Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (809)

Search Parameters:
Keywords = Hyperspectral Imagery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 16357 KiB  
Article
Evaluation of Heterogeneous Ensemble Learning Algorithms for Lithological Mapping Using EnMAP Hyperspectral Data: Implications for Mineral Exploration in Mountainous Region
by Soufiane Hajaj, Abderrazak El Harti, Amin Beiranvand Pour, Younes Khandouch, Abdelhafid El Alaoui El Fels, Ahmed Babeker Elhag, Nejib Ghazouani, Mustafa Ustuner and Ahmed Laamrani
Minerals 2025, 15(8), 833; https://doi.org/10.3390/min15080833 (registering DOI) - 5 Aug 2025
Abstract
Hyperspectral remote sensing plays a crucial role in guiding and supporting various mineral prospecting activities. Combined with artificial intelligence, hyperspectral remote sensing technology becomes a powerful and versatile tool for a wide range of mineral exploration activities. This study investigates the effectiveness of [...] Read more.
Hyperspectral remote sensing plays a crucial role in guiding and supporting various mineral prospecting activities. Combined with artificial intelligence, hyperspectral remote sensing technology becomes a powerful and versatile tool for a wide range of mineral exploration activities. This study investigates the effectiveness of ensemble learning (EL) algorithms for lithological classification and mineral exploration using EnMAP hyperspectral imagery (HSI) in a semi-arid region. The Moroccan Anti-Atlas mountainous region is known for its complex geology, high mineral potential and rugged terrain, making it a challenging for mineral exploration. This research applies core and heterogeneous ensemble learning methods, i.e., boosting, stacking, voting, bagging, blending, and weighting to improve the accuracy and robustness of lithological classification and mapping in the Moroccan Anti-Atlas mountainous region. Several state-of-the-art models, including support vector machines (SVMs), random forests (RFs), k-nearest neighbors (k-NNs), multi-layer perceptrons (MLPs), extra trees (ETs) and extreme gradient boosting (XGBoost), were evaluated and used as individual and ensemble classifiers. The results show that the EL methods clearly outperform (single) base classifiers. The potential of EL methods to improve the accuracy of HSI-based classification is emphasized by an optimal blending model that achieves the highest overall accuracy (96.69%). The heterogeneous EL models exhibit better generalization ability than the baseline (single) ML models in lithological classification. The current study contributes to a more reliable assessment of resources in mountainous and semi-arid regions by providing accurate delineation of lithological units for mineral exploration objectives. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Exploration Methods and Applications 2025)
Show Figures

Figure 1

19 pages, 5891 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 - 1 Aug 2025
Viewed by 139
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
Show Figures

Figure 1

17 pages, 920 KiB  
Article
Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning
by Tsung-Jung Tsai, Kun-Hua Lee, Chu-Kuang Chou, Riya Karmakar, Arvind Mukundan, Tsung-Hsien Chen, Devansh Gupta, Gargi Ghosh, Tao-Yuan Liu and Hsiang-Chen Wang
Bioengineering 2025, 12(8), 828; https://doi.org/10.3390/bioengineering12080828 - 30 Jul 2025
Viewed by 424
Abstract
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision [...] Read more.
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision Enhancer (SAVE), an innovative, software-driven framework that transforms standard WLI into high-fidelity hyperspectral imaging (HSI) and simulated narrow-band imaging (NBI) without any hardware modification. SAVE leverages advanced spectral reconstruction techniques, including Macbeth Color Checker-based calibration, principal component analysis (PCA), and multivariate polynomial regression, achieving a root mean square error (RMSE) of 0.056 and structural similarity index (SSIM) exceeding 90%. Trained and validated on the Kvasir v2 dataset (n = 6490) using deep learning models like ResNet-50, ResNet-101, EfficientNet-B2, both EfficientNet-B5 and EfficientNetV2-B0 were used to assess diagnostic performance across six key GI conditions. Results demonstrated that SAVE enhanced imagery and consistently outperformed raw WLI across precision, recall, and F1-score metrics, with EfficientNet-B2 and EfficientNetV2-B0 achieving the highest classification accuracy. Notably, this performance gain was achieved without the need for specialized imaging hardware. These findings highlight SAVE as a transformative solution for augmenting GI diagnostics, with the potential to significantly improve early detection, streamline clinical workflows, and broaden access to advanced imaging especially in resource constrained settings. Full article
Show Figures

Figure 1

31 pages, 10410 KiB  
Article
Integrated Prospectivity Mapping for Copper Mineralization in the Koldar Massif, Kazakhstan
by Dinara Talgarbayeva, Andrey Vilayev, Elmira Serikbayeva, Elmira Orynbassarova, Hemayatullah Ahmadi, Zhanibek Saurykov, Nurmakhambet Sydyk, Aigerim Bermukhanova and Berik Iskakov
Minerals 2025, 15(8), 805; https://doi.org/10.3390/min15080805 - 30 Jul 2025
Viewed by 380
Abstract
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament [...] Read more.
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament analysis and density mapping confirmed the high permeability of the Koldar massif, indicating its structural prospectivity. Hyperspectral and multispectral data (ASTER, PRISMA, WorldView-3) were applied for detailed mapping of hydrothermal alteration (phyllic, propylitic, argillic zones), which are critical for discovering porphyry copper deposits. In particular, WorldView-3 imagery facilitated the identification of new prospective zones. The transformation of magnetic and gravity data successfully delineated geological features and structural boundaries, confirming the fractured nature of the massif, a key structural factor for mineralization. The resulting map of prospective zones, created by normalizing and integrating four evidential layers (lineament density, PRISMA-derived hydrothermal alteration, magnetic, and gravity anomalies), is thoroughly validated, successfully outlining the known Aktogay, Aidarly, and Kyzylkiya deposits. Furthermore, new, previously underestimated prospective areas were identified. This work fills a significant knowledge gap concerning the Koldar massif, which had not been extensively studied using satellite methods previously. The key advantage of this research lies in its comprehensive approach and the successful application of high-quality hyperspectral imagery for mapping new prospective zones, offering a cost-effective and efficient alternative to traditional ground-based investigations. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

25 pages, 5776 KiB  
Article
Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery
by Russell Main, Mark Jayson B. Felix, Michael S. Watt and Robin J. L. Hartley
Forests 2025, 16(8), 1240; https://doi.org/10.3390/f16081240 - 28 Jul 2025
Viewed by 354
Abstract
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost [...] Read more.
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost operations, particularly in steep or remote terrain. As uptake grows, tools for monitoring treatment effectiveness, particularly during the early stages of stress, will become increasingly important. This study evaluated the use of UAV-based multispectral and hyperspectral imagery to detect early herbicide-induced stress in a nine-year-old radiata pine (Pinus radiata D. Don) plantation, based on temporal changes in crown spectral signatures following treatment with metsulfuron-methyl. A staggered-treatment design was used, in which herbicide was applied to a subset of trees in six blocks over several weeks. This staggered design allowed a single UAV acquisition to capture imagery of trees at varying stages of herbicide response, with treated trees ranging from 13 to 47 days after treatment (DAT). Visual canopy assessments were carried out to validate the onset of visible symptoms. Spectral changes either preceded or coincided with the development of significant visible canopy symptoms, which started at 25 DAT. Classification models developed using narrow band hyperspectral indices (NBHI) allowed robust discrimination of treated and non-treated trees as early as 13 DAT (F1 score = 0.73), with stronger results observed at 18 DAT (F1 score = 0.78). Models that used multispectral indices were able to classify treatments with a similar accuracy from 18 DAT (F1 score = 0.78). Across both sensors, pigment-sensitive indices, particularly variants of the Photochemical Reflectance Index, consistently featured among the top predictors at all time points. These findings address a key knowledge gap by demonstrating practical, remote sensing-based solutions for monitoring and characterising herbicide-induced stress in field-grown radiata pine. The 13-to-18 DAT early detection window provides an operational baseline and a target for future research seeking to refine UAV-based detection of chemical thinning. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Viewed by 290
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance (Rrs), optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

27 pages, 2978 KiB  
Article
Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Agriculture 2025, 15(15), 1627; https://doi.org/10.3390/agriculture15151627 - 27 Jul 2025
Viewed by 382
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV [...] Read more.
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

31 pages, 20437 KiB  
Article
Satellite-Derived Bathymetry Using Sentinel-2 and Airborne Hyperspectral Data: A Deep Learning Approach with Adaptive Interpolation
by Seung-Jun Lee, Han-Saem Kim, Hong-Sik Yun and Sang-Hoon Lee
Remote Sens. 2025, 17(15), 2594; https://doi.org/10.3390/rs17152594 - 25 Jul 2025
Viewed by 325
Abstract
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between [...] Read more.
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between Sentinel-2 (10 m) and LiDAR reference data (1 m), three interpolation methods—Inverse Distance Weighting (IDW), Natural Neighbor (NN), and Spline—were employed to resample spectral reflectance data to a 1 m grid. Two spectral input configurations were evaluated: the log-ratio of Bands 2 and 3, and raw RGB composite reflectance (Bands 2, 3, and 4). A Fully Convolutional Neural Network (FCNN) was trained under each configuration and validated using LiDAR-based depth. The RGB + NN combination yielded the best performance, achieving an RMSE of 1.2320 m, MAE of 0.9381 m, bias of +0.0315 m, and R2 of 0.6261, while the log-ratio + IDW configuration showed lower accuracy. Visual and statistical analyses confirmed the advantage of the RGB + NN approach in preserving spatial continuity and spectral-depth relationships. This study demonstrates that both interpolation strategy and input configuration critically affect SDB model accuracy and generalizability. The integration of spatially adaptive interpolation with airborne hyperspectral reference data represents a scalable and efficient solution for high-resolution coastal bathymetry mapping. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

31 pages, 15992 KiB  
Article
Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery
by Inés Pereira, Eduardo García-Meléndez, Montserrat Ferrer-Julià, Harald van der Werff, Pablo Valenzuela and Juncal A. Cruz
Remote Sens. 2025, 17(15), 2582; https://doi.org/10.3390/rs17152582 - 24 Jul 2025
Viewed by 291
Abstract
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral [...] Read more.
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral imagery for multi-temporal mapping of AMD-related minerals in two mining-affected drainage basins: Beal and Gorguel. Key minerals indicative of AMD—iron oxides and hydroxides (hematite, jarosite, goethite), gypsum, and aluminium-bearing clays—were identified and mapped using band ratios applied to PRISMA data acquired over five dates between 2020 and 2024. Additionally, Sentinel-2 data were incorporated in the analysis due to their higher temporal resolution to complement iron oxide and hydroxide evolution from PRISMA. Results reveal distinct temporal and spatial patterns in mineral distribution, influenced by seasonal precipitation and climatic factors. Jarosite was predominant after torrential precipitation events, reflecting recent AMD deposition, while gypsum exhibited seasonal variability linked to evaporation cycles. Goethite and hematite increased in drier conditions, indicating transitions in oxidation states. Validation using X-ray diffraction (XRD), laboratory spectral curves, and a larger time-series of Sentinel-2 imagery demonstrated strong correlations, confirming PRISMA’s effectiveness for iron oxides and hydroxides and gypsum identification and monitoring. However, challenges such as noise, striping effects, and limited image availability affected the accuracy of aluminium-bearing clay mapping and limited long-term trend analysis. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

25 pages, 5633 KiB  
Article
A Hybrid Framework for Soil Property Estimation from Hyperspectral Imaging
by Daniel La’ah Ayuba, Jean-Yves Guillemaut, Belen Marti-Cardona and Oscar Mendez
Remote Sens. 2025, 17(15), 2568; https://doi.org/10.3390/rs17152568 - 24 Jul 2025
Viewed by 303
Abstract
Accurate estimation of soil properties is crucial for optimizing agricultural practices and promoting sustainable resource management. Hyperspectral imaging provides a non-invasive means of quantifying key soil parameters, but effectively utilizing the high-dimensional hyperspectral data presents significant challenges. In this paper, we introduce HyperSoilNet, [...] Read more.
Accurate estimation of soil properties is crucial for optimizing agricultural practices and promoting sustainable resource management. Hyperspectral imaging provides a non-invasive means of quantifying key soil parameters, but effectively utilizing the high-dimensional hyperspectral data presents significant challenges. In this paper, we introduce HyperSoilNet, a hybrid deep learning framework for estimating soil properties from hyperspectral imagery. HyperSoilNet leverages a pretrained hyperspectral-native CNN backbone and integrates it with a carefully optimized machine learning (ML) ensemble to combine the strengths of deep representation learning with traditional ML techniques. We evaluate our framework on the Hyperview challenge dataset, focusing on four critical soil properties: potassium oxide, phosphorus pentoxide, magnesium, and soil pH. Comprehensive experiments demonstrate that HyperSoilNet surpasses state-of-the-art models, achieving a score of 0.762 on the challenge leaderboard. Through detailed ablation studies and spectral analysis, we provide insights on the components of the framework, and their contribution to performance, showcasing its potential for advancing precision agriculture and sustainable soil management practices. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Soil Property Mapping)
Show Figures

Figure 1

17 pages, 11610 KiB  
Article
Exploring the Impact of Species Participation Levels on the Performance of Dominant Plant Identification Models in the Sericite–Artemisia Desert Grassland by Using Deep Learning
by Wenhao Liu, Guili Jin, Wanqiang Han, Mengtian Chen, Wenxiong Li, Chao Li and Wenlin Du
Agriculture 2025, 15(14), 1547; https://doi.org/10.3390/agriculture15141547 - 18 Jul 2025
Viewed by 279
Abstract
Accurate plant species identification in desert grasslands using hyperspectral data is a critical prerequisite for large-scale, high-precision grassland monitoring and management. However, due to prolonged overgrazing and the inherent ecological vulnerability of the environment, sericite–Artemisia desert grassland has experienced significant ecological degradation. [...] Read more.
Accurate plant species identification in desert grasslands using hyperspectral data is a critical prerequisite for large-scale, high-precision grassland monitoring and management. However, due to prolonged overgrazing and the inherent ecological vulnerability of the environment, sericite–Artemisia desert grassland has experienced significant ecological degradation. Therefore, in this study, we obtained spectral images of the grassland in April 2022 using a Soc710 VP imaging spectrometer (Surface Optics Corporation, San Diego, CA, USA), which were classified into three levels (low, medium, and high) based on the level of participation of Seriphidium transiliense (Poljakov) Poljakov and Ceratocarpus arenarius L. in the community. The optimal index factor (OIF) was employed to synthesize feature band images, which were subsequently used as input for the DeepLabv3p, PSPNet, and UNet deep learning models in order to assess the influence of species participation on classification accuracy. The results indicated that species participation significantly impacted spectral information extraction and model classification performance. Higher participation enhanced the scattering of reflectivity in the canopy structure of S. transiliense, while the light saturation effect of C. arenarius was induced by its short stature. Band combinations—such as Blue, Red Edge, and NIR (BREN) and Red, Red Edge, and NIR (RREN)—exhibited strong capabilities in capturing structural vegetation information. The identification model performances were optimal, with a high level of S. transiliense participation and with DeepLabv3p, PSPNet, and UNet achieving an overall accuracy (OA) of 97.86%, 96.51%, and 98.20%. Among the tested models, UNet exhibited the highest classification accuracy and robustness with small sample datasets, effectively differentiating between S. transiliense, C. arenarius, and bare ground. However, when C. arenarius was the primary target species, the model’s performance declined as its participation levels increased, exhibiting significant omission errors for S. transiliense, whose producer’s accuracy (PA) decreased by 45.91%. The findings of this study provide effective technical means and theoretical support for the identification of plant species and ecological monitoring in sericite–Artemisia desert grasslands. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 5313 KiB  
Article
MixtureRS: A Mixture of Expert Network Based Remote Sensing Land Classification
by Yimei Liu, Changyuan Wu, Minglei Guan and Jingzhe Wang
Remote Sens. 2025, 17(14), 2494; https://doi.org/10.3390/rs17142494 - 17 Jul 2025
Viewed by 349
Abstract
Accurate land-use classification is critical for urban planning and environmental monitoring, yet effectively integrating heterogeneous data sources such as hyperspectral imagery and laser radar (LiDAR) remains challenging. To address this, we propose MixtureRS, a compact multimodal network that effectively integrates hyperspectral imagery and [...] Read more.
Accurate land-use classification is critical for urban planning and environmental monitoring, yet effectively integrating heterogeneous data sources such as hyperspectral imagery and laser radar (LiDAR) remains challenging. To address this, we propose MixtureRS, a compact multimodal network that effectively integrates hyperspectral imagery and LiDAR data for land-use classification. Our approach employs a 3-D plus heterogeneous convolutional stack to extract rich spectral–spatial features, which are then tokenized and fused via a cross-modality transformer. To enhance model capacity without incurring significant computational overhead, we replace conventional dense feed-forward blocks with a sparse Mixture-of-Experts (MoE) layer that selectively activates the most relevant experts for each token. Evaluated on a 15-class urban benchmark, MixtureRS achieves an overall accuracy of 88.6%, an average accuracy of 90.2%, and a Kappa coefficient of 0.877, outperforming the best homogeneous transformer by over 12 percentage points. Notably, the largest improvements are observed in water, railway, and parking categories, highlighting the advantages of incorporating height information and conditional computation. These results demonstrate that conditional, expert-guided fusion is a promising and efficient strategy for advancing multimodal remote sensing models. Full article
Show Figures

Graphical abstract

24 pages, 18617 KiB  
Article
Early Detection of Soil Salinization by Means of Spaceborne Hyperspectral Imagery
by Giacomo Lazzeri, Robert Milewski, Saskia Foerster, Sandro Moretti and Sabine Chabrillat
Remote Sens. 2025, 17(14), 2486; https://doi.org/10.3390/rs17142486 - 17 Jul 2025
Viewed by 313
Abstract
Soil salinization is increasingly affecting agricultural areas worldwide, reducing soil quality and crop yields. Surface salinization evidences present complex spectral features, increasing in depth with increasing salt concentrations. For this reason, low salinization detection provides a complex challenge to test the capabilities of [...] Read more.
Soil salinization is increasingly affecting agricultural areas worldwide, reducing soil quality and crop yields. Surface salinization evidences present complex spectral features, increasing in depth with increasing salt concentrations. For this reason, low salinization detection provides a complex challenge to test the capabilities of new-generation hyperspectral satellites. The aim of this study is to test the capability of the new generation of hyperspectral satellites (EnMAP) in detecting early stages and low levels of topsoil salinization and to investigate the differences between laboratory and image spectra to take into account their influence on model performance. The area of study, the Grosseto plain, located in central Italy, presented heterogeneous salinity levels (ECmax= 11.7 dS/m, ECmean= 0.99 dS/m). We investigated the salt-affected soil spectral behaviour with both laboratory-acquired spectra (nobs= 60) and EnMAP-derived spectra (nobs= 20). Both datasets were pre-processed with multiple data transformation algorithms and 2D correlograms, PLSR and the Random Forest regressor were tested to identify the best model for salinity detection. Two-dimensional correlograms resulted in an R2 of 0.88 for laboratory data and 0.63 for EnMAP data. PLSR proved to have the worst performance. The Random Forest regressor proved its capability in detecting complex spectral features, with R2 scores of 0.72 for laboratory data and 0.60 for EnMAP. The Random Forest model provides very satisfactory mapping capabilities when tested on the whole study area. The results highlight that the EnMAP-derived dataset produces similar results to those of ASD laboratory spectra, providing evidences regarding EnMAP’s predictive capability to detect early stages of topsoil salinization. Full article
Show Figures

Figure 1

27 pages, 8538 KiB  
Article
Optimizing Hyperspectral Desertification Monitoring Through Metaheuristic-Enhanced Wavelet Packet Noise Reduction and Feature Band Selection
by Weichao Liu, Jiapeng Xiao, Rongyuan Liu, Yan Liu, Yunzhu Tao, Tian Zhang, Fuping Gan, Ping Zhou, Yuanbiao Dong and Qiang Zhou
Remote Sens. 2025, 17(14), 2444; https://doi.org/10.3390/rs17142444 - 14 Jul 2025
Viewed by 241
Abstract
Land desertification represents a significant and sensitive global ecological issue. In the Inner Mongolia region of China, soil desertification and salinization are widespread, resulting from the combined effects of extreme drought conditions and human activities. Using Gaofen 5B AHSI imagery as our data [...] Read more.
Land desertification represents a significant and sensitive global ecological issue. In the Inner Mongolia region of China, soil desertification and salinization are widespread, resulting from the combined effects of extreme drought conditions and human activities. Using Gaofen 5B AHSI imagery as our data source, we collected spectral data for seven distinct land cover types: lush vegetation, yellow sand, white sand, saline soil, saline shell, saline soil with saline vegetation, and sandy soil. We applied Particle Swarm Optimization (PSO) to fine-tune the Wavelet Packet (WP) decomposition levels, thresholds, and wavelet basis function, ensuring optimal spectral decomposition and reconstruction. Subsequently, PSO was deployed to optimize key hyperparameters of the Random Forest algorithm and compare its performance with the ResNet-Transformer model. Our results indicate that PSO effectively automates the search for optimal WP decomposition parameters, preserving essential spectral information while efficiently reducing high-frequency spectral noise. The Genetic Algorithm (GA) was also found to be effective in extracting feature bands relevant to land desertification, which enhances the classification accuracy of the model. Among all the models, integrating wavelet packet denoising, genetic algorithm feature selection, the first-order differential (FD), and the hybrid architecture of the ResNet-Transformer, the WP-GA-FD-ResNet-Transformer model achieved the highest accuracy in extracting soil sandification and salinization, with Kappa coefficients and validation set accuracies of 0.9746 and 97.82%, respectively. This study contributes to the field by advancing hyperspectral desertification monitoring techniques and suggests that the approach could be valuable for broader ecological conservation and land management efforts. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

22 pages, 9940 KiB  
Article
Developing a Novel Method for Vegetation Mapping in Temperate Forests Using Airborne LiDAR and Hyperspectral Imaging
by Nam Shin Kim and Chi Hong Lim
Forests 2025, 16(7), 1158; https://doi.org/10.3390/f16071158 - 14 Jul 2025
Viewed by 316
Abstract
This study advances vegetation and forest mapping in temperate mixed forests by integrating airborne hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data, overcoming the limitations of conventional multispectral imaging. Employing a Digital Canopy Height Model (DCHM) derived from LiDAR, our approach [...] Read more.
This study advances vegetation and forest mapping in temperate mixed forests by integrating airborne hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data, overcoming the limitations of conventional multispectral imaging. Employing a Digital Canopy Height Model (DCHM) derived from LiDAR, our approach integrates these structural metrics with hyperspectral spectral information, alongside detailed remote sensing data extraction. Through machine learning-based clustering, which combines both structural and spectral features, we successfully classified eight specific tree species, community boundaries, identified dominant species, and quantified their abundance, contributing to precise vegetation and forest type mapping based on predominant species and detailed attributes such as diameter at breast height, age, and canopy density. Field validation indicated the methodology’s high mapping precision, achieving overall accuracies of approximately 98.0% for individual species identification and 93.1% for community-level mapping. Demonstrating robust performance compared to conventional methods, this novel approach offers a valuable foundation for National Forest Ecology Inventory development and significantly enhances ecological research and forest management practices by providing new insights for improving our understanding and management of forest ecosystems and various forestry applications. Full article
Show Figures

Figure 1

Back to TopTop