki, N.E.; Khelil, A.; Simon, L.; Bubendorff, J.L. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM). Appl. Surf. Sci. 2018, 433, 66–75. [Google Scholar] [CrossRef]
- Kim, D.-H.; Choi, J.; Ha, S.-H. Examination of Oxide Formation in Oxidation of Inconel 600 and 625 at High Temperatures Using Phase Diagrams. Coatings 2024, 14, 1550. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.W.; Kim, Y.S. Primary water stress corrosion cracking (PWSCC) mechanism based on ordering reaction in Alloy 600. Met. Mater. Int. 2013, 19, 969–974. [Google Scholar] [CrossRef]
- Scott, P.M.; Combrade, P. General corrosion and stress corrosion cracking of Alloy 600 in light water reactor primary coolants. J. Nucl. Mater. 2019, 524, 340–375. [Google Scholar] [CrossRef]
- Perez, C.; Couvant, T.; Guipont, V.; Kermouche, G.; Balloy, D.; Royes, P.; Duhamel, C. Corrosion behaviour of Alloy 600 containing oxide inclusions exposed to primary water of pressurised water reactors. Corros. Sci. 2025, 254, 113035. [Google Scholar] [CrossRef]
- Lim, Y.S.; Kim, D.J.; Kim, S.W.; Kim, H.P. Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water. Nucl. Eng. Technol. 2019, 51, 228–237. [Google Scholar] [CrossRef]
- Liu, X.; Hwang, W.; Park, J.; Van, D.; Chang, Y.; Lee, S.H.; Kim, S.-Y.; Han, S.; Lee, B. Toward the multiscale nature of stress corrosion cracking. Nucl. Eng. Technol. 2018, 50, 1–17. [Google Scholar] [CrossRef]
- Lim, Y.S.; Kim, H.P.; Hwang, S.S. Microstructural characterization on intergranular stress corrosion cracking of Alloy 600 in PWR primary water environment. J. Nucl. Mater. 2013, 440, 46–54. [Google Scholar] [CrossRef]
- Rahman, M.W.; Zhao, B.; Pan, S.; Qu, Y. Microstructure-informed machine learning for understanding corrosion resistance in structural alloys through fusion with experimental studies. Comput. Mater. Sci. 2025, 248, 113624. [Google Scholar] [CrossRef]
- Shi, J.; Fekete, B.; Wang, J.; Macdonald, D.D. Customization of the coupled environment fracture model for predicting stress corrosion cracking in Alloy 600 in PWR environment. Corros. Sci. 2018, 139, 58–67. [Google Scholar] [CrossRef]
- Macdonald, D.D. Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors. Corrosion 1992, 48, 194–205. [Google Scholar] [CrossRef]
- Hicking, J.; McIlree, A.; Pathania, R. Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Thick-Wall Alloy 600 Material (MRP-55); Electric Power Research Institute: Palo Alto, CA, USA, 2002. [Google Scholar]
- White, G.; Gorman, J.; Nordmann, N.; Jones, P.; Kreider, M.; Hickling, J. Materials Reliability Program Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Welds; Electric Power Research Institute: Palo Alto, CA, USA, 2004. [Google Scholar]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Ishtiaq, M.; Tiwari, S.; Panigrahi, B.B.; Seol, J.B.; Reddy, N.S. Neural Network-Based Modeling of the Interplay between Composition, Service Temperature, and Thermal Conductivity in Steels for Engineering Applications. Int. J. Thermophys. 2024, 45, 137. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Tariq, H.M.R.; Reddy, D.Y.C.; Kang, S.-G.; Reddy, N.G.S. Prediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models. Metals 2025, 15, 288. [Google Scholar] [CrossRef]
- Kim, H.-S.; Park, S.-J.; Seo, S.-M.; Yoo, Y.-S.; Jeong, H.-W.; Jang, H. Regression analysis of high-temperature oxidation of Ni-based superalloys using artificial neural network. Corros. Sci. 2021, 180, 109207. [Google Scholar] [CrossRef]
- Jiménez-Come, M.J.; González Gallero, F.J.; Álvarez Gómez, P.; Mena Baladés, J.D. Corrosion Behaviour Modelling Using Artificial Neural Networks: A Case Study in Biogas Environment. Metals 2023, 13, 1811. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, H.; Ji, H.; Ma, X.; Cai, Y. Data-driven atmospheric corrosion prediction model for alloys based on a two-stage machine learning approach. Process Saf. Environ. Prot. 2024, 188, 1093–1105. [Google Scholar] [CrossRef]
- Shi, J.; Wang, J.; Macdonald, D.D. Prediction of primary water stress corrosion crack growth rates in Alloy 600 using artificial neural networks. Corros. Sci. 2015, 92, 217–227. [Google Scholar] [CrossRef]
- Rebak, R.; Szklarska-Smialowska, Z.; McIlree, A. Effects of pH and Stress Intensity on Crack Growth Rate in Alloy 600 in Lithiated+ Borated Water at High Temperatures; American Nuclear Society, Inc.: La Grange Park, IL, USA, 1992. [Google Scholar]
- Rebak, R.; Szklarska-Smialowska, Z. Influence of stress intensity and loading mode on intergranular stress corrosion cracking of alloy 600 in primary waters of pressurized water reactors. Corrosion 1994, 50, 378–393. [Google Scholar] [CrossRef]
- Lott, R.; Jacko, R.; Gold, R. Primary Water Stress Corrosion Crack Growth Rates in Alloy 600 Steam Generator Tubing; American Nuclear Society, Inc.: La Grange Park, IL, USA, 1992. [Google Scholar]
- Morton, D.; Attanasio, S.; Young, G. Primary Water SCC Understanding and Characterization Through Fundamental Testing in the Vicinity of the Nickel/Nickel Oxide Phase Transition; Lockheed Martin Corporation: Schenectady, NY, USA, 2001. [Google Scholar]
- Hunt, E.; Gross, D. PWSCC of Alloy 600 Materials in PWR Primary System Penetrations; EPRI Report TR-103696; Electric Power Research Institute: Palo Alto, CA, USA, 1994. [Google Scholar]
- Bamford, W.H.; Foster, J. Crack Growth and Microstructural Characterization of Alloy 600 Head Penetration Materials; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 1995. [Google Scholar]
- BAMFORD, V.; Foster, J. Crack Growth and Microstructural Characterization of Alloy 600 PWR Vessel Head Penetration Materials; EPRI rapport TR-109136; Electric Power Research Institute: Palo Alto, CA, USA, 1997; p. 271. [Google Scholar]
- Hickling, J.; Mcllree, A.; Pathania, R. Materials Reliability Program (MRP): Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Thick-Wall Alloy 600 Materials (MRP-55) Revision 1; Rapport EPRI; Electric Power Research Institute: Palo Alto, CA, USA, 2002; p. 1006695. [Google Scholar]
- Ruther, W.; Soppett, W.; Kassner, T.; Commission, N.R. Corrosion Fatigue of Alloys 600 and 690 in Simulated LWR Environments; Nuclear Regulatory Commission: Washington, DC, USA, 1996. [Google Scholar]
- Guo, Z.; Sha, W. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comput. Mater. Sci. 2004, 29, 12–28. [Google Scholar] [CrossRef]
- Reddy, N.S.; Panigrahi, B.B.; Ho, C.M.; Kim, J.H.; Lee, C.S. Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys. Comput. Mater. Sci. 2015, 107, 175–183. [Google Scholar] [CrossRef]
- Okuyucu, H.; Kurt, A.; Arcaklioglu, E. Artificial neural network application to the friction stir welding of aluminum plates. Mater. Des. 2007, 28, 78–84. [Google Scholar] [CrossRef]
- Malinov, S.; Sha, W.; Guo, Z. Application of artificial neural network for prediction of time–temperature–transformation diagrams in titanium alloys. Mater. Sci. Eng. A 2000, 283, 1–10. [Google Scholar] [CrossRef]
- Reddy, N.; Krishnaiah, J.; Hong, S.-G.; Lee, J.S. Modeling medium carbon steels by using artificial neural networks. Mater. Sci. Eng. A 2009, 508, 93–105. [Google Scholar] [CrossRef]
- Sennour, M.; Laghoutaris, P.; Guerre, C.; Molins, R. Advanced TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment. J. Nucl. Mater. 2009, 393, 254–266. [Google Scholar] [CrossRef]
- Meisnar, M.; Vilalta-Clemente, A.; Moody, M.; Arioka, K.; Lozano-Perez, S. A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water. Acta Mater. 2016, 114, 15–24. [Google Scholar] [CrossRef]
- Hall, M.M. Interacting sensitivities of alloy 600 PWSCC to stress intensity factor, yield stress, temperature, carbon concentration, and crack growth orientation Alloy 600. Corros. Sci. 2017, 125, 152–165. [Google Scholar] [CrossRef]
- Andresen, P.L.; Hickling, J.; Ahluwalia, A.; Wilson, J. Effects of Hydrogen on Stress Corrosion Crack Growth Rate of Nickel Alloys in High-Temperature Water. Corrosion 2008, 64, 707–720. [Google Scholar] [CrossRef]
- Shen, Z.; Meisnar, M.; Arioka, K.; Lozano-Perez, S. Mechanistic understanding of the temperature dependence of crack growth rate in alloy 600 and 316 stainless steel through high-resolution characterization. Acta Mater. 2019, 165, 73–86. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, J.-S.; Jeon, J.-Y.; Kim, Y.-J. PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components. Nucl. Eng. Technol. 2016, 48, 1036–1046. [Google Scholar] [CrossRef]
- Abraham, G.J.; Kain, V.; Dey, G.K.; Raja, V.S. Stability of oxide film formed at different temperatures on Alloy 600 in lithiated environment. J. Nucl. Mater. 2013, 437, 188–195. [Google Scholar] [CrossRef]
- Lv, S.; Li, K.; Chen, J.; Li, X. Corrosion of High-Strength Steel Wires under Tensile Stress. Materials 2020, 13, 4790. [Google Scholar] [CrossRef]
- Liu, T.; Wang, B. Effect of pH on corrosion mechanism of two austenitic stainless steels in artificial sweat. Int. J. Electrochem. Sci. 2025, 20, 101065. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, A. Comprehensive relative importance analysis and its applications to high dimensional gene expression data analysis. Knowl. Based Syst. 2020, 203, 106120. [Google Scholar] [CrossRef]
Alloy | Chemical Composition | |||||||
---|---|---|---|---|---|---|---|---|
Ni | Cr | Fe | Mn | Si | Cu | C | S | |
Inconel 600 | 72 | 14 | 6 | 1 | 0.5 | 0.5 | 0.15 | 0.01 |
Variable | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|
T (C) | 289 | 360 | 324.5 | 16.83 |
Kf (MPa.m1/2) | 4.6 | 101 | 38.1 | 19.95 |
pH | 5.52 | 9.19 | 7.3 | 0.78 |
κ (µS/cm) | 0.97 | 1116 | 251.4 | 222.35 |
ECP (VSHE) | −1.096 | −0.56 | −0.819 | 0.103 |
H3BO3 (ppm) | 0 | 1800 | 707 | 451.48 |
LiOH (ppm) | 0 | 10 | 2.2 | 1.95 |
YS (MPa) | 211 | 500 | 359 | 70.56 |
CGR (cms−1) | 4.8 × 10−8 | 6.28 × 10−7 | 4.26 × 10−8 | 870 × 10−8 |
Minimum Values Predictions | Values | Change |
---|---|---|
289T-4.6Kf-5.52pH-0.97Con.-1.096ECP-211YS-0-0LiOH | −9.086 | - |
325.6T-4.6Kf-5.52pH-0.97 Con.-1.096ECP-211YS-0-0 LiOH | −9.0898 | 0.0042 |
325.6T-24.1Kf-5.52pH-0.97 Con.-1.096ECP-211YS-0-0LiOH | −9.0887 | 0.0011 |
325.6T-24.1Kf-7.38pH-0.97 Con.-1.096ECP-211YS-0-0 LiOH | −9.0868 | −0.0018 |
325.6T-24.1Kf-7.38pH-225 Con.-1.096ECP-211YS-0-0 LiOH | −9.0905 | −0.0037 |
325.6T-24.1Kf-7.38pH-225 Con.-0.834ECP-211YS-0-0 LiOH | −8.9212 | 0.1693 |
325.6T-24.1Kf-7.38pH-225 Con.-0.834ECP-329YS-0-0 LiOH | −9.1062 | −0.185 |
325.6T-24.1Kf-7.38pH-225 Con.-0.834ECP-329YS-1200-0 LiOH | −8.2291 | 0.8771 |
325.6T-24.1Kf-7.38pH-225 Cond.-0.834ECP-329YS-1200-2 LiOH | −7.8758 | 0.3533 |
Experimental value | −8.12552 | |
Error (%)3 | 3.07% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishtiaq, M.; Wang, X.-S.; Bhavani, A.G.; Bong, H.J.; Reddy, N.G.S. ANN-Based Prediction of Corrosion Behavior of Alloy 600: Implications for an Anti-Corrosion Coating Design in PWSCC Environments. Coatings 2025, 15, 749. https://doi.org/10.3390/coatings15070749
Ishtiaq M, Wang X-S, Bhavani AG, Bong HJ, Reddy NGS. ANN-Based Prediction of Corrosion Behavior of Alloy 600: Implications for an Anti-Corrosion Coating Design in PWSCC Environments. Coatings. 2025; 15(7):749. https://doi.org/10.3390/coatings15070749
Chicago/Turabian StyleIshtiaq, Muhammad, Xiao-Song Wang, Annabathini Geetha Bhavani, Hyuk Jong Bong, and Nagireddy Gari Subba Reddy. 2025. "ANN-Based Prediction of Corrosion Behavior of Alloy 600: Implications for an Anti-Corrosion Coating Design in PWSCC Environments" Coatings 15, no. 7: 749. https://doi.org/10.3390/coatings15070749
APA StyleIshtiaq, M., Wang, X.-S., Bhavani, A. G., Bong, H. J., & Reddy, N. G. S. (2025). ANN-Based Prediction of Corrosion Behavior of Alloy 600: Implications for an Anti-Corrosion Coating Design in PWSCC Environments. Coatings, 15(7), 749. https://doi.org/10.3390/coatings15070749