Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (291)

Search Parameters:
Keywords = High-order Harmonic Generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2792 KiB  
Article
Capturing High-Frequency Harmonic Signatures for NILM: Building a Dataset for Load Disaggregation
by Farid Dinar, Sébastien Paris and Éric Busvelle
Sensors 2025, 25(15), 4601; https://doi.org/10.3390/s25154601 - 25 Jul 2025
Viewed by 137
Abstract
Advanced Non-Intrusive Load Monitoring (NILM) research is important to help reduce energy consumption. Very-low-frequency approaches have traditionally faced challenges in separating appliance uses due to low discriminative information. The richer signatures available in high-frequency electrical data include many harmonic orders that have the [...] Read more.
Advanced Non-Intrusive Load Monitoring (NILM) research is important to help reduce energy consumption. Very-low-frequency approaches have traditionally faced challenges in separating appliance uses due to low discriminative information. The richer signatures available in high-frequency electrical data include many harmonic orders that have the potential to advance disaggregation. This has been explored to some extent, but not comprehensively due to a lack of an appropriate public dataset. This paper presents the development of a cost-effective energy monitoring system scalable for multiple entries while producing detailed measurements. We will detail our approach to creating a NILM dataset comprising both aggregate loads and individual appliance measurements, all while ensuring that the dataset is reproducible and accessible. Ultimately, the dataset can be used to validate NILM, and we show through the use of machine learning techniques that high-frequency features improve disaggregation accuracy when compared with traditional methods. This work addresses a critical gap in NILM research by detailing the design and implementation of a data acquisition system capable of generating rich and structured datasets that support precise energy consumption analysis and prepare the essential materials for advanced, real-time energy disaggregation and smart energy management applications. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

41 pages, 3292 KiB  
Review
Black Soldier Fly: A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development: A Review
by Muhammad Raheel Tariq, Shaojuan Liu, Fei Wang, Hui Wang, Qianyuan Mo, Zhikai Zhuang, Chaozhong Zheng, Yanwen Liang, Youming Liu, Kashif ur Rehman, Murat Helvaci, Jianguang Qin and Chengpeng Li
Insects 2025, 16(8), 750; https://doi.org/10.3390/insects16080750 - 22 Jul 2025
Viewed by 453
Abstract
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological [...] Read more.
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological and genomic adaptations underpinning waste conversion efficiency, comparative performance of BSF bioconversion versus traditional treatments, nutritional and functional attributes, techno-economic, regulatory, and safety barriers to industrial scale-up. Peer-reviewed studies were screened for methodological rigor, and data on life cycle traits, conversion metrics, and product compositions were synthesized. BSF larvae achieve high waste reductions, feed-conversion efficiencies and redirect substrate carbon into biomass, yielding net CO2 emissions as low as 12–17 kg CO2 eq ton−1, an order of magnitude below composting or vermicomposting. Larval biomass offers protein, lipids (notably lauric acid), micronutrients, chitin, and antimicrobial peptides, with frass serving as a nutrient-rich fertilizer. Pathogen and antibiotic resistance gene loads decrease during bioconversion. Key constraints include substrate heterogeneity, heavy metal accumulation, fragmented regulatory landscapes, and high energy and capital demands. BSF systems demonstrate superior environmental and nutritional performance compared to conventional waste treatments. Harmonized safety standards, feedstock pretreatment, automation, and green extraction methods are critical to overcoming scale-up barriers. Interdisciplinary innovation and policy alignment will enable BSF platforms to realize their full potential within circular bio-economies. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

20 pages, 7451 KiB  
Article
Research on Circulating-Current Suppression Strategy of MMC Based on Passivity-Based Integral Sliding Mode Control for Multiphase Wind Power Grid-Connected Systems
by Wei Zhang, Jianying Li, Mai Zhang, Xiuhai Yang and Dingai Zhong
Electronics 2025, 14(13), 2722; https://doi.org/10.3390/electronics14132722 - 5 Jul 2025
Viewed by 256
Abstract
To deal with the interphase circulating-current problem of modular multilevel converters (MMCs) in multiphase wind power systems, a cooperative circulating-current suppression strategy based on a second-order generalized integrator (SOGI) and passivity-based control–integral sliding mode control (PBC-ISMC) is proposed in this paper. Firstly, a [...] Read more.
To deal with the interphase circulating-current problem of modular multilevel converters (MMCs) in multiphase wind power systems, a cooperative circulating-current suppression strategy based on a second-order generalized integrator (SOGI) and passivity-based control–integral sliding mode control (PBC-ISMC) is proposed in this paper. Firstly, a multiphase permanent magnet direct-drive wind power system topology without a step-up transformer is established. On this basis, SOGI is utilized to construct a circulating current extractor, which is utilized to accurately extract the double-frequency component in the circulating current, and, at the same time, effectively filter out the DC components and high-frequency noise. Secondly, passivity-based control (PBC), with its fast energy dissipation, and integral sliding mode control (ISMC), with its strong robustness, are combined to construct the PBC-ISMC circulating-current suppressor, which realizes the nonlinear decoupling and dynamic immunity of the circulating-current model. Finally, simulation results demonstrate that the proposed strategy significantly reduces the harmonic content of the circulating current, optimizes both the bridge-arm current and output current, and achieves superior suppression performance and dynamic response compared to traditional methods, thereby effectively enhancing system power quality and operational reliability. Full article
Show Figures

Figure 1

18 pages, 8267 KiB  
Article
Discontinuous Multilevel Pulse Width Modulation Technique for Grid Voltage Quality Improvement and Inverter Loss Reduction in Photovoltaic Systems
by Juan-Ramon Heredia-Larrubia, Francisco M. Perez-Hidalgo, Antonio Ruiz-Gonzalez and Mario Jesus Meco-Gutierrez
Electronics 2025, 14(13), 2695; https://doi.org/10.3390/electronics14132695 - 3 Jul 2025
Viewed by 215
Abstract
In the last decade, countries have experienced increased solar radiation, leading to an increase in the use of solar photovoltaic (PV) systems to boost renewable energy generation. However, the high solar penetration into these systems can disrupt the normal operation of the distribution [...] Read more.
In the last decade, countries have experienced increased solar radiation, leading to an increase in the use of solar photovoltaic (PV) systems to boost renewable energy generation. However, the high solar penetration into these systems can disrupt the normal operation of the distribution grid. Thus, a major concern is the impact of these units on power quality indices. To improve these units, one approach is to design more efficient power inverters. This study introduces a pulse width modulation (PWM) technique for multilevel power inverters, employing a sine wave as the carrier wave and an amplitude over-modulated triangular wave as the modulator (PSTM-PWM). The proposed technique improves the waveform quality and increases the AC voltage output of the multilevel inverter compared with that from conventional PWM techniques. In addition, it ensures compliance with the EN50160 standard. These improvements are achieved with a lower modulation order than that used in traditional techniques, resulting in reduced losses in multilevel power inverters. The proposed approach is then implemented using a five-level cascaded H-bridge inverter. In addition, a comparative analysis of the efficiency of multilevel power inverters was performed, contrasting classical modulation techniques with the proposed approach for various modulation orders. The results demonstrate a significant improvement in both total harmonic distortion (THD) and power inverter efficiency. Full article
(This article belongs to the Special Issue Advances in Pulsed-Power and High-Power Electronics)
Show Figures

Figure 1

17 pages, 4643 KiB  
Article
Semiconductor Wafer Flatness and Thickness Measurement Using Frequency Scanning Interferometry Technology
by Weisheng Cheng, Zexiao Li, Xuanzong Wu, Shuangxiong Yin, Bo Zhang and Xiaodong Zhang
Photonics 2025, 12(7), 663; https://doi.org/10.3390/photonics12070663 - 30 Jun 2025
Viewed by 358
Abstract
Silicon (Si) and silicon carbide (SiC) are second- and third-generation semiconductor materials with excellent properties that are particularly suitable for applications in scenarios such as high temperature, high voltage, and high frequency. Si/SiC wafers face warpage and bending problems during production, which can [...] Read more.
Silicon (Si) and silicon carbide (SiC) are second- and third-generation semiconductor materials with excellent properties that are particularly suitable for applications in scenarios such as high temperature, high voltage, and high frequency. Si/SiC wafers face warpage and bending problems during production, which can seriously affect subsequent processing. Fast, accurate, and comprehensive detection of thickness, thickness variation, and flatness (including bow and warpage) of SiC and Si wafers is an industry-recognized challenge. Frequency scanning interferometry (FSI) can synchronize the upper and lower surfaces and thickness information of transparent parallel thin wafers, but it is still affected by multiple interfacial harmonic reflections, reflectivity asymmetry, and phase modulation uncertainty when measuring SiC thin wafers, which leads to thickness calculation errors and face reconstruction deviations. To this end, this paper proposes a high-precision facet reconstruction method for SiC/Si structures, which combines harmonic spectral domain decomposition, refractive index gradient constraints, and partitioning optimization strategy, and introduces interferometric signal “oversampling” and weighted fusion of multiple sets of data to effectively suppress higher-order harmonic interferences, and to enhance the accuracy of phase resolution. The multi-layer iterative optimization model further enhances the measurement accuracy and robustness of the system. The flatness measurement system constructed based on this method can realize the simultaneous acquisition of three-dimensional top and bottom surfaces on 6-inch Si/SiC wafers, and accurately reconstruct the key parameters, such as flatness, warpage, and thickness variation (TTV). A comparison with the Corning Tropel FlatMaster commercial system shows that this method has high consistency and good applicability. Full article
(This article belongs to the Special Issue Emerging Topics in Freeform Optics)
Show Figures

Figure 1

12 pages, 11398 KiB  
Article
Tuning the Ellipticity of High-Order Harmonics from Helium in Orthogonal Two-Color Laser Fields
by Shushan Zhou, Hao Wang, Yue Qiao, Nan Xu, Fuming Guo, Yujun Yang and Muhong Hu
Symmetry 2025, 17(6), 967; https://doi.org/10.3390/sym17060967 - 18 Jun 2025
Viewed by 328
Abstract
High-order harmonic generation in atomic systems driven by laser fields with tailored symmetries provides a powerful approach for producing structured ultrafast light sources. In this work, we theoretically investigate the ellipticity control of high-order harmonics emitted from helium atoms exposed to orthogonally polarized [...] Read more.
High-order harmonic generation in atomic systems driven by laser fields with tailored symmetries provides a powerful approach for producing structured ultrafast light sources. In this work, we theoretically investigate the ellipticity control of high-order harmonics emitted from helium atoms exposed to orthogonally polarized two-color laser pulses with a 1:3 frequency ratio. The polarization properties of the harmonics are governed by the interplay between the spatial symmetry of the driving field and the atomic potential. By numerically solving the time-dependent Schrödinger equation, we show that fine-tuning the relative phase and amplitude ratio between the fundamental and third-harmonic components enables selective symmetry breaking, resulting in the emission of elliptically and circularly polarized harmonics. Remarkably, we achieve near-perfect circular polarization (ellipticity ≈ 0.995) for the 5th harmonic, as well as highly circularly polarized 17th (0.945), 21st (0.96), and 23rd (0.935) harmonics, demonstrating a level of polarization control and efficiency that exceeds previous schemes. Our results highlight the advantage of using a 1:3 frequency ratio orthogonally polarized two-color laser field over the conventional 1:2 configuration, offering a promising route toward tunable attosecond light sources with tailored polarization characteristics. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

21 pages, 6108 KiB  
Article
Torsional Vibration Suppression in Multi-Condition Electric Propulsion Systems Through Harmonic Current Modulation
by Hanjie Jia, Guanghong Hu, Xiangyang Xu, Dong Liang and Changzhao Liu
Actuators 2025, 14(6), 283; https://doi.org/10.3390/act14060283 - 9 Jun 2025
Viewed by 619
Abstract
Electric helicopters represent a pivotal component in the advancement of urban air mobility (UAM), with considerable potential for future development. The electric propulsion system (EPS) is the core component of these systems. However, the inherent complexities of electromechanical coupling can induce excessive torsional [...] Read more.
Electric helicopters represent a pivotal component in the advancement of urban air mobility (UAM), with considerable potential for future development. The electric propulsion system (EPS) is the core component of these systems. However, the inherent complexities of electromechanical coupling can induce excessive torsional vibrations, potentially compromising operational comfort and even threatening flight safety. This study proposes an active torsional vibration suppression method for EPS that explicitly incorporates electromechanical coupling characteristics. A nonlinear dynamic model has been developed, accounting for time-varying meshing stiffness, meshing errors, and multi-harmonic motor excitation. The motor and transmission system models are coupled using torsional angular displacement. A harmonic current command generation algorithm is then formulated, based on the analysis of harmonic torque-to-current transmission characteristics. To achieve dynamic tracking and the real-time compensation of high-order harmonic currents under non-steady-state conditions, a high-order resonant controller with frequency-domain decoupling characteristics was designed. The efficacy of the proposed harmonic current modulation is verified through simulations, showing an effective reduction of torsional vibrations in the EPS under both steady-state and non-steady-state conditions. It decreases the peak dynamic meshing force by 4.17% and the sixth harmonic amplitude by 88.15%, while mitigating overshoot and accelerating vibration attenuation during speed regulation. The proposed harmonic current modulation method provides a practical solution for mitigating torsional vibrations in electric propulsion systems, enhancing the comfort, reliability, and safety of electric helicopters. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

24 pages, 3793 KiB  
Article
Optimization Control of Flexible Power Supply System Applied to Offshore Wind–Solar Coupled Hydrogen Production
by Lishan Ma, Rui Dong, Qiang Fu, Chunjie Wang and Xingmin Li
J. Mar. Sci. Eng. 2025, 13(6), 1135; https://doi.org/10.3390/jmse13061135 - 6 Jun 2025
Viewed by 408
Abstract
The inherent randomness and intermittency of offshore renewable energy sources, such as wind and solar power, pose significant challenges to the stable and secure operation of the power grid. These fluctuations directly affect the performance of grid-connected systems, particularly in terms of harmonic [...] Read more.
The inherent randomness and intermittency of offshore renewable energy sources, such as wind and solar power, pose significant challenges to the stable and secure operation of the power grid. These fluctuations directly affect the performance of grid-connected systems, particularly in terms of harmonic distortion and load response. This paper addresses these challenges by proposing a novel harmonic control strategy and load response optimization approach. An integrated three-winding transformer filter is designed to mitigate high-frequency harmonics, and a control strategy based on converter-side current feedback is implemented to enhance system stability. Furthermore, a hybrid PI-VPI control scheme, combined with feedback filtering, is employed to improve the system’s transient recovery capability under fluctuating load and generation conditions. Experimental results demonstrate that the proposed control algorithm, based on a transformer-oriented model, effectively suppresses low-order harmonic currents. In addition, the system exhibits strong anti-interference performance during sudden voltage and power variations, providing a reliable foundation for the modulation and optimization of offshore wind–solar coupled hydrogen production power supply systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 4847 KiB  
Article
Design and Implementation of a Comparative Study of Fractional-Order Fuzzy Logic and Conventional PI Controller for Optimizing Stand-Alone DFIG Performance in Wind Energy Systems
by Fella Boucetta, Mohamed Toufik Benchouia, Amel Benmouna, Mohamed Chebani, Amar Golea, Mohamed Becherif and Mohammed Saci Chabani
Sci 2025, 7(2), 80; https://doi.org/10.3390/sci7020080 - 5 Jun 2025
Viewed by 573
Abstract
This paper introduces a novel fractional-order fuzzy logic controller (FOFLC) designed for stator voltage control in standalone doubly fed induction generator (DFIG) systems used in wind energy applications. Unlike traditional fuzzy logic controllers (FLCs), which are limited by integer-order dynamics, the FOFLC leverages [...] Read more.
This paper introduces a novel fractional-order fuzzy logic controller (FOFLC) designed for stator voltage control in standalone doubly fed induction generator (DFIG) systems used in wind energy applications. Unlike traditional fuzzy logic controllers (FLCs), which are limited by integer-order dynamics, the FOFLC leverages the advanced principles of fractional-order (FO) calculus. By integrating fuzzy logic with fractional-order operators, the FOFLC enhances system precision, adaptability, and interpretability while addressing the inherent limitations of conventional proportional-integral (PI) controllers and integer-order FLCs. A key innovation of the FOFLC is its dual-mode architecture, enabling it to operate seamlessly as either a traditional FLC or a fractional-order FOFLC controller. This versatility allows for independent tuning of fractional parameters, optimizing the system’s response to transients, steady-state errors, and disturbances. The controller’s flexibility makes it particularly well-suited for nonlinear and dynamically complex stand-alone renewable energy systems. The FOFLC is experimentally validated on a 3-kW DFIG test bench using the dSPACE-1104 platform under various operating conditions. Compared to a conventional PI controller, the FOFLC demonstrated superior performance, achieving 80% reduction in response time, eliminating voltage overshoot and undershoot, reducing stator power and torque ripples by over 46%, and decreasing total harmonic distortion (THD) of both stator voltage and current by more than 50%. These results confirm the FOFLC’s potential as a robust and adaptive control solution for stand-alone renewable energy systems, ensuring high-quality power output and reliable operation. Full article
Show Figures

Figure 1

28 pages, 6414 KiB  
Article
Reduced-Order Model for Bearingless PMSMs in Hardware-in-the-Loop
by Lucas Selonke Klaas, Rafael F. Simões de Oliveira and Ademir Nied
Energies 2025, 18(11), 2835; https://doi.org/10.3390/en18112835 - 29 May 2025
Viewed by 364
Abstract
High production costs and extended development timelines pose significant challenges to the manufacturing of bearingless permanent magnet synchronous motors (BPMSMs). Moreover, uncertainties regarding the motor’s ability to generate suspension and torque often persist even after prototyping, primarily due to the limitations of lumped [...] Read more.
High production costs and extended development timelines pose significant challenges to the manufacturing of bearingless permanent magnet synchronous motors (BPMSMs). Moreover, uncertainties regarding the motor’s ability to generate suspension and torque often persist even after prototyping, primarily due to the limitations of lumped parameter models in capturing the system’s complex dynamics. Since this technology is not yet fully consolidated, there is a clear need for a solution that enables the effective evaluation of BPMSMs prior to physical production. To address this, a reduced-order model (ROM) was developed for BPMSMs with combined windings, capturing the cross-coupling effects associated with rotor eccentricity, magnetic saturation, and topological complexity. The model was constructed using the parametric interpolation method (PIM), enabling efficient and accurate representations of nonlinear electromechanical behavior as ferromagnetic materials and spatial harmonics are addressed through finite element modeling. Additionally, hardware-in-the-loop (HIL) techniques were used for gain tuning, and active disturbance rejection control (ADRC) was applied to enhance performance. This combined approach offers a comprehensive solution for the design and control of BPMSMs. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 6637 KiB  
Article
Kolmogorov–Arnold Networks for Reduced-Order Modeling in Unsteady Aerodynamics and Aeroelasticity
by Yuchen Zhang, Han Tang, Lianyi Wei, Guannan Zheng and Guowei Yang
Appl. Sci. 2025, 15(11), 5820; https://doi.org/10.3390/app15115820 - 22 May 2025
Viewed by 400
Abstract
Kolmogorov–Arnold Networks (KANs) are a recent development in machine learning, offering strong functional representation capabilities, enhanced interpretability, and reduced parameter complexity. Leveraging these advantages, this paper proposes a KAN-based reduced-order model (ROM) for unsteady aerodynamics and aeroelasticity. To effectively capture temporal dependencies inherent [...] Read more.
Kolmogorov–Arnold Networks (KANs) are a recent development in machine learning, offering strong functional representation capabilities, enhanced interpretability, and reduced parameter complexity. Leveraging these advantages, this paper proposes a KAN-based reduced-order model (ROM) for unsteady aerodynamics and aeroelasticity. To effectively capture temporal dependencies inherent in nonlinear unsteady flow phenomena, an architecture termed Kolmogorov–Arnold Gated Recurrent Network (KAGRN) is introduced. By incorporating a recurrent structure and a gating mechanism, the proposed model effectively captures time-delay effects and enables the selective control and preservation of long-term temporal dependencies. This architecture provides high predictive accuracy, good generalization capability, and fast prediction speed. The performance of the model is evaluated using simulations of the NACA (National Advisory Committee for Aeronautics) 64A010 airfoil undergoing harmonic motion and limit cycle oscillations in transonic flow conditions. Results demonstrate that the proposed model can not only accurately and efficiently predict unsteady aerodynamic coefficients, but also effectively capture nonlinear aeroelastic responses. Full article
(This article belongs to the Special Issue Advances in Unsteady Aerodynamics and Aeroelasticity)
Show Figures

Figure 1

23 pages, 2098 KiB  
Article
Innovative Control Techniques for Enhancing Signal Quality in Power Applications: Mitigating Electromagnetic Interference
by N. Manoj Kumar, Yousef Farhaoui, R. Vimala, M. Anandan, M. Aiswarya and A. Radhika
Algorithms 2025, 18(5), 288; https://doi.org/10.3390/a18050288 - 18 May 2025
Viewed by 384
Abstract
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the [...] Read more.
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the effects of EMI generally tend to have greater design complexity, greater error rates, poor control accuracy, and large amounts of harmonic distortion. In order to overcome these constraints, this paper introduces an intelligent and advanced control approach founded on the signal randomization principle. The suggested approach controls the switching activity of a DC–DC converter by dynamically tuned parameters like duty cycle, switching frequency, and signal modulation. A boost interleaved topology is utilized to maximize the current distribution and minimize ripple, and an innovative space vector-dithered sigma delta modulation (SV-DiSDM) scheme is proposed for cancelling harmonics via a digitalized control action. The used modulation scheme can effectively distribute the harmonic energy across a larger range of frequencies to largely eliminate EMI and boost the stability of the system. High-performance analysis is conducted by employing significant measures like total harmonic distortion (THD), switching frequency deviation, switching loss, and distortion product. Verification against conventional control models confirms the increased efficiency, less EMI, and greater signal integrity of the proposed method, and hence, it can be a viable alternative for EMI-aware power electronics applications. Full article
(This article belongs to the Special Issue Emerging Trends in Distributed AI for Smart Environments)
Show Figures

Figure 1

14 pages, 1754 KiB  
Article
The Single-Active-Electron Approximation with Angular-Momentum-Dependent Potentials: Application to the Helium Atom
by Juan Carlos del Valle and Klaus Bartschat
Atoms 2025, 13(5), 43; https://doi.org/10.3390/atoms13050043 - 14 May 2025
Viewed by 1139
Abstract
We discuss an extension of the Single-Active-Electron (SAE) approximation in atoms by allowing the model potential to depend on the angular-momentum quantum number . We refer to this extension as the -SAE approximation. The main ideas behind -SAE are illustrated [...] Read more.
We discuss an extension of the Single-Active-Electron (SAE) approximation in atoms by allowing the model potential to depend on the angular-momentum quantum number . We refer to this extension as the -SAE approximation. The main ideas behind -SAE are illustrated using the helium atom as a benchmark system. We show that introducing -dependent potentials improves the accuracy of key quantities in atomic structure computed from the Time-Independent Schrödinger Equation (TISE), including energies, oscillator strengths, and static and dynamic polarizabilities, compared to the standard SAE approach. Additionally, we demonstrate that the -SAE approximation is suitable for quantum simulations of light−atom interactions described by the Time-Dependent Schrödinger Equation (TDSE). As an illustration, we simulate High-order Harmonic Generation (HHG) and the three-sideband (3SB) version of the Reconstruction of Attosecond Beating by Interference of Two-photon Transitions (RABBITT) technique, achieving enhanced accuracy comparable to that obtained in all-electron calculations. One of the main advantages of the -SAE approach is that existing SAE codes can be easily adapted to handle -dependent potentials without any additional computational cost. Full article
Show Figures

Figure 1

15 pages, 6529 KiB  
Article
Enhancing High-Order Harmonic Generation Efficiency Through Molecular Size and Orientation Effects: A Pathway to Ultrafast Chemical Dynamics Studies
by Shushan Zhou, Hao Wang, Dongming Yu, Nan Xu and Muhong Hu
Molecules 2025, 30(10), 2133; https://doi.org/10.3390/molecules30102133 - 12 May 2025
Cited by 1 | Viewed by 493
Abstract
High-order harmonic generation provides a powerful tool for probing ultrafast chemical dynamics, such as electron transfer, bond breaking, and molecular structural changes, with attosecond temporal resolution. The strong laser fields used in HHG can also directly influence chemical reaction pathways and rates, enabling [...] Read more.
High-order harmonic generation provides a powerful tool for probing ultrafast chemical dynamics, such as electron transfer, bond breaking, and molecular structural changes, with attosecond temporal resolution. The strong laser fields used in HHG can also directly influence chemical reaction pathways and rates, enabling coherent control of reaction selectivity. However, enhancing the efficiency of harmonic emission remains a critical challenge in ultrafast science. In this study, we investigate the effects of molecular size and orientation on HHG efficiency using time-dependent density functional theory simulations. By analyzing the linear molecules C18H2, C2H2, and C10H2 under linearly polarized laser fields, we demonstrate that larger molecular sizes significantly enhance harmonic emission intensity. Our results reveal that C18H2, with its larger spatial dimensions, exhibits substantially higher harmonic intensity compared to smaller molecules like C2H2. This enhancement is further supported by examining charge redistribution and bond length changes during the HHG process. Additionally, we validate our findings with C10H2, a molecule of intermediate size, confirming the correlation between molecular size and harmonic efficiency. Full article
Show Figures

Graphical abstract

16 pages, 3581 KiB  
Article
Structural Topology Optimization for Frequency Response Problems Using Adaptive Second-Order Arnoldi Method
by Yongxin Qu, Yonghui Zhou and Yunfeng Luo
Mathematics 2025, 13(10), 1583; https://doi.org/10.3390/math13101583 - 12 May 2025
Viewed by 490
Abstract
For topology optimization problems under harmonic excitation in a frequency band, a large number of displacement and adjoint displacement vectors for different frequencies need to be computed. This leads to an unbearable computational cost, especially for large-scale problems. An effective approach, the Second-Order [...] Read more.
For topology optimization problems under harmonic excitation in a frequency band, a large number of displacement and adjoint displacement vectors for different frequencies need to be computed. This leads to an unbearable computational cost, especially for large-scale problems. An effective approach, the Second-Order Arnoldi (SOAR) method, effectively solves the response and adjoint equations by projecting the original model to a reduced order model. The SOAR method generalizes the well-known Krylov subspace in a specified frequency point and can give accurate solutions for the frequencies near the specified point by using only a few basis vectors. However, for a wide frequency band, more expansion points are needed to obtain the required accuracy. This brings up the question of how many points are needed for an arbitrary frequency band. The traditional reduced order method improves the accuracy by uniformly increasing the expansion points. However, this leads to the redundancy of expansion points, as some frequency bands require more expansion points while others only need a few. In this paper, a bisection-based adaptive SOAR method (ASOAR), in which the points are added adaptively based on a local error estimation function, is developed to solve this problem. In this way, the optimal number and position of expansion points are adaptively determined, which avoids the insufficient efficiency or accuracy caused by too many or too few points in the traditional strategy where the expansion points are uniformly distributed. Compared to the SOAR, the ASOAR can deal with wide low/mid-frequency bands both for response and adjoint equations with high precision and efficiency. Numerical examples show the validation and effectiveness of the proposed method. Full article
Show Figures

Graphical abstract

Back to TopTop