Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (218)

Search Parameters:
Keywords = Hermite–Hadamard type inequality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 776 KiB  
Article
Fractional Inclusion Analysis of Superquadratic Stochastic Processes via Center-Radius Total Order Relation with Applications in Information Theory
by Mohsen Ayyash, Dawood Khan, Saad Ihsan Butt and Youngsoo Seol
Fractal Fract. 2025, 9(6), 375; https://doi.org/10.3390/fractalfract9060375 - 12 Jun 2025
Viewed by 314
Abstract
This study presents, for the first time, a new class of interval-valued superquadratic stochastic processes and examines their core properties through the lens of the center-radius total order relation on intervals. These processes serve as a powerful tool for modeling uncertainty in stochastic [...] Read more.
This study presents, for the first time, a new class of interval-valued superquadratic stochastic processes and examines their core properties through the lens of the center-radius total order relation on intervals. These processes serve as a powerful tool for modeling uncertainty in stochastic systems involving interval-valued data. By utilizing their intrinsic structure, we derive sharpened versions of Jensen-type and Hermite–Hadamard-type inequalities, along with their fractional extensions, within the framework of mean-square stochastic Riemann–Liouville fractional integrals. The theoretical findings are validated through extensive graphical representations and numerical simulations. Moreover, the applicability of the proposed processes is demonstrated in the domain of information theory by constructing novel stochastic divergence measures and Shannon’s entropy grounded in interval calculus. The outcomes of this work lay a solid foundation for further exploration in stochastic analysis, particularly in advancing generalized integral inequalities and formulating new stochastic models under uncertainty. Full article
Show Figures

Figure 1

28 pages, 603 KiB  
Article
New Results on Majorized Discrete Jensen–Mercer Inequality for Raina Fractional Operators
by Çetin Yildiz, Tevfik İşleyen and Luminiţa-Ioana Cotîrlă
Fractal Fract. 2025, 9(6), 343; https://doi.org/10.3390/fractalfract9060343 - 26 May 2025
Viewed by 247
Abstract
As the most important inequality, the Hermite–Hadamard–Mercer inequality has attracted the interest of numerous additional mathematicians. Numerous findings on this inequality have been developed in recent years. So, in this paper, we demonstrate novel Hermite–Hadamard–Mercer inequalities using Raina fractional operators and the majorization [...] Read more.
As the most important inequality, the Hermite–Hadamard–Mercer inequality has attracted the interest of numerous additional mathematicians. Numerous findings on this inequality have been developed in recent years. So, in this paper, we demonstrate novel Hermite–Hadamard–Mercer inequalities using Raina fractional operators and the majorization concept. Furthermore, additional identities are discovered, and two new lemmas of this type are proved. A summary of several known results is also provided, along with a thorough derivation of some exceptional cases. We also note that some of the outcomes in this study are more acceptable than others under certain exceptional instances, such as setting n=2, w=0, σ(0)=1, and λ=1 or λ=α. Lastly, the method described in this publication is thought to stimulate further research in this area. Full article
(This article belongs to the Special Issue Fractional Integral Inequalities and Applications, 3rd Edition)
Show Figures

Figure 1

34 pages, 437 KiB  
Article
On Katugampola Fractional Multiplicative Hermite-Hadamard-Type Inequalities
by Wedad Saleh, Badreddine Meftah, Muhammad Uzair Awan and Abdelghani Lakhdari
Mathematics 2025, 13(10), 1575; https://doi.org/10.3390/math13101575 - 10 May 2025
Cited by 1 | Viewed by 410
Abstract
This paper presents a novel framework for Katugampola fractional multiplicative integrals, advancing recent breakthroughs in fractional calculus through a synergistic integration of multiplicative analysis. Motivated by the growing interest in fractional calculus and its applications, we address the gap in generalized inequalities for [...] Read more.
This paper presents a novel framework for Katugampola fractional multiplicative integrals, advancing recent breakthroughs in fractional calculus through a synergistic integration of multiplicative analysis. Motivated by the growing interest in fractional calculus and its applications, we address the gap in generalized inequalities for multiplicative s-convex functions by deriving a Hermite–Hadamard-type inequality tailored to Katugampola fractional multiplicative integrals. A cornerstone of our work involves the derivation of two groundbreaking identities, which serve as the foundation for midpoint- and trapezoid-type inequalities designed explicitly for mappings whose multiplicative derivatives are multiplicative s-convex. These results extend classical integral inequalities to the multiplicative fractional calculus setting, offering enhanced precision in approximating nonlinear phenomena. Full article
(This article belongs to the Special Issue Mathematical Inequalities and Fractional Calculus)
Show Figures

Figure 1

18 pages, 288 KiB  
Article
Majorization-Type Integral Inequalities Related to a Result of Bennett with Applications
by László Horváth
Mathematics 2025, 13(10), 1563; https://doi.org/10.3390/math13101563 - 9 May 2025
Viewed by 272
Abstract
In this paper, starting from abstract versions of a result of Bennett given by Niculescu, we derive new majorization-type integral inequalities for convex functions using finite signed measures. The proof of the main result is based on a generalization of a recently discovered [...] Read more.
In this paper, starting from abstract versions of a result of Bennett given by Niculescu, we derive new majorization-type integral inequalities for convex functions using finite signed measures. The proof of the main result is based on a generalization of a recently discovered majorization-type integral inequality. As applications of the results, we give simple proofs of the integral Jensen and Lah–Ribarič inequalities for finite signed measures, generalize and extend known results, and obtain an interesting new refinement of the Hermite–Hadamard–Fejér inequality. Full article
32 pages, 6743 KiB  
Article
Analytical Properties and Hermite–Hadamard Type Inequalities Derived from Multiplicative Generalized Proportional σ-Riemann–Liouville Fractional Integrals
by Fuxiang Liu and Jielan Li
Symmetry 2025, 17(5), 702; https://doi.org/10.3390/sym17050702 - 4 May 2025
Cited by 1 | Viewed by 424
Abstract
This paper investigates the analytical properties of multiplicative generalized proportional σ-Riemann–Liouville fractional integrals and the corresponding Hermite–Hadamard-type inequalities. Central to our study are two key notions: multiplicative σ-convex functions and multiplicative generalized proportional σ-Riemann–Liouville fractional integrals, both of which serve [...] Read more.
This paper investigates the analytical properties of multiplicative generalized proportional σ-Riemann–Liouville fractional integrals and the corresponding Hermite–Hadamard-type inequalities. Central to our study are two key notions: multiplicative σ-convex functions and multiplicative generalized proportional σ-Riemann–Liouville fractional integrals, both of which serve as the foundational framework for our analysis. We first introduce and examine several fundamental properties of the newly defined fractional integral operator, including continuity, commutativity, semigroup behavior, and boundedness. Building on these results, we derive a novel identity involving this operator, which forms the basis for establishing new Hermite–Hadamard-type inequalities within the multiplicative setting. To validate the theoretical results, we provide multiple illustrative examples and perform graphical visualizations. These examples not only demonstrate the correctness of the derived inequalities but also highlight the practical relevance and potential applications of the proposed framework. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

30 pages, 595 KiB  
Article
New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with ψk-Raina’s Fractional Integrals for Differentiable Convex Functions
by Talib Hussain, Loredana Ciurdariu and Eugenia Grecu
Fractal Fract. 2025, 9(4), 203; https://doi.org/10.3390/fractalfract9040203 - 26 Mar 2025
Viewed by 374
Abstract
Starting from ψk-Raina’s fractional integrals (ψk-RFIs), the study obtains a new generalization of the Hermite–Hadamard–Mercer (H-H-M) inequality. Several trapezoid-type inequalities are constructed for functions whose derivatives of orders 1 and 2, in absolute value, are convex and involve [...] Read more.
Starting from ψk-Raina’s fractional integrals (ψk-RFIs), the study obtains a new generalization of the Hermite–Hadamard–Mercer (H-H-M) inequality. Several trapezoid-type inequalities are constructed for functions whose derivatives of orders 1 and 2, in absolute value, are convex and involve ψk-RFIs. The results of the research are refinements of the Hermite–Hadamard (H-H) and H-H-M-type inequalities. For several types of fractional integrals—Riemann–Liouville (R-L), k-Riemann–Liouville (k-R-L), ψ-Riemann–Liouville (ψ-R-L), ψk-Riemann–Liouville (ψk-R-L), Raina’s, k-Raina’s, and ψ-Raina’s fractional integrals (ψ-RFIs)—new inequalities of H-H and H-H-M-type are established, respectively. This article presents special cases of the main results and provides numerous examples with graphical illustrations to confirm the validity of the results. This study shows the efficiency of the findings with a couple of applications, taking into account the modified Bessel function and the q-digamma function. Full article
Show Figures

Figure 1

19 pages, 370 KiB  
Article
On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions
by Hasan Barsam, Somayeh Mirzadeh, Yamin Sayyari and Loredana Ciurdariu
Fractal Fract. 2025, 9(2), 108; https://doi.org/10.3390/fractalfract9020108 - 12 Feb 2025
Cited by 2 | Viewed by 799
Abstract
The main goal of this study is to provide new q-Fejer and q-Hermite-Hadamard type integral inequalities for uniformly convex functions and functions whose second quantum derivatives in absolute values are uniformly convex. Two basic inequalities as power mean inequality and Holder’s [...] Read more.
The main goal of this study is to provide new q-Fejer and q-Hermite-Hadamard type integral inequalities for uniformly convex functions and functions whose second quantum derivatives in absolute values are uniformly convex. Two basic inequalities as power mean inequality and Holder’s inequality are used in demonstrations. Some particular functions are chosen to illustrate the investigated results by two examples analyzed and the result obtained have been graphically visualized. Full article
Show Figures

Figure 1

14 pages, 297 KiB  
Article
Generalized Fractional Integral Inequalities Derived from Convexity Properties of Twice-Differentiable Functions
by Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci and Hüseyin Budak
Fractal Fract. 2025, 9(2), 97; https://doi.org/10.3390/fractalfract9020097 - 4 Feb 2025
Viewed by 774
Abstract
This study presents novel formulations of fractional integral inequalities, formulated using generalized fractional integral operators and the exploration of convexity properties. A key identity is established for twice-differentiable functions with the absolute value of their second derivative being convex. Using this identity, several [...] Read more.
This study presents novel formulations of fractional integral inequalities, formulated using generalized fractional integral operators and the exploration of convexity properties. A key identity is established for twice-differentiable functions with the absolute value of their second derivative being convex. Using this identity, several generalized fractional Hermite–Hadamard-type inequalities are developed. These inequalities extend the classical midpoint and trapezoidal-type inequalities, while offering new perspectives through convexity properties. Also, some special cases align with known results, and an illustrative example, accompanied by a graphical representation, is provided to demonstrate the practical relevance of the results. Moreover, the findings may offer potential applications in numerical integration, optimization, and fractional differential equations, illustrating their relevance to various areas of mathematical analysis. Full article
(This article belongs to the Special Issue New Trends on Generalized Fractional Calculus, 2nd Edition)
Show Figures

Figure 1

25 pages, 437 KiB  
Article
Hermite–Hadamard-Type Inequalities for Harmonically Convex Functions via Proportional Caputo-Hybrid Operators with Applications
by Saad Ihsan Butt, Muhammad Umar, Dawood Khan, Youngsoo Seol and Sanja Tipurić-Spužević
Fractal Fract. 2025, 9(2), 77; https://doi.org/10.3390/fractalfract9020077 - 24 Jan 2025
Cited by 1 | Viewed by 915
Abstract
In this paper, we aim to establish new inequalities of Hermite–Hadamard (H.H) type for harmonically convex functions using proportional Caputo-Hybrid (P.C.H) fractional operators. Parameterized by α, these operators offer a unique flexibility: setting α=1 recovers the classical inequalities for harmonically [...] Read more.
In this paper, we aim to establish new inequalities of Hermite–Hadamard (H.H) type for harmonically convex functions using proportional Caputo-Hybrid (P.C.H) fractional operators. Parameterized by α, these operators offer a unique flexibility: setting α=1 recovers the classical inequalities for harmonically convex functions, while setting α=0 yields inequalities for differentiable harmonically convex functions. This framework allows us to unify classical and fractional cases within a single operator. To validate the theoretical results, we provide several illustrative examples supported by graphical representations, marking the first use of such visualizations for inequalities derived via P.C.H operators. Additionally, we demonstrate practical applications of the results by deriving new fractional-order recurrence relations for the modified Bessel function of type-1, which are useful in mathematical modeling, engineering, and physics. The findings contribute to the growing body of research in fractional inequalities and harmonic convexity, paving the way for further exploration of generalized convexities and higher-order fractional operators. Full article
Show Figures

Figure 1

21 pages, 483 KiB  
Article
New Inequalities for GA–h Convex Functions via Generalized Fractional Integral Operators with Applications to Entropy and Mean Inequalities
by Asfand Fahad, Zammad Ali, Shigeru Furuichi, Saad Ihsan Butt, Ayesha and Yuanheng Wang
Fractal Fract. 2024, 8(12), 728; https://doi.org/10.3390/fractalfract8120728 - 12 Dec 2024
Cited by 1 | Viewed by 839
Abstract
We prove the inequalities of the weighted Hermite–Hadamard type the and Hermite–Hadamard–Mercer type for an extremely rich class of geometrically arithmetically-h-convex functions (GA-h-CFs) via generalized Hadamard–Fractional integral operators (HFIOs). The two generalized fractional integral operators (FIOs) are Hadamard proportional [...] Read more.
We prove the inequalities of the weighted Hermite–Hadamard type the and Hermite–Hadamard–Mercer type for an extremely rich class of geometrically arithmetically-h-convex functions (GA-h-CFs) via generalized Hadamard–Fractional integral operators (HFIOs). The two generalized fractional integral operators (FIOs) are Hadamard proportional fractional integral operators (HPFIOs) and Hadamard k-fractional integral operators (HKFIOs). Moreover, we also present the results for subclasses of GA-h-CFs and show that the inequalities proved in this paper unify the results from the recent related literature. Furthermore, we compare the two generalizations in view of the fractional operator parameters that contribute to the generalizations of the results and assess the better approximation via graphical tools. Finally, we present applications of the new inequalities via HPFIOs and HKFIOs by establishing interpolation relations between arithmetic mean and geometric mean and by proving the new upper bounds for the Tsallis relative operator entropy. Full article
(This article belongs to the Special Issue Fractional Integral Inequalities and Applications, 3rd Edition)
Show Figures

Figure 1

27 pages, 460 KiB  
Article
A New Inclusion on Inequalities of the Hermite–Hadamard–Mercer Type for Three-Times Differentiable Functions
by Talib Hussain, Loredana Ciurdariu and Eugenia Grecu
Mathematics 2024, 12(23), 3711; https://doi.org/10.3390/math12233711 - 26 Nov 2024
Cited by 1 | Viewed by 570
Abstract
The goal of this study is to develop numerous Hermite–Hadamard–Mercer (H–H–M)-type inequalities involving various fractional integral operators, including classical, Riemann–Liouville (R.L), k-Riemann–Liouville (k-R.L), and their generalized fractional integral operators. In addition, we establish a number of corresponding fractional integral inequalities for three-times differentiable [...] Read more.
The goal of this study is to develop numerous Hermite–Hadamard–Mercer (H–H–M)-type inequalities involving various fractional integral operators, including classical, Riemann–Liouville (R.L), k-Riemann–Liouville (k-R.L), and their generalized fractional integral operators. In addition, we establish a number of corresponding fractional integral inequalities for three-times differentiable convex functions that are connected to the right side of the H–H–M-type inequality. For these results, further remarks and observations are provided. Following that, a couple of graphical representations are shown to highlight the key findings of our study. Finally, some applications on special means are shown to demonstrate the effectiveness of our inequalities. Full article
(This article belongs to the Special Issue Fractional Calculus and Mathematical Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 335 KiB  
Article
Significant Study of Fuzzy Fractional Inequalities with Generalized Operators and Applications
by Rana Safdar Ali, Humira Sif, Gauhar Rehman, Ahmad Aloqaily and Nabil Mlaiki
Fractal Fract. 2024, 8(12), 690; https://doi.org/10.3390/fractalfract8120690 - 24 Nov 2024
Cited by 1 | Viewed by 644
Abstract
There are many techniques for the extension and generalization of fractional theories, one of which improves fractional operators by means of their kernels. This paper is devoted to the most general concept of interval-valued functions, studying fractional integral operators for interval-valued functions, along [...] Read more.
There are many techniques for the extension and generalization of fractional theories, one of which improves fractional operators by means of their kernels. This paper is devoted to the most general concept of interval-valued functions, studying fractional integral operators for interval-valued functions, along with the multi-variate extension of the Bessel–Maitland function, which acts as kernel. We discuss the behavior of Hermite–Hadamard Fejér (HHF)-type inequalities by using the convex fuzzy interval-valued function (C-FIVF) with generalized fuzzy fractional operators. Also, we obtain some refinements of Hermite–Hadamard(H-H)-type inequalities via convex fuzzy interval-valued functions (C-FIVFs). Our results extend and generalize existing findings from the literature. Full article
(This article belongs to the Special Issue Fractional Integral Inequalities and Applications, 3rd Edition)
19 pages, 345 KiB  
Article
Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications
by Abdulrahman F. Aljohani, Ali Althobaiti and Saad Althobaiti
Axioms 2024, 13(9), 616; https://doi.org/10.3390/axioms13090616 - 11 Sep 2024
Viewed by 773
Abstract
This paper aims to introduce a new fractional extension of the interval Hermite–Hadamard (HH), HH–Fejér, and Pachpatte-type inequalities for left- and right-interval-valued harmonically convex mappings (LRIVH convex mappings) with an exponential function in [...] Read more.
This paper aims to introduce a new fractional extension of the interval Hermite–Hadamard (HH), HH–Fejér, and Pachpatte-type inequalities for left- and right-interval-valued harmonically convex mappings (LRIVH convex mappings) with an exponential function in the kernel. We use fractional operators to develop several generalizations, capturing unique outcomes that are currently under investigation, while also introducing a new operator. Generally, we propose two methods that, in conjunction with more generalized fractional integral operators with an exponential function in the kernel, can address certain novel generalizations of increasing mappings under the assumption of LRIV convexity, yielding some noteworthy results. The results produced by applying the suggested scheme show that the computational effects are extremely accurate, flexible, efficient, and simple to implement in order to explore the path of upcoming intricate waveform and circuit theory research. Full article
(This article belongs to the Special Issue Theory and Application of Integral Inequalities)
32 pages, 510 KiB  
Article
Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces q(·)(Mp(·),v(·)) with Variable Exponents
by Waqar Afzal, Mujahid Abbas, Daniel Breaz and Luminiţa-Ioana Cotîrlă
Fractal Fract. 2024, 8(9), 518; https://doi.org/10.3390/fractalfract8090518 - 30 Aug 2024
Cited by 7 | Viewed by 1159
Abstract
Function spaces play a crucial role in the study and application of mathematical inequalities. They provide a structured framework within which inequalities can be formulated, analyzed, and applied. They allow for the extension of inequalities from finite-dimensional spaces to infinite-dimensional contexts, which is [...] Read more.
Function spaces play a crucial role in the study and application of mathematical inequalities. They provide a structured framework within which inequalities can be formulated, analyzed, and applied. They allow for the extension of inequalities from finite-dimensional spaces to infinite-dimensional contexts, which is crucial in mathematical analysis. In this note, we develop various new bounds and refinements of different well-known inequalities involving Hilbert spaces in a tensor framework as well as mixed Moore norm spaces with variable exponents. The article begins with Newton–Milne-type inequalities for differentiable convex mappings. Our next step is to take advantage of convexity involving arithmetic–geometric means and build various new bounds by utilizing self-adjoint operators of Hilbert spaces in tensorial frameworks for different types of generalized convex mappings. To obtain all these results, we use Riemann–Liouville fractional integrals and develop several new identities for these operator inequalities. Furthermore, we present some examples and consequences for transcendental functions. Moreover, we developed the Hermite–Hadamard inequality in a new and significant way by using mixed-norm Moore spaces with variable exponent functions that have not been developed previously with any other type of function space apart from classical Lebesgue space. Mathematical inequalities supporting tensor Hilbert spaces are rarely examined in the literature, so we believe that this work opens up a whole new avenue in mathematical inequality theory. Full article
16 pages, 299 KiB  
Article
On New Generalized Hermite–Hadamard–Mercer-Type Inequalities for Raina Functions
by Zeynep Çiftci, Merve Coşkun, Çetin Yildiz, Luminiţa-Ioana Cotîrlă and Daniel Breaz
Fractal Fract. 2024, 8(8), 472; https://doi.org/10.3390/fractalfract8080472 - 13 Aug 2024
Cited by 2 | Viewed by 1161
Abstract
In this research, we demonstrate novel Hermite–Hadamard–Mercer fractional integral inequalities using a wide class of fractional integral operators (the Raina fractional operator). Moreover, a new lemma of this type is proved, and new identities are obtained using the definition of convex function. In [...] Read more.
In this research, we demonstrate novel Hermite–Hadamard–Mercer fractional integral inequalities using a wide class of fractional integral operators (the Raina fractional operator). Moreover, a new lemma of this type is proved, and new identities are obtained using the definition of convex function. In addition to a detailed derivation of a few special situations, certain known findings are summarized. We also point out that some results in this study, in some special cases, such as setting α=0=φ,γ=1, and w=0,σ(0)=1,λ=1, are more reasonable than those obtained. Finally, it is believed that the technique presented in this paper will encourage additional study in this field. Full article
Back to TopTop