Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = High Voltage AC/DC Grids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4660 KB  
Article
Analysis of Grounding Schemes and Machine Learning-Based Fault Detection in Hybrid AC/DC Distribution System
by Zeeshan Haider, Shehzad Alamgir, Muhammad Ali, S. Jarjees Ul Hassan and Arif Mehdi
Electricity 2026, 7(1), 11; https://doi.org/10.3390/electricity7010011 - 2 Feb 2026
Viewed by 79
Abstract
The increasing integration of hybrid AC/DC networks in modern power systems introduces new challenges in fault detection and grounding scheme design, necessitating advanced techniques for stable and reliable operation. This paper investigates fault detection and grounding schemes in hybrid AC/DC networks using a [...] Read more.
The increasing integration of hybrid AC/DC networks in modern power systems introduces new challenges in fault detection and grounding scheme design, necessitating advanced techniques for stable and reliable operation. This paper investigates fault detection and grounding schemes in hybrid AC/DC networks using a machine learning (ML) approach to enhance accuracy, speed, and adaptability. Traditional methods often struggle with the dynamic and complex nature of hybrid systems, leading to delayed or incorrect fault identification. To address this, we propose a data-driven ML framework that leverages features such as voltage, current, and frequency characteristics for real-time detection and classification of faults. Additionally, the effectiveness of various grounding schemes is analyzed under different fault conditions to ensure system stability and safety. Simulation results on a hybrid AC/DC test network demonstrate the superior performance of the proposed ML-based fault detection method compared to conventional techniques, achieving high precision, recall, and robustness against noise and varying operating conditions. The findings highlight the potential of ML in improving fault management and grounding strategy optimization for future hybrid power grids. Full article
Show Figures

Figure 1

30 pages, 3570 KB  
Article
Two-Stage Decoupled Security-Constrained Redispatching for Hybrid AC/DC Grids
by Emanuele Ciapessoni, Diego Cirio and Andrea Pitto
Energies 2026, 19(3), 706; https://doi.org/10.3390/en19030706 - 29 Jan 2026
Viewed by 90
Abstract
Hybrid AC/DC grids with High Voltage Direct Current (HVDC) systems enhance grid resilience and enable efficient long-distance power transfer, asynchronous network interconnection, and seamless integration of offshore renewable energy sources. However, ensuring secure and reliable operation of these complex hybrid systems, particularly under [...] Read more.
Hybrid AC/DC grids with High Voltage Direct Current (HVDC) systems enhance grid resilience and enable efficient long-distance power transfer, asynchronous network interconnection, and seamless integration of offshore renewable energy sources. However, ensuring secure and reliable operation of these complex hybrid systems, particularly under contingency scenarios, presents significant challenges. This paper proposes a novel and computationally efficient two-stage linearized decoupled formulation for security-constrained redispatch in hybrid AC/DC grids. The methodology explicitly addresses N-1 security criterion, incorporating constraints from both the AC and DC subsystems, as well as the DC/AC converters. Simulation results on a test power system demonstrate the effectiveness of the proposed approach in mitigating the impact of both transmission line and generator outages, validating its applicability for enhancing grid resilience. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

30 pages, 2307 KB  
Review
Topology Design and Control Optimization of Photovoltaic DC Boosting Collection Systems: A Review and Future Perspectives
by Tingting Li, Xue Zhai, Zhixin Deng, Linyu Zhang, Xiaochuan Liu and Xiaoyue Chen
Energies 2026, 19(3), 637; https://doi.org/10.3390/en19030637 - 26 Jan 2026
Viewed by 209
Abstract
Driven by the global energy transition, the rapid expansion of photovoltaic (PV) capacity—particularly in China’s “sand-Gobi-desert” mega-bases—demands highly efficient collection technologies. DC collection, offering low losses, compactness, and high reliability, is emerging as a critical solution for large-scale integration. This paper provides a [...] Read more.
Driven by the global energy transition, the rapid expansion of photovoltaic (PV) capacity—particularly in China’s “sand-Gobi-desert” mega-bases—demands highly efficient collection technologies. DC collection, offering low losses, compactness, and high reliability, is emerging as a critical solution for large-scale integration. This paper provides a comprehensive review of PV DC step-up collection systems. First, it analyzes typical network architectures, compares AC versus DC schemes, and examines design constraints imposed by DC bus voltage levels. Second, control strategies are summarized across device, equipment, and system levels. Third, based on engineering practices in ultra-large-scale bases, key challenges regarding fault detection, efficiency optimization, economic viability, and grid code compatibility are identified alongside representative solutions. Finally, future trends in high-voltage hardware maturation, protection bottlenecks, real-time artificial intelligence, and specialized standardization are proposed. This study serves as a vital reference for the topology design and engineering standardization of PV DC collection systems. Full article
Show Figures

Figure 1

36 pages, 4550 KB  
Article
Probabilistic Load Forecasting for Green Marine Shore Power Systems: Enabling Efficient Port Energy Utilization Through Monte Carlo Analysis
by Bingchu Zhao, Fenghui Han, Yu Luo, Shuhang Lu, Yulong Ji and Zhe Wang
J. Mar. Sci. Eng. 2026, 14(2), 213; https://doi.org/10.3390/jmse14020213 - 20 Jan 2026
Viewed by 177
Abstract
The global shipping industry is surging ahead, and with it, a quiet revolution is taking place on the water: marine lithium-ion batteries have emerged as a crucial clean energy carrier, powering everything from ferries to container ships. When these vessels dock, they increasingly [...] Read more.
The global shipping industry is surging ahead, and with it, a quiet revolution is taking place on the water: marine lithium-ion batteries have emerged as a crucial clean energy carrier, powering everything from ferries to container ships. When these vessels dock, they increasingly rely on shore power charging systems to refuel—essentially, plugging in instead of idling on diesel. But predicting how much power they will need is not straightforward. Think about it: different ships, varying battery sizes, mixed charging technologies, and unpredictable port stays all come into play, creating a load profile that is random, uneven, and often concentrated—a real headache for grid planners. So how do you forecast something so inherently variable? This study turned to the Monte Carlo method, a probabilistic technique that thrives on uncertainty. Instead of seeking a single fixed answer, the model embraces randomness, feeding in real-world data on supply modes, vessel types, battery capacity, and operational hours. Through repeated random sampling and load simulation, it builds up a realistic picture of potential charging demand. We ran the numbers for a simulated fleet of 400 vessels, and the results speak for themselves: load factors landed at 0.35 for conventional AC shore power, 0.39 for high-voltage DC, 0.33 for renewable-based systems, 0.64 for smart microgrids, and 0.76 when energy storage joined the mix. Notice how storage and microgrids really smooth things out? What does this mean in practice? Well, it turns out that Monte Carlo is not just academically elegant, it is practically useful. By quantifying uncertainty and delivering load factors within confidence intervals, the method offers port operators something precious: a data-backed foundation for decision-making. Whether it is sizing infrastructure, designing tariff incentives, or weighing the grid impact of different shore power setups, this approach adds clarity. In the bigger picture, that kind of insight matters. As ports worldwide strive to support cleaner shipping and align with climate goals—China’s “dual carbon” ambition being a case in point—achieving a reliable handle on charging demand is not just technical; it is strategic. Here, probabilistic modeling shifts from a simulation exercise to a tangible tool for greener, more resilient port energy management. Full article
Show Figures

Figure 1

24 pages, 4083 KB  
Article
Voltage Adaptability of Hierarchical Optimization for Photovoltaic Inverter Control Parameters in AC/DC Hybrid Receiving-End Power Grids
by Ran Sun, Jianbo Wang, Feng Yao, Zhaohui Cui, Xiaomeng Li, Hao Zhang, Jiahao Wang and Lixia Sun
Processes 2026, 14(2), 350; https://doi.org/10.3390/pr14020350 - 19 Jan 2026
Viewed by 178
Abstract
The high rate of photovoltaic integration poses significant challenges in terms of violations of voltage limits in power grids. Additionally, the operational behavior of PV systems under fault conditions requires thorough investigation in receiving-end grids. This paper analyzes the dynamic coupling characteristics between [...] Read more.
The high rate of photovoltaic integration poses significant challenges in terms of violations of voltage limits in power grids. Additionally, the operational behavior of PV systems under fault conditions requires thorough investigation in receiving-end grids. This paper analyzes the dynamic coupling characteristics between reactive power and transient voltage in a receiving-end grid with high PV penetration and multiple HVDC infeeds, considering typical AC and DC fault scenarios. Voltage adaptability issues in PV generation systems are also examined. Through an enhanced sensitivity analysis method, the suppression capabilities of transient voltage peaks are quantified in the control parameters of low-voltage ride-through (LVRT) and high-voltage ride-through (HVRT) photovoltaic inverters. On this basis, a hierarchical optimization strategy for PV inverter control parameters is proposed to mitigate post-fault transient voltage peaks and improve the transient voltage response both during and after faults. The feasibility of the proposed method has been verified through simulation on a revised 10-generator 39-bus power system. Following optimization, the transient voltage peak is reduced from 1.263 to 1.098. This validation offers support for the reliable grid connection of the Henan Power Grid. In the events of the N-2 fault at 500 kV and Tian-zhong HVDC monopolar block fault, the post-fault voltage at each node remains below 1.1 p.u. This serves as evidence of a significant enhancement in transient voltage stability within the Henan Power Grid, demonstrating effective improvements in power supply reliability and operational performance. Full article
Show Figures

Figure 1

29 pages, 3682 KB  
Review
Data Centers as a Driving Force for the Renewable Energy Sector
by Parsa Ziaei, Oleksandr Husev and Jacek Rabkowski
Energies 2026, 19(1), 236; https://doi.org/10.3390/en19010236 - 31 Dec 2025
Viewed by 794
Abstract
Modern data centers are becoming increasingly energy-intensive as AI workloads, hyperscale architectures, and high-power processors push power demand to unprecedented levels. This work examines the sources of rising energy consumption, including evolving IT load dynamics, variability, and the limitations of legacy AC-based power-delivery [...] Read more.
Modern data centers are becoming increasingly energy-intensive as AI workloads, hyperscale architectures, and high-power processors push power demand to unprecedented levels. This work examines the sources of rising energy consumption, including evolving IT load dynamics, variability, and the limitations of legacy AC-based power-delivery architectures. These challenges amplify the environmental impact of data centers and highlight their growing influence on global electricity systems. The paper analyzes why conventional grid-tied designs are insufficient for meeting future efficiency, flexibility, and sustainability requirements and surveys emerging solutions centered on DC microgrids, high-voltage DC distribution, and advanced wide-bandgap power electronics. The review further discusses the technical enablers that allow data centers to integrate renewable energy and energy storage more effectively, including simplified conversion chains, coordinated control hierarchies, and demand-aware workload management. Through documented strategies such as on-site renewable deployment, off-site procurement, hybrid energy systems, and flexible demand shaping, the study shows how data centers are increasingly positioned not only as major energy consumers but also as key catalysts for accelerating renewable-energy adoption. Overall, the findings illustrate how the evolving power architectures of large-scale data centers can drive innovation and growth across the renewable energy sector. Full article
(This article belongs to the Special Issue Renewable Energy System Technologies: 3rd Edition)
Show Figures

Figure 1

21 pages, 3714 KB  
Article
Modular, Multiport AC-DC Converter with Add-On HF Isolating Units
by Pawel B. Derkacz, Pawel Milewski, Daniel Wojciechowski, Natalia Strzelecka and Ryszard Strzelecki
Energies 2026, 19(1), 85; https://doi.org/10.3390/en19010085 - 23 Dec 2025
Viewed by 288
Abstract
In this paper, we propose a novel concept of a modular, multiport, single-stage, bidirectional, isolated, three-phase AC-DC converter system. This new system is realized using add-ons to a standard voltage source inverter, including both grid-connected AC-DC converters, like PWM rectifiers, and AC-drive DC-AC [...] Read more.
In this paper, we propose a novel concept of a modular, multiport, single-stage, bidirectional, isolated, three-phase AC-DC converter system. This new system is realized using add-ons to a standard voltage source inverter, including both grid-connected AC-DC converters, like PWM rectifiers, and AC-drive DC-AC inverters. The proposed add-on converters provide isolated DC ports and can be installed into existing inverters of the abovementioned types, with no need for any modification of their topology or control system. Moreover, the add-on converters provide a minimum transistor count and high efficiency. The efficiency of the proposed add-on converters can be further improved by switching the type of pulse width modulation (PWM) scheme based on their operating point. The proposed converter system is validated for a power of 20 kW, an output voltage of 500–800 V DC, and a 40 kHz PWM frequency. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

13 pages, 3553 KB  
Article
Design of the Active-Control Coil Power Supply for Keda Torus eXperiment
by Qinghua Ren, Yingqiao Wang, Xiaolong Liu, Weibin Li, Hong Li, Tao Lan and Zhen Tao
Electronics 2025, 14(24), 4830; https://doi.org/10.3390/electronics14244830 - 8 Dec 2025
Viewed by 313
Abstract
Active-control coils on Keda Torus eXperiment (KTX) are used to suppress error fields and mitigate MHD instabilities, thereby extending discharge duration and improving plasma confinement quality. Achieving effective active MHD control imposes stringent requirements on the coil power supplies: wide-bandwidth and high-precision current [...] Read more.
Active-control coils on Keda Torus eXperiment (KTX) are used to suppress error fields and mitigate MHD instabilities, thereby extending discharge duration and improving plasma confinement quality. Achieving effective active MHD control imposes stringent requirements on the coil power supplies: wide-bandwidth and high-precision current regulation, deterministic low-latency response, and tightly synchronized operation across 136 independently driven coils. Specifically, the supplies must deliver up to ±200 A with fast slew rates and bandwidths up to several kilohertz, while ensuring sub-100 μs control latency, programmable waveforms, and inter-channel synchronization for real-time feedback. These demands make the power supply architecture a key enabling technology and motivate this work. This paper presents the design and simulation of the KTX active-control coil power supply. The system adopts a modular AC–DC–AC topology with energy storage: grid-fed rectifiers charge DC-link capacitor banks, each H-bridge IGBT converter (20 kHz) independently drives one coil, and an EMC filter shapes the output current. Matlab/Simulink R2025b simulations under DC, sinusoidal, and arbitrary current references demonstrate rapid tracking up to the target bandwidth with ±0.5 A ripple at 200 A and limited DC-link voltage droop (≤10%) from an 800 V, 50 mF storage bank. The results verify the feasibility of the proposed scheme and provide a solid basis for real-time multi-coil active MHD control on KTX while reducing instantaneous grid loading through energy storage. Full article
Show Figures

Figure 1

22 pages, 2838 KB  
Article
Hybrid Mono–Bipolar HVDC System with Control Strategy for Offshore Wind Power Integration
by Xingning Han, Zhuyi Peng, Wenjia Zhang, Wentao Sun, Qian Wu and Zhenjian Xie
Energies 2025, 18(23), 6323; https://doi.org/10.3390/en18236323 - 1 Dec 2025
Viewed by 470
Abstract
The ever-growing scale of offshore wind power integration has led coastal provincial power grids to face the common issue of insufficient AC grid structure capacity. An effective solution involves constructing an offshore–onshore mono–bipolar hybrid high voltage DC (HVDC) system by integrating an offshore [...] Read more.
The ever-growing scale of offshore wind power integration has led coastal provincial power grids to face the common issue of insufficient AC grid structure capacity. An effective solution involves constructing an offshore–onshore mono–bipolar hybrid high voltage DC (HVDC) system by integrating an offshore wind monopolar HVDC with an onshore embedded bipolar HVDC. Firstly, the limitations of existing AC structures in coastal grids when undertaking offshore wind power integration are analyzed through N-1 security verification, and the applicability of conventional power evacuation approaches is assessed from both theoretical and practical engineering standpoints. Subsequently, an offshore–onshore mono–bipolar hybrid HVDC system is proposed. Meanwhile, based on operational requirements and the analysis of the structural features, a coordinated control strategy for the hybrid HVDC system under both symmetric and asymmetric operation modes is designed. Finally, a simulation model is built on the PSCAD/EMTDC platform to verify the feasibility of the hybrid HVDC system control strategy in the coastal power grid and the effectiveness of the system to improve the wind power consumption capacity of the coastal power grid. Full article
(This article belongs to the Special Issue Integration of Renewable Energy Systems in Power Grid)
Show Figures

Figure 1

19 pages, 2082 KB  
Article
Computational Analysis of Unipolar Stacked Switched Capacitor Architecture for Active Power Decoupling in Single-Phase Systems
by Omar Rodríguez-Benítez, Mario Ponce-Silva, María Del Carmen Toledo-Pérez, Ricardo E. Lozoya-Ponce, Claudia Cortes-García, Juan A. González-Flores and Alfredo González-Ortega
Computation 2025, 13(12), 276; https://doi.org/10.3390/computation13120276 - 1 Dec 2025
Viewed by 381
Abstract
Computational analysis using PSpice has become an indispensable tool for evaluating power electronics circuits, as it allows accurate simulation of transient effects, ripple, and component dynamics, enabling reliable assessment of complex topologies before physical implementation. In single-phase systems, electrolytic components are commonly used [...] Read more.
Computational analysis using PSpice has become an indispensable tool for evaluating power electronics circuits, as it allows accurate simulation of transient effects, ripple, and component dynamics, enabling reliable assessment of complex topologies before physical implementation. In single-phase systems, electrolytic components are commonly used due to their high energy density, which helps mitigate low-frequency ripple caused by power oscillations between the DC and AC sides. However, these components have a limited lifespan, which compromises the system’s long-term reliability. This work proposes and evaluates the Stacked Switched Capacitor (SSC) topology as a power decoupling technique, implemented within a 200 W Cuk converter. The proposed SSC design enables a substantial reduction in required capacitance, replacing a conventional 600 μF capacitor with only three 36 μF capacitors, while maintaining voltage stability and output power performance. Simulation results show a high efficiency of 94% and a DC-link energy of 0.992 J, confirming the SSC’s ability to effectively mitigate voltage ripple at twice the grid angular frequency (2ω, rad/s) without compromising system durability. Comparative analysis with conventional decoupling strategies demonstrates that the SSC topology offers a compact, efficient, and reliable alternative, reducing the number of required passive components and switching devices. These results provide a strong basis for further exploration of SSC-based designs in space- and cost-constrained single-phase DC-AC applications. Full article
(This article belongs to the Special Issue Computational Methods for Energy Storage)
Show Figures

Figure 1

37 pages, 3380 KB  
Article
Analysis and Evaluation of the Operating Profile of a DC Inverter in a PV Plant
by Silvia Baeva, Ivelina Hinova and Plamen Stanchev
Energies 2025, 18(23), 6306; https://doi.org/10.3390/en18236306 - 30 Nov 2025
Viewed by 424
Abstract
The inverter is the key element that converts the intermittent DC power of the PV array into a quality AC flow to the grid and simultaneously performs functions such as power factor control, reactive services, and grid code compliance. Therefore, the detailed operating [...] Read more.
The inverter is the key element that converts the intermittent DC power of the PV array into a quality AC flow to the grid and simultaneously performs functions such as power factor control, reactive services, and grid code compliance. Therefore, the detailed operating profile of the inverter, how the power, dynamics, power quality, and efficiency evolve over time, is critical for both the scientific understanding of the system and the daily operation (O&M). Monitoring only aggregated energy indicators or single KPIs (e.g., PR) is often insufficient: it does not distinguish weather-related variations from technical limitations (clipping, curtailment), does not show dynamic loads (ramp rate), and does not provide confidence in the quality of the injected energy (PF, P–Q behavior). These deficiencies motivate research that simultaneously covers the physical side of the conversion, the operational dynamics, and the climatic reference of the resource. The analysis covers the window of 25 January–15 April 2025 (winter→spring). Due to the pronounced seasonality of the solar resource and temperature regime, all quantitative results and conclusions regarding efficiency, dynamics, clipping, and degradation are valid only for this window; generalizations to other seasons require additional data. In the next stage, we will add ≥12 months of data and perform a comparable seasonal analysis. Full specifications of the measuring equipment (DC/AC current/voltage, clock synchronization, separate high-frequency PQ-logger) and quantitative uncertainty estimates, including distribution to key indicators (η, PR, THD, IDC), are presented. The PVGIS per-kWp climate reference is anchored to the nameplate DC peak and cross-checked against percentile scaling; a±ε scale error shifts PR by ε and changes ΔE proportionally only on hours with P^>P. The capacity for the climate reference (PVGIS per-kWp) is calibrated to the tabulated DC peak power Ccert and is cross-validated using a percentile scale (Q0.99). Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

24 pages, 5577 KB  
Article
A Novel Strategy for Preventing Commutation Failures During Fault Recovery Using PLL Phase Angle Error Compensation
by Junpeng Deng, Liangzhong Yao, Jinglei Deng, Shuai Liang, Rongxiang Yuan, Guoju Zhang and Xuefeng Ge
Electronics 2025, 14(23), 4651; https://doi.org/10.3390/electronics14234651 - 26 Nov 2025
Viewed by 299
Abstract
Existing studies on commutation failure during fault recovery (CFFR) in line-commutated converter high-voltage direct current (LCC-HVDC) systems often neglect the critical influence of phase-locked loop phase tracking error (PLL-PTE) and fail to provide effective control strategies to address this issue. This paper investigates [...] Read more.
Existing studies on commutation failure during fault recovery (CFFR) in line-commutated converter high-voltage direct current (LCC-HVDC) systems often neglect the critical influence of phase-locked loop phase tracking error (PLL-PTE) and fail to provide effective control strategies to address this issue. This paper investigates the influence of PLL-PTE on CFFR through electromagnetic transient simulations based on a modified CIGRE benchmark model. The study reveals that phase angle jump (PAJ) caused by DC power fluctuations (DPF) and AC network reconfigurations (ANR) is the fundamental source of PLL-PTE, which in turn leads to the occurrence of CFFR. To mitigate this, a novel control strategy is proposed that dynamically adjusts the extinction angle based on historical and predicted PAJ data. Simulation results demonstrate that the proposed method effectively suppresses CFFR under various fault conditions, including different fault types, locations, resistances, and initiation times. Compared with existing control schemes, the proposed approach avoids adverse side effects while exhibiting strong robustness and adaptability. The proposed control strategy significantly enhances the stability and reliability of LCC-HVDC systems, offering great potential for practical application in increasingly complex power grid environments. Full article
Show Figures

Figure 1

23 pages, 3443 KB  
Article
Scheme of Dynamic Equivalence for Regional Power Grid Considering Multiple Feature Constraints: A Case Study of Back-to-Back VSC-HVDC-Connected Regional Power Grid in Eastern Guangdong
by Yuxuan Zou, Lin Zhu, Zhiwei Liang, Yonghao Hu, Shuaishuai Chen and Haichuan Zhang
Energies 2025, 18(23), 6145; https://doi.org/10.3390/en18236145 - 24 Nov 2025
Viewed by 449
Abstract
As the global energy system accelerates its transition towards high penetration of renewable energy and high penetration of power electronic devices, regional power grids have undergone profound changes in their structural forms and component composition compared to traditional power grids. Conventional dynamic equivalencing [...] Read more.
As the global energy system accelerates its transition towards high penetration of renewable energy and high penetration of power electronic devices, regional power grids have undergone profound changes in their structural forms and component composition compared to traditional power grids. Conventional dynamic equivalencing methods struggle to balance modeling accuracy and computational efficiency simultaneously. To address this challenge, this paper focuses on the dynamic equivalencing of regional power grids and proposes a dynamic equivalencing scheme considering multiple feature constraints. First, based on the structural characteristics and the evolution of dynamic attributes of regional power grids, three key constraint conditions are identified: network topology, spatial characteristics of frequency response, and nodal residual voltage levels. Secondly, a comprehensive equivalencing scheme integrating multiple constraints is designed, which specifically includes delineating the retained region through multi-objective optimization, optimizing the internal system based on coherent aggregation and the current sinks reduction (CSR) method, and constructing a grey-box external equivalent model composed of synchronous generators and composite loads to accurately fit the electrical characteristics of the external power grid. Finally, the proposed methodology is validated on a Back-to-Back VSC-HVDC-connected regional power grid in Eastern Guangdong, China. Results demonstrate that the equivalent system reproduces the original power-flow profile and short-circuit capacity with negligible deviation, while its transient signatures under both AC and DC faults exhibit high consistency with those of the reference system. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Power Systems: 2nd Edition)
Show Figures

Figure 1

45 pages, 4110 KB  
Review
Overview of Monitoring, Diagnostics, Aging Analysis, and Maintenance Strategies in High-Voltage AC/DC XLPE Cable Systems
by Kazem Emdadi, Majid Gandomkar, Ali Aranizadeh, Behrooz Vahidi and Mirpouya Mirmozaffari
Sensors 2025, 25(22), 7096; https://doi.org/10.3390/s25227096 - 20 Nov 2025
Cited by 2 | Viewed by 1371
Abstract
High-voltage (HV) cable systems—particularly those insulated with cross-linked polyethylene (XLPE)—are increasingly deployed in both AC and DC applications due to their excellent electrical and mechanical performance. However, their long-term reliability is challenged by partial discharges (PD), insulation aging, space charge accumulation, and thermal [...] Read more.
High-voltage (HV) cable systems—particularly those insulated with cross-linked polyethylene (XLPE)—are increasingly deployed in both AC and DC applications due to their excellent electrical and mechanical performance. However, their long-term reliability is challenged by partial discharges (PD), insulation aging, space charge accumulation, and thermal and electrical stresses. This review provides a comprehensive survey of the state-of-the-art technologies and methodologies across several domains critical to the assessment and enhancement of cable reliability. It covers advanced condition monitoring (CM) techniques, including sensor-based PD detection, signal acquisition, and denoising methods. Aging mechanisms under various stressors and lifetime estimation approaches are analyzed, along with fault detection and localization strategies using time-domain, frequency-domain, and hybrid methods. Physics-based and data-driven models for PD behavior and space charge dynamics are discussed, particularly under DC conditions. The article also reviews the application of numerical tools such as FEM for thermal and field stress analysis. A dedicated focus is given to machine learning (ML) and deep learning (DL) models for fault classification and predictive maintenance. Furthermore, standards, testing protocols, and practical issues in sensor deployment and calibration are summarized. The review concludes by evaluating intelligent maintenance approaches—including condition-based and predictive strategies—framed within real-world asset management contexts. The paper aims to bridge theoretical developments with field-level implementation challenges, offering a roadmap for future research and practical deployment in resilient and smart power grids. This review highlights a clear gap in fully integrated AC/DC diagnostic and aging analyses for XLPE cables. We emphasize the need for unified physics-based and ML-driven frameworks to address HVDC space-charge effects and multi-stress degradation. These insights provide concise guidance for advancing reliable and scalable cable assessment. Full article
(This article belongs to the Special Issue Feature Review Papers in Fault Diagnosis & Sensors)
Show Figures

Figure 1

27 pages, 9909 KB  
Article
A Reconfigurable 10 kW String Inverter Topology for Unified Symmetric and Asymmetric Multilevel AC Grid Integration
by Bindu Valluvan, Kannan Chandrasekaran and Seeni Thangam Jeevananthan
Symmetry 2025, 17(11), 1957; https://doi.org/10.3390/sym17111957 - 14 Nov 2025
Viewed by 508
Abstract
Multilevel inverters (MLI) have become the frontier in high-power medium voltage systems because of their unique property of generating sinusoidal voltage through smaller voltage increments. Although many MLI structures have been proposed over the years, most still rely on a large number of [...] Read more.
Multilevel inverters (MLI) have become the frontier in high-power medium voltage systems because of their unique property of generating sinusoidal voltage through smaller voltage increments. Although many MLI structures have been proposed over the years, most still rely on a large number of switches, which increases complexity and conduction losses. In this work, a reconfigurable, gable-shaped multilevel inverter module, capable of operating in both symmetric and asymmetric modes, is introduced for use in AC microgrid cluster environments. The design employs five DC sources and six semiconductor devices arranged in a gable layout, which helps shorten the conduction path while also reducing the total hardware count. As a result, the inverter becomes more compact, experiences lower switching losses, and proves more suitable for grid-connected operation. In symmetric mode, the inverter delivers an 11-level output, while the asymmetric arrangement produces 19 levels. The proposed concept is examined through MATLAB/Simulink (R2023a) studies, and its practicality is verified using a Hardware-in-the-Loop setup with an integrated data-acquisition system capable of delivering 10 kW of real power and handling up to 50% overload. These results confirm the suitability of the topology for real-time grid applications. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop