On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions
Abstract
1. Introduction and Preliminaries
1.1. Convex Functions and Hermite-Hadamard’s Inequality
1.2. Preliminaries on q-Calculus
- If is uniformly convex with modulus ϕ on , then there is at least one line of support with modulus ϕ for f at each .
- If there is at least one line of support with modulus ϕ for f at each , and , for every and , then f is uniformly convex with modulus ϕ on .”
2. Main Result
2.1. q-Hermite-Hadamard Inequality for Uniformly Convex Function
2.2. q-Fejer Inequality for Uniformly Convex Function
3. Applications to Fractional Calculus
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadamard, J. Etude sur les proprietes des fonctions entieres en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Fejer, L. Uber die Fourierreihen, II. Math. Naturwiss. Anz. Ungar. Akad. Wiss. 1906, 24, 369–390. (In Hungarian) [Google Scholar]
- Barsam, H.; Sayyari, Y. On some inequalities of differentable uniformly convex mapping with applications. Numer. Funct. Anal. Optim. 2023, 44, 368–381. [Google Scholar] [CrossRef]
- Khan, M.A.; Anwar, S.; Khalid, S.; Sayed, Z.M.M.M. Inequalities of the type Hermite-Hadamard-Jensen-Mercer for strong convexity. Math. Probl. Eng. 2021, 2021, 5386488. [Google Scholar]
- Niezgoda, M. Fejer and Hermite-Hadamard type results for H-invex functions with applications. Positivity 2019, 23, 531–543. [Google Scholar] [CrossRef]
- Sayyari, Y. New Entropy Bounds Via Uniformly Convex Functions. Chaos Solitons Fractals 2020, 141, 110360. [Google Scholar] [CrossRef]
- Sayyari, Y.; Barsam, H.; Ciurdariu, L. A new refinement of Jensen-Type inequality with respect to uniformly convex functions with applications in information theory. J. Math. Inequal. 2023, 17, 1311–1322. [Google Scholar] [CrossRef]
- Sayyari, Y.; Barsam, H. New inequalities related to entropy and relative entropy with respect to Hermite-Hadamard inequality. Filomat 2024, 38, 1265–1277. [Google Scholar] [CrossRef]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Al-Salam, W. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Almeida, R.; Torres, D.F.M. Non-differentiable variational principles in terms of a quantum operator. Math. Methods Appl. Sci. 2011, 34, 2231–2241. [Google Scholar]
- Cresson, J.; Frederico, G.S.F.; Torres, D.F.M. Constants of motion for non-differentiable quantum variational problems. Topol. Methods Nonlinear Anal. 2019, 37, 217–231. [Google Scholar] [CrossRef]
- Chen, F.L.; Finkelstein, R.J. q-deformation of the Coulomb problem. J. Math. Phys. 1994, 35, 3273–3284. [Google Scholar] [CrossRef]
- Cadavid, A.C.; Finkelstein, R.J. The q-Coulomb problem in configuration space. J. Math. Phys. 1996, 37, 3675–3683. [Google Scholar] [CrossRef]
- Finkelstein, R.J. The q-Coulomb problem. J. Math. Phys. 1996, 37, 2628–2636. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Murtaza, G.; Ali, M.A.; Ntouyas, S.K.; Adeel, M.; Soontharanon, J. On some new trapezoidal type inequalities for twice (p,q) differentiable convex functions in post quantum calculus. Symmetry 2021, 13, 1605. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and aplications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 13, 121. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; Iscan, I. q2-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Bermudo, S.; Korus, P.; Valdes, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hungar. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Kara, H.; Budak, H.; Alp, N.; Kalsoom, H.; Sarikaya, M.Z. On new generalized quantum integrals and related Hermite-Hadamard inequalities. J. Inequal. Appl. 2021, 2021, 180. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef]
- Alp, N.; Budak, H.; Sarikaya, M.Z.; Ali, M.A. On new refinements and generalizations of q-Hermite-Hadamard inequalities for convex functions. Rocky Mt. J. Math. 2023, 54, 361–374. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Luangboon, W.; Budak, H.; Nonlaopon, K. Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications. Fractal Fract. 2022, 6, 129. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Stankovic, M.S.; Marinkovic, S.D. The zeros of polynomials orthogonal with respect to q-integral on several intervals in the complex plane. In Proceedings of the Fifth International Conference of Geometry Integrability and Quantization, Varna, Bulgaria, 5–12 June 2003; pp. 178–188. [Google Scholar]
- Ernst, T.A. Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2003; p. 652. [Google Scholar]
- Kang, Q.; Butt, S.I.; Nazeer, W.; Nadeem, M.; Nasir, J.; Yang, H. New variant of Hermite-Hadamard-Mercer inequalities via Riemann-Liouville fractional integral operators. J. Math. 2020, 2020, 4303727. [Google Scholar] [CrossRef]
- Kunt, M.; Iscan, I.; Alp, N.; Sarikaya, M.Z. (p,q)-Hermite-Hadamard inequalities and (p,q)-estimations for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A. Some new post-quantum integral inequalities involving twice (p,q)-differentiable ϕ-preinvex functions and applications. Axioms 2021, 10, 283. [Google Scholar] [CrossRef]
- Noor, M.; Noor, K.; Awan, M. Quantum Ostrowski inequalities for q-differentiable convex functions. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar] [CrossRef]
- Liu, W.; Zhuang, H. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2016, 7, 501–522. [Google Scholar]
- Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernadez, J.E. Quantum trapezium-type inequalities using generalized Φ-convex functions. Axioms 2020, 9, 12. [Google Scholar] [CrossRef]
- Neang, P.; Nanlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Aagarwal, P. Some trapezoid and midpoint type inequalities via fractional (p,q)-calculus. Adv. Differ. Equ. 2021, 2021, 333. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Kunt, M.; Latif, M.A.; Iscan, I.; Dragomir, S.S. Quantum Hermite-Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
- Iscan, I. Hermite-Hadamard-Fejertype inequalities for convex functions via fractional integrals. arXiv 2014, arXiv:1404.7722. [Google Scholar]
- Chen, F. Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar] [CrossRef]
- Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
- Set, E.; Iscan, I.; Sarikaja, M.Z.; Ozdemir, M.E. On new inequalities of Hermite-Hadamad-Fejer type for convex functions via fractional integrals. Appl. Math. Comput. 2015, 259, 875–881. [Google Scholar]
- Almeida, R.; Bastos, N. An approximation formula for the Katugampola integral. J. Math. Anal. 2016, 7, 23–30. [Google Scholar]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Luo, C.; Wang, H.; Du, T. Fejer-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos Solitons Fractals 2020, 131, 109547. [Google Scholar] [CrossRef]
- Kunt, M.; Aljasem, M. Fractional quantum Hermite-Hadamard type inequalities. Konuralp J. Math. 2020, 8, 122–136. [Google Scholar]
- Chu, Y.M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. Fractional quantum analogues of trapezoid like inequalities. J. Math. Inequal. 2023, 17, 31–47. [Google Scholar] [CrossRef]
- Khan, M.B.; Marcias-Dias, J.E.; Treanta, S.; Soliman, M.S. Some Fejer type inequalities for Generalized Interval-Valued Convex functions. Mathematics 2022, 10, 385. [Google Scholar] [CrossRef]
- Ciurdariu, L.; Grecu, E. Hermite-Hadamard-Mercer-Type Inequalities for Three-Times Differentiable Functions. Axioms 2024, 13, 413. [Google Scholar] [CrossRef]
- Barsam, H.; Sayyari, Y. Fejer type inequality and some inequalities of Hermite-Hadamard type via uniformly convex function. submitted.
- Zalinescu, C. On uniformly convex functions. J. Math. Anal. Appl. 1983, 95, 344–374. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barsam, H.; Mirzadeh, S.; Sayyari, Y.; Ciurdariu, L. On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions. Fractal Fract. 2025, 9, 108. https://doi.org/10.3390/fractalfract9020108
Barsam H, Mirzadeh S, Sayyari Y, Ciurdariu L. On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions. Fractal and Fractional. 2025; 9(2):108. https://doi.org/10.3390/fractalfract9020108
Chicago/Turabian StyleBarsam, Hasan, Somayeh Mirzadeh, Yamin Sayyari, and Loredana Ciurdariu. 2025. "On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions" Fractal and Fractional 9, no. 2: 108. https://doi.org/10.3390/fractalfract9020108
APA StyleBarsam, H., Mirzadeh, S., Sayyari, Y., & Ciurdariu, L. (2025). On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions. Fractal and Fractional, 9(2), 108. https://doi.org/10.3390/fractalfract9020108