Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications
Abstract
:1. Introduction
2. Preliminaries
- Scaler multiplication:
- Minkowski difference
- Addition:
- Multiplication:
3. Generalized Interval Fractional Integrals and Related Hermite–Hadamard Inequalities
4. New Extensions for Convex Mappings via Interval Fractional Integral with an Exponential in the Kernel
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite–Had amard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Zhao, D.; Shi, L. Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Sci. China Inf. Sci. 2024, 67, 140202. [Google Scholar] [CrossRef]
- Jia, G.; Luo, J.; Cui, C.; Kou, R.; Tian, Y.; Schubert, M. Valley quantum interference modulated by hyperbolic shear polaritons. Phys. Rev. B 2023, 109, 155417. [Google Scholar] [CrossRef]
- Kórus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions. Aequ. Math. 2019, 93, 527–534. [Google Scholar] [CrossRef]
- Abramovich, S.; Persson, L.E. Fejér and Hermite–Hadamard type inequalities for N-quasi-convex functions. Math. Notes 2017, 102, 599–609. [Google Scholar] [CrossRef]
- Delavar, M.R.; De La Sen, M. A mapping associated to h-convex version of the Hermite–Hadamard inequality with applications. J. Math. Inequal. 2020, 14, 329–335. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2018, 112, 1033–1048. [Google Scholar] [CrossRef]
- Marinescu, D.Ş.; Monea, M. A very short proof of the Hermite Hadamard inequalities. Am. Math. Month. 2020, 127, 850–851. [Google Scholar] [CrossRef]
- İşcan, İ. Weighted Hermite–Hadamard–Mercer type inequali ties for convex functions. Numer. Methods Part. Differ. Equ. 2021, 37, 118–130. [Google Scholar] [CrossRef]
- Kadakal, M.; Karaca, H.; İşcan, İ. Hermite-Hadamard type inequalities for multiplicatively geometrically P-functions Poincare. J. Anal. Appl. 2018, 2, 77–85. [Google Scholar]
- Kadakal, H.; Bekar, K. New inequalities for AH-convex functions using beta and hypergeometric functions. Poincare J. Anal. Appl. 2019, 2, 105–114. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef]
- Du, T.S.; Awan, M.U.; Kashuri, A.; Zhao, S.S. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity. Appl. Anal. 2021, 100, 642–662. [Google Scholar] [CrossRef]
- Mohammed, P.O. Hermite–Hadamard inequalities for Riemann Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci. 2021, 44, 2314–2324. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Mehrez, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Turhan, S.; Karapinar, D. Improvement of fractional Hermite–Hadamard type inequality for convex functions. Miskolc Math. Notes 2018, 19, 1007–1017. [Google Scholar] [CrossRef]
- Snyder, J.M. Interval analysis for computer graphics. ACM SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
- de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Educ. 2012, 55, 9–15. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Z.; Zhou, J.; Chen, L.; Feng, X.T. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mech. Rock Eng. 2024, 57, 4835–4871. [Google Scholar] [CrossRef]
- Guo, S.; Zuo, X.; Wu, W.; Yang, X.; Zhang, J.; Li, Y.; Huang, C.; Bu, J.; Zhu, S. Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. Int. J. Digit. Earth 2024, 17, 2316107. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Du, T. On the fractional integral inclusions having exponential kernels for interval-valued convex functions. Math. Sci. 2023, 17, 107–120. [Google Scholar] [CrossRef]
- Zhou, T.; Du, T. Certain fractional integral inclusions pertaining to interval-valued exponential trigonometric convex functions. J. Math. Inequal. 2023, 17, 1–30. [Google Scholar]
- Khan, M.B.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaş, A.; Aloraini, N.; Soliman, M.S. Some new versions of fractional inequalities for exponential trigonometric convex mappings via ordered relation on interval-valued settings. Fractal Fract. 2023, 7, 223. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Althobaiti, A.; Althobaiti, S. Some new properties of exponential trigonometric convex functions using up and down relations over fuzzy numbers and related inequalities through fuzzy fractional integral operators having exponential kernels. Fractal Fract. 2023, 7, 567. [Google Scholar] [CrossRef]
- Dimitrijev, S. Effective Mass in Semiconductors; Bart. J. Van Zeghbroeck/University of Colorado: Boulder, CO, USA, 1997; pp. 1–7. [Google Scholar]
- Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
- Iscan, I.; Kunt, M. Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integrals. RGMIA Res. Rep. Collect. 2015, 18, 1–19. [Google Scholar]
- Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
- Chang, X.; Guo, J.; Qin, H.; Huang, J.; Wang, X.; Ren, P. Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients. Water Resour. Manag. 2024, 38, 3953–3972. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Christelle, M.; Sun, M.; Wen, Z.; Lin, Y.; Xu, J. Automated localization of mandibular landmarks in the construction of mandibular median sagittal plane. Eur. J. Med. Res. 2024, 29, 84. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljohani, A.F.; Althobaiti, A.; Althobaiti, S. Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications. Axioms 2024, 13, 616. https://doi.org/10.3390/axioms13090616
Aljohani AF, Althobaiti A, Althobaiti S. Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications. Axioms. 2024; 13(9):616. https://doi.org/10.3390/axioms13090616
Chicago/Turabian StyleAljohani, Abdulrahman F., Ali Althobaiti, and Saad Althobaiti. 2024. "Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications" Axioms 13, no. 9: 616. https://doi.org/10.3390/axioms13090616
APA StyleAljohani, A. F., Althobaiti, A., & Althobaiti, S. (2024). Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications. Axioms, 13(9), 616. https://doi.org/10.3390/axioms13090616