Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,473)

Search Parameters:
Keywords = IEEE 802.15.4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2954 KiB  
Article
A Multi-Objective Decision-Making Method for Optimal Scheduling Operating Points in Integrated Main-Distribution Networks with Static Security Region Constraints
by Kang Xu, Zhaopeng Liu and Shuaihu Li
Energies 2025, 18(15), 4018; https://doi.org/10.3390/en18154018 - 28 Jul 2025
Abstract
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling [...] Read more.
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling operating point. To address this problem, this paper proposes a multi-objective dispatch decision-making optimization model for the IMDN with static security region (SSR) constraints. Firstly, the non-sequential Monte Carlo sampling is employed to generate diverse operational scenarios, and then the key risk characteristics are extracted to construct the risk assessment index system for the transmission and distribution grid, respectively. Secondly, a hyperplane model of the SSR is developed for the IMDN based on alternating current power flow equations and line current constraints. Thirdly, a risk assessment matrix is constructed through optimal power flow calculations across multiple load levels, with the index weights determined via principal component analysis (PCA). Subsequently, a scheduling optimization model is formulated to minimize both the system generation costs and the comprehensive risk, where the adaptive grid density-improved multi-objective particle swarm optimization (AG-MOPSO) algorithm is employed to efficiently generate Pareto-optimal operating point solutions. A membership matrix of the solution set is then established using fuzzy comprehensive evaluation to identify the optimal compromised operating point for dispatch decision support. Finally, the effectiveness and superiority of the proposed method are validated using an integrated IEEE 9-bus and IEEE 33-bus test system. Full article
Show Figures

Figure 1

31 pages, 4078 KiB  
Article
A Symmetry-Driven Adaptive Dual-Subpopulation Tree–Seed Algorithm for Complex Optimization with Local Optima Avoidance and Convergence Acceleration
by Hao Li, Jianhua Jiang, Zhixing Ma, Lingna Li, Jiayi Liu, Chenxi Li and Zhenhao Yu
Symmetry 2025, 17(8), 1200; https://doi.org/10.3390/sym17081200 - 28 Jul 2025
Abstract
The Tree–Seed Algorithm (TSA) is a symmetry-driven metaheuristic algorithm that shows potential for complex optimization problems, but it suffers from local optimum entrapment and slow convergence. To address these limitations, we propose the ADTSA algorithm. First, ADTSA adopts a symmetry-driven dual-layer framework for [...] Read more.
The Tree–Seed Algorithm (TSA) is a symmetry-driven metaheuristic algorithm that shows potential for complex optimization problems, but it suffers from local optimum entrapment and slow convergence. To address these limitations, we propose the ADTSA algorithm. First, ADTSA adopts a symmetry-driven dual-layer framework for seed generation, which promotes effective information exchange between subpopulations and accelerates convergence speed. In later iterations, ADTSA enhances the population’s exploitation ability through a population fusion mechanism, further improving the convergence speed. Moreover, we propose a historical optimal solution archiving and replacement mechanism, along with a t-distribution perturbation mechanism, to enhance the algorithm’s ability to escape local optima. ADTSA also strengthens population diversity and avoids local optima through convex lens symmetric reverse generation based on the optimal solution. With these mechanisms, ADTSA converges more effectively to the global optimum during the evolutionary process. Tests on the IEEE CEC 2014 benchmark functions showed that ADTSA outperformed several top-performing algorithms, such as LSHADE, JADE, LSHADE-RSP, and the latest TSA variants, and it also excelled in comparison with other optimization algorithms, including GWO, PSO, BOA, GA, and RSA, underscoring its robust performance across diverse testing scenarios. The proposed ADTSA’s applicability in solving complex constrained problems was also validated, with the results showing that ADTSA achieved the best solutions for these complex problems. Full article
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

21 pages, 5381 KiB  
Article
Emergency Resource Dispatch Scheme for Ice Disasters Based on Pre-Disaster Prediction and Dynamic Scheduling
by Runyi Pi, Yuxuan Liu, Nuoxi Huang, Jianyu Lian, Xin Chen and Chao Yang
Appl. Sci. 2025, 15(15), 8352; https://doi.org/10.3390/app15158352 - 27 Jul 2025
Abstract
To address the challenge of dispatching emergency resources for community residents under extreme ice disaster, this paper proposes an emergency resource dispatch strategy based on pre-disaster prediction and dynamic scheduling. First, the fast Newman algorithm is employed to cluster communities, optimizing the preprocessing [...] Read more.
To address the challenge of dispatching emergency resources for community residents under extreme ice disaster, this paper proposes an emergency resource dispatch strategy based on pre-disaster prediction and dynamic scheduling. First, the fast Newman algorithm is employed to cluster communities, optimizing the preprocessing of resource scheduling and reducing scheduling costs. Subsequently, mobile energy storage vehicles and mobile water storage vehicles are introduced based on the ice disaster trajectory prediction to enhance the efficiency and accuracy of post-disaster resource supply. A grouped scheduling strategy is adopted to reduce cross-regional resource flow, and the dispatch routes of mobile energy storage and water vehicles are dynamically adjusted based on real-time traffic network conditions. Simulations on the IEEE-33 node system validate the feasibility and advantages of the proposed strategies. The results demonstrate that the grouped dispatch and scheduling strategies increase user satisfaction by 24.73%, average state of charge (SOC) by 30.23%, and water storage by 31.88% compared to global scheduling. These improvements significantly reduce the cost of community energy self-sustainability, enhance the satisfaction of community residents, and ensure system stability across various disaster scenarios. Full article
23 pages, 11587 KiB  
Article
Robust Sensorless Active Damping of LCL Resonance in EV Battery Grid-Tied Converters Using μ-Synthesis Control
by Nabeel Khan, Wang Cheng, Muhammad Yasir Ali Khan and Danish Khan
World Electr. Veh. J. 2025, 16(8), 422; https://doi.org/10.3390/wevj16080422 - 27 Jul 2025
Abstract
LCL (inductor–capacitor–inductor) filters are widely used in grid-connected inverters, particularly in electric vehicle (EV) battery-to-grid systems, for harmonic suppression but introduce resonance issues that compromise stability. This study presents a novel sensorless active damping strategy based on μ-synthesis control for EV batteries connected [...] Read more.
LCL (inductor–capacitor–inductor) filters are widely used in grid-connected inverters, particularly in electric vehicle (EV) battery-to-grid systems, for harmonic suppression but introduce resonance issues that compromise stability. This study presents a novel sensorless active damping strategy based on μ-synthesis control for EV batteries connected to the grid via LCL filters, eliminating the need for additional current sensors while preserving harmonic attenuation. A comprehensive state–space and process noise model enables accurate capacitor current estimation using only grid current and point-of-common-coupling (PCC) voltage measurements. The proposed method maintains robust performance under ±60% LCL parameter variations and integrates a proportional-resonant (PR) current controller for resonance suppression. Hardware-in-the-loop (HIL) validation demonstrates enhanced stability in dynamic grid conditions, with total harmonic distortion (THD) below 5% (IEEE 1547-compliant) and current tracking error < 0.06 A. Full article
Show Figures

Figure 1

34 pages, 1593 KiB  
Article
Enhancing Radial Distribution System Performance Through Optimal Allocation and Sizing of Photovoltaic and Wind Turbine Distribution Generation Units with Rüppell’s Fox Optimizer
by Yacine Bouali and Basem Alamri
Mathematics 2025, 13(15), 2399; https://doi.org/10.3390/math13152399 - 25 Jul 2025
Viewed by 122
Abstract
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution [...] Read more.
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution network. To improve the performance of the distribution system, this study employs distributed generator (DG) units and focuses on determining their optimal placement, sizing, and power factor. A novel metaheuristic algorithm, referred to as Rüppell’s fox optimizer (RFO), is proposed to address this optimization problem under various scenarios. In the first scenario, where the DG operates at unity power factor, it is modeled as a photovoltaic system. In the second and third scenarios, the DG is modeled as a wind turbine system with fixed and optimal power factors, respectively. The performance of the proposed RFO algorithm is benchmarked against five well-known metaheuristic techniques to validate its effectiveness and competitiveness. Simulations are conducted on the IEEE 33-bus and IEEE 69-bus radial distribution test systems to demonstrate the applicability and robustness of the proposed approach. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 13424 KiB  
Article
A Comprehensive Analysis of Security Challenges in ZigBee 3.0 Networks
by Akbar Ghobakhlou, Duaa Zuhair Al-Hamid, Sara Zandi and James Cato
Sensors 2025, 25(15), 4606; https://doi.org/10.3390/s25154606 - 25 Jul 2025
Viewed by 101
Abstract
ZigBee, a wireless technology standard for the Internet of Things (IoT) devices based on IEEE 802.15.4, faces significant security challenges that threaten the confidentiality, integrity, and availability of its networks. Despite using 128-bit Advanced Encryption Standard (AES) with symmetric keys for node authentication [...] Read more.
ZigBee, a wireless technology standard for the Internet of Things (IoT) devices based on IEEE 802.15.4, faces significant security challenges that threaten the confidentiality, integrity, and availability of its networks. Despite using 128-bit Advanced Encryption Standard (AES) with symmetric keys for node authentication and data confidentiality, ZigBee’s design constraints, such as low cost and low power, have allowed security issues to persist. While ZigBee 3.0 introduces enhanced security features such as install codes and trust centre link key updates, there remains a lack of empirical research evaluating their effectiveness in real-world deployments. This research addresses the gap by conducting a comprehensive, hardware-based analysis of ZigBee 3.0 networks using XBee 3 radio modules and ZigBee-compatible devices. We investigate the following three core security issues: (a) the security of symmetric keys, focusing on vulnerabilities that could allow attackers to obtain these keys; (b) the impact of compromised symmetric keys on network confidentiality; and (c) susceptibility to Denial-of-Service (DoS) attacks due to insufficient protection mechanisms. Our experiments simulate realistic attack scenarios under both Centralised and Distributed Security Models to assess the protocol’s resilience. The findings reveal that while ZigBee 3.0 improves upon earlier versions, certain vulnerabilities remain exploitable. We also propose practical security controls and best practices to mitigate these attacks and enhance network security. This work contributes novel insights into the operational security of ZigBee 3.0, offering guidance for secure IoT deployments and advancing the understanding of protocol-level defences in constrained environments. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

28 pages, 2724 KiB  
Article
Data-Driven Dynamic Optimization for Hosting Capacity Forecasting in Low-Voltage Grids
by Md Tariqul Islam, M. J. Hossain and Md Ahasan Habib
Energies 2025, 18(15), 3955; https://doi.org/10.3390/en18153955 - 24 Jul 2025
Viewed by 163
Abstract
The sustainable integration of Distributed Energy Resources (DER) with the next-generation distribution networks requires robust, adaptive, and accurate hosting capacity (HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for power import/export to the grid, ensuring dynamic DER integration and efficient network operation. [...] Read more.
The sustainable integration of Distributed Energy Resources (DER) with the next-generation distribution networks requires robust, adaptive, and accurate hosting capacity (HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for power import/export to the grid, ensuring dynamic DER integration and efficient network operation. However, conventional HC analysis and forecasting approaches struggle to capture temporal dependencies, the impact of DOE constraints on network operation, and uncertainty in DER output. This study introduces a dynamic optimization framework that leverages the benefits of the sensitivity gate of the Sensitivity-Enhanced Recurrent Neural Network (SERNN) forecasting model, Particle Swarm Optimization (PSO), and Bayesian Optimization (BO) for HC forecasting. The PSO determines the optimal weights and biases, and BO fine-tunes hyperparameters of the SERNN forecasting model to minimize the prediction error. This approach dynamically adjusts the import/export of the DER output to the grid by integrating the DOE constraints into the SG-PSO-BO architecture. Performance evaluation on the IEEE-123 test network and a real Australian distribution network demonstrates superior HC forecasting accuracy, with an R2 score of 0.97 and 0.98, Mean Absolute Error (MAE) of 0.21 and 0.16, and Root Mean Square Error (RMSE) of 0.38 and 0.31, respectively. The study shows that the model effectively captures the non-linear and time-sensitive interactions between network parameters, DER variables, and weather information. This study offers valuable insights into advancing dynamic HC forecasting under real-time DOE constraints in sustainable DER integration, contributing to the global transition towards net-zero emissions. Full article
Show Figures

Figure 1

29 pages, 766 KiB  
Article
Interpretable Fuzzy Control for Energy Management in Smart Buildings Using JFML-IoT and IEEE Std 1855-2016
by María Martínez-Rojas, Carlos Cano, Jesús Alcalá-Fdez and José Manuel Soto-Hidalgo
Appl. Sci. 2025, 15(15), 8208; https://doi.org/10.3390/app15158208 - 23 Jul 2025
Viewed by 136
Abstract
This paper presents an interpretable and modular framework for energy management in smart buildings based on fuzzy logic and the IEEE Std 1855-2016. The proposed system builds upon the JFML-IoT library, enabling the integration and execution of fuzzy rule-based systems on resource-constrained IoT [...] Read more.
This paper presents an interpretable and modular framework for energy management in smart buildings based on fuzzy logic and the IEEE Std 1855-2016. The proposed system builds upon the JFML-IoT library, enabling the integration and execution of fuzzy rule-based systems on resource-constrained IoT devices using a lightweight and extensible architecture. Unlike conventional data-driven controllers, this approach emphasizes semantic transparency, expert-driven control logic, and compliance with fuzzy markup standards. The system is designed to enhance both operational efficiency and user comfort through transparent and explainable decision-making. A four-layer architecture structures the system into Perception, Communication, Processing, and Application layers, supporting real-time decisions based on environmental data. The fuzzy logic rules are defined collaboratively with domain experts and encoded in Fuzzy Markup Language to ensure interoperability and formalization of expert knowledge. While adherence to IEEE Std 1855-2016 facilitates system integration and standardization, the scientific contribution lies in the deployment of an interpretable, IoT-based control system validated in real conditions. A case study is conducted in a realistic indoor environment, using temperature, humidity, illuminance, occupancy, and CO2 sensors, along with HVAC and lighting actuators. The results demonstrate that the fuzzy inference engine generates context-aware control actions aligned with expert expectations. The proposed framework also opens possibilities for incorporating user-specific preferences and adaptive comfort strategies in future developments. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

22 pages, 1896 KiB  
Article
Physics-Constrained Diffusion-Based Scenario Expansion Method for Power System Transient Stability Assessment
by Wei Dong, Yue Yu, Lebing Zhao, Wen Hua, Ying Yang, Bowen Wang, Jiawen Cao and Changgang Li
Processes 2025, 13(8), 2344; https://doi.org/10.3390/pr13082344 - 23 Jul 2025
Viewed by 152
Abstract
In transient stability assessment (TSA) of power systems, the extreme scarcity of unstable scenario samples often leads to misjudgments of fault risks by assessment models, and this issue is particularly pronounced in new-type power systems with high penetration of renewable energy sources. To [...] Read more.
In transient stability assessment (TSA) of power systems, the extreme scarcity of unstable scenario samples often leads to misjudgments of fault risks by assessment models, and this issue is particularly pronounced in new-type power systems with high penetration of renewable energy sources. To address this, this paper proposes a physics-constrained diffusion-based scenario expansion method. It constructs a hierarchical conditional diffusion framework embedded with transient differential equations, combines a spatiotemporal decoupling analysis mechanism to capture grid topological and temporal features, and introduces a transient energy function as a stability boundary constraint to ensure the physical rationality of generated scenarios. Verification on the modified IEEE-39 bus system with a high proportion of new energy sources shows that the proposed method achieves an unstable scenario recognition rate of 98.77%, which is 3.92 and 2.65 percentage points higher than that of the Synthetic Minority Oversampling Technique (SMOTE, 94.85%) and Generative Adversarial Networks (GANs, 96.12%) respectively. The geometric mean achieves 99.33%, significantly enhancing the accuracy and reliability of TSA, and providing sufficient technical support for identifying the dynamic security boundaries of power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 4241 KiB  
Review
Extended Reality Technologies: Transforming the Future of Crime Scene Investigation
by Xavier Chango, Omar Flor-Unda, Angélica Bustos-Estrella, Pedro Gil-Jiménez and Hilario Gómez-Moreno
Technologies 2025, 13(8), 315; https://doi.org/10.3390/technologies13080315 - 23 Jul 2025
Viewed by 277
Abstract
The integration of extended reality (XR) technologies, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), is transforming forensic investigation by empowering processes such as crime scene reconstruction, evidence analysis, and professional training. This manuscript presents a systematic review of technological [...] Read more.
The integration of extended reality (XR) technologies, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), is transforming forensic investigation by empowering processes such as crime scene reconstruction, evidence analysis, and professional training. This manuscript presents a systematic review of technological advances in XR technologies developed and employed for forensic investigation, their impacts, challenges, and prospects for the future. A systematic review was carried out based on the PRISMA® methodology and considering articles published in repositories and scientific databases such as SCOPUS, Science Direct, PubMed, Web of Science, Taylor and Francis, and IEEE Xplore. Two observers carried out the selection of articles and a Cohen’s Kappa coefficient of 0.7226 (substantial agreement) was evaluated. The results show that XR technologies contribute to improving accuracy, efficiency, and collaboration in forensic investigation processes. In addition, they facilitate the preservation of crime scene data and reduce training costs. Technological limitations, implementation costs, ethical aspects, and challenges persist in the acceptability of these devices. XR technologies have significant transformative potential in forensic investigations, although additional research is required to overcome current barriers and establish standardized protocols that enable their effective integration. Full article
Show Figures

Figure 1

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 254
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

18 pages, 774 KiB  
Article
Bayesian Inertia Estimation via Parallel MCMC Hammer in Power Systems
by Weidong Zhong, Chun Li, Minghua Chu, Yuanhong Che, Shuyang Zhou, Zhi Wu and Kai Liu
Energies 2025, 18(15), 3905; https://doi.org/10.3390/en18153905 - 22 Jul 2025
Viewed by 108
Abstract
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and [...] Read more.
The stability of modern power systems has become critically dependent on precise inertia estimation of synchronous generators, particularly as renewable energy integration fundamentally transforms grid dynamics. Increasing penetration of converter-interfaced renewable resources reduces system inertia, heightening the grid’s susceptibility to transient disturbances and creating significant technical challenges in maintaining operational reliability. This paper addresses these challenges through a novel Bayesian inference framework that synergistically integrates PMU data with an advanced MCMC sampling technique, specifically employing the Affine-Invariant Ensemble Sampler. The proposed methodology establishes a probabilistic estimation paradigm that systematically combines prior engineering knowledge with real-time measurements, while the Affine-Invariant Ensemble Sampler mechanism overcomes high-dimensional computational barriers through its unique ensemble-based exploration strategy featuring stretch moves and parallel walker coordination. The framework’s ability to provide full posterior distributions of inertia parameters, rather than single-point estimates, helps for stability assessment in renewable-dominated grids. Simulation results on the IEEE 39-bus and 68-bus benchmark systems validate the effectiveness and scalability of the proposed method, with inertia estimation errors consistently maintained below 1% across all generators. Moreover, the parallelized implementation of the algorithm significantly outperforms the conventional M-H method in computational efficiency. Specifically, the proposed approach reduces execution time by approximately 52% in the 39-bus system and by 57% in the 68-bus system, demonstrating its suitability for real-time and large-scale power system applications. Full article
Show Figures

Figure 1

46 pages, 573 KiB  
Systematic Review
State of the Art and Future Directions of Small Language Models: A Systematic Review
by Flavio Corradini, Matteo Leonesi and Marco Piangerelli
Big Data Cogn. Comput. 2025, 9(7), 189; https://doi.org/10.3390/bdcc9070189 - 21 Jul 2025
Viewed by 662
Abstract
Small Language Models (SLMs) have emerged as a critical area of study within natural language processing, attracting growing attention from both academia and industry. This systematic literature review provides a comprehensive and reproducible analysis of recent developments and advancements in SLMs post-2023. Drawing [...] Read more.
Small Language Models (SLMs) have emerged as a critical area of study within natural language processing, attracting growing attention from both academia and industry. This systematic literature review provides a comprehensive and reproducible analysis of recent developments and advancements in SLMs post-2023. Drawing on 70 English-language studies published between January 2023 and January 2025, identified through Scopus, IEEE Xplore, Web of Science, and ACM Digital Library, and focusing primarily on SLMs (including those with up to 7 billion parameters), this review offers a structured overview of the current state of the art and potential future directions. Designed as a resource for researchers seeking an in-depth global synthesis, the review examines key dimensions such as publication trends, visual data representations, contributing institutions, and the availability of public datasets. It highlights prevailing research challenges and outlines proposed solutions, with a particular focus on widely adopted model architectures, as well as common compression and optimization techniques. This study also evaluates the criteria used to assess the effectiveness of SLMs and discusses emerging de facto standards for industry. The curated data and insights aim to support and inform ongoing and future research in this rapidly evolving field. Full article
Show Figures

Figure 1

6 pages, 2004 KiB  
Proceeding Paper
Exploring Global Research Trends in Internet of Things and Total Quality Management for Industry 4.0 and Smart Manufacturing
by Chih-Wen Hsiao and Hong-Wun Chen
Eng. Proc. 2025, 98(1), 39; https://doi.org/10.3390/engproc2025098039 - 21 Jul 2025
Viewed by 169
Abstract
Amid the accelerated digital transformation and with the growing demand for smart manufacturing, the applications of the Internet of Things (IoT) and total quality management (TQM) have attracted increasing attention. Using R for bibliometric analysis, we explored research trends in IoT and TQM [...] Read more.
Amid the accelerated digital transformation and with the growing demand for smart manufacturing, the applications of the Internet of Things (IoT) and total quality management (TQM) have attracted increasing attention. Using R for bibliometric analysis, we explored research trends in IoT and TQM in terms of digital transformation and smart manufacturing. Data were gathered from the Web of Science from 1998 to 2025, with a total of 787 publications from 265 sources involving 2326 authors. A total of 31% of the authors collaborated internationally, indicating global interest in this topic. The publications had 33.65 citations on average, totaling 33,599 citations. Wang L.H. and Tao F. were identified as important authors. Keywords of “Industry 4.0”, “cyber-physical systems”, and “big data” underscore the technological significance of IoT and TQM. Major journals such as the Journal of Manufacturing Systems and IEEE Access had notable academic influence. Co-citation analysis results revealed that IoT and TQM played a significant role in driving digital transformation and enhancing production efficiency, offering references for enterprises in strategic planning for smart manufacturing. Full article
Show Figures

Figure 1

Back to TopTop