Next Article in Journal
The Kauffman Bracket Skein Module of S1 × S2 via Braids
Next Article in Special Issue
A New Contribution in Fractional Integral Calculus and Inequalities over the Coordinated Fuzzy Codomain
Previous Article in Journal
Round-Off Error Suppression by Statistical Averaging
Previous Article in Special Issue
Geometric Characterization of Validity of the Lyapunov Convexity Theorem in the Plane for Two Controls under a Pointwise State Constraint
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications

by
Abdulrahman F. Aljohani
1,
Ali Althobaiti
2,* and
Saad Althobaiti
3
1
Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
2
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3
Department of Sciences and Technology, Ranyah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(9), 616; https://doi.org/10.3390/axioms13090616
Submission received: 9 August 2024 / Revised: 6 September 2024 / Accepted: 7 September 2024 / Published: 11 September 2024
(This article belongs to the Special Issue Theory and Application of Integral Inequalities)

Abstract

:
This paper aims to introduce a new fractional extension of the interval Hermite–Hadamard ( H H ), H H –Fejér, and Pachpatte-type inequalities for left- and right-interval-valued harmonically convex mappings ( L R I V H convex mappings) with an exponential function in the kernel. We use fractional operators to develop several generalizations, capturing unique outcomes that are currently under investigation, while also introducing a new operator. Generally, we propose two methods that, in conjunction with more generalized fractional integral operators with an exponential function in the kernel, can address certain novel generalizations of increasing mappings under the assumption of L R I V convexity, yielding some noteworthy results. The results produced by applying the suggested scheme show that the computational effects are extremely accurate, flexible, efficient, and simple to implement in order to explore the path of upcoming intricate waveform and circuit theory research.

1. Introduction

The convexity of mapping stands as one of the most advantageous tools for addressing an array of issues in both pure and applied sciences. Recent research has significantly delved into exploring the attributes and inequalities associated with convexity across various directions; for further insights, refer to [1,2,3] and the cited references. H H -inequality, extensively applied in numerous practical mathematical domains, notably in probability and optimization, ranks among the pivotal mathematical inequalities concerning convex mappings.
The inequality is written as if Υ : ɣ 1 , ɣ 2 R is a convex mapping on ɣ 1 , ɣ 2 and with ɣ 1 ɣ 2 such that
Υ ɣ 1 + ɣ 2 2 1 ɣ 2 ɣ 1 ɣ 1 ɣ 2 Υ d Υ ɣ 1 + Υ ɣ 2 2
Numerous researchers have paid significant attention to the mean value of a continuous convex mapping Υ : ɣ 1 , ɣ 2 R , which is endowed with error margins by this foundational inequality. Extensive investigations have explored H H -type inequalities for various types of convex mappings. For instance, Kórus [4] delved into s-convex mappings, Abramovich and Persson [5] examined N-quasi-convex mappings, while Delavar and De La Sen [6] investigated h-convex mappings, among others. Khan et al. [7], Marinescu and Monea [8], İşcan [9], Kadakal et al. [10], Kadakal and Bekar [11], and the relevant references therein offer valuable insights into the latest advancements in this dynamic field.
Ahmad et al. [12] introduced fractional integrals with exponential kernels as follows to establish a fractional version of the H H -type inequality:
Definition 1.
Assume  Υ is in L 1 ɣ 1 , ɣ 2 , R . The fractional integrals J ɣ 1 + a and J ɣ 2 a of order a > 0 are expressed as follows:
  J ɣ 1 + a Υ = 1 a ɣ 1 e 1 a a τ Υ τ d τ ,   > ɣ 1
and
J ɣ 2 a Υ = 1 a ɣ 2 e 1 a a τ Υ τ d τ ,   < ɣ 2
Fractional calculus has become an essential tool in applied mathematics and sciences. This topic has attracted considerable interest from researchers. Consequently, many authors have explored various aspects, such as the expansions of trapezium inequalities for k-fractional integrals [13], the H H –Fejér type inequality for Riemann–Liouville fractional integrals [14], and the H H –Fejér type inequality for Katugampola fractional integrals [15]. This has fostered a productive interaction among different approaches to fractional calculus and important integral inequalities. For further significant conclusions about fractional integral operators, interested readers should consult [16,17] and their references.
One notable application of set-valued analysis is interval analysis, which plays a significant role in both applied and pure sciences. An interval analysis was initially used to calculate the error boundaries of numerical solutions for finite-state machines. Over the past 50 years, it has become essential in resolving interval uncertainty within computer and mathematical models. Specific applications include computer graphics [18], neural network output optimization [19], and automatic error analysis [20]. Furthermore, interval-valued mappings have been applied in optimization theory, as discussed in [21,22]. In interval fractional calculus, Zhou et al. [23] proposed the following version of interval-fractional integrals with exponential kernels:
Definition 2.
Let  Υ : R I , 0 < ɣ 1 < ɣ 2 be an interval-valued mapping defined by Υ = Υ * , Υ * such that Υ is an integrable over ɣ 1 , ɣ 2 . Then, the interval fractional integral operators J ɣ 1 + a and J ɣ 2 a of order a > 0 are stated as follows:
J ɣ 1 + a Υ = 1 a ɣ 1     e 1 a a τ Υ τ d τ ,   > ɣ 1 ,
and
  J ɣ 2 a Υ = 1 a ɣ 2     e 1 a a τ Υ τ d τ ,   < ɣ 2 .
Obviously, we have
J ɣ 1 + a Υ = J ɣ 1 + a Υ * , J ɣ 1 + a Υ * ,
and
J ɣ 2 a Υ = J ɣ 2 a Υ * , J ɣ 2 a Υ * .
Additionally, Zhou et al. [24] also found the new versions of H H inequalities over these generalized fractional integrals via exponential trigonometric convex mappings. Moreover, Khan et al. [25,26,27] also presented the fuzzy and interval versions of these fractional integrals via an exponential in the kernel over fuzzy and L R exponential trigonometric convex mappings and their applications in the inequality theory.
In addition to other scientific disciplines, the electrical circuit theory utilizes Jensen harmonic convexity, which is particularly noteworthy. The total resistance of a group of parallel resistors is calculated by summing the reciprocals of each individual resistance value and then taking the reciprocal of that sum. For example, if the resistances of two parallel resistors are represented as ʎ 1 and ʎ 2 , the total resistance is given by
Z = 1 1 ʎ 1 + 1 ʎ 2 = ʎ 1 ʎ 2 ʎ 1 + ʎ 2 ,
This is half of the harmonic mean. Furthermore, the harmonic mean of the effective masses along the three crystallographic directions is the definition of a semiconductor’s “conductivity effective mass.” Moreover, undesirable higher frequencies may be overlaid on the fundamental waveform of harmonically convex mappings, leading to a deformed wave pattern [28]. See [29,30,31,32,33,34,35,36,37] and the references therein for applications.
Following the previously indicated pattern, we establish interval– H H , H H –Fejér, and Pachpatte-type integral inequalities for L R I V H convex mappings using the fractional integral operator for integrable mappings. Additionally, we discuss various generalizations using a more general fractional integral operator with an exponential kernel. Our findings are both more intriguing and practically valuable than the current results. Ultimately, there is perfect agreement regarding the performance and application of the more general operator, demonstrating the suggested approach’s effectiveness in manifesting inequalities through L R I V convexity.

2. Preliminaries

Let R be the set of real numbers and let R I contain all bounded and closed intervals within R . Π R I should be defined as follows:
Π = Π * ,   Π * = y R | Π * y Π * , Π * ,   Π * R .
It is argued that Π is degenerate if Π * = Π * . The interval Π * ,   Π * is referred to as non-negative if Π * 0 ,   R I + represents the set of all non-negative intervals and is defined as R I + = Π * ,   Π * : Π * ,   Π * R I   a n d   Π * 0 .
Let ϱ R , Π , Θ R I be defined with Θ = Θ * ,   Θ * and Π = Π * ,   Π * , so we may define the interval arithmetic as follows:
  • Scaler multiplication:
ϱ . Π = ϱ Π * ,   ϱ Π * if   ϱ > 0 , 0 if   ϱ = 0 , ϱ Π * , ϱ Π * if   ϱ < 0 .  
  • Minkowski difference
  Θ * ,   Θ * Π * ,   Π * = Θ * Π * ,   Θ * Π * ,
  • Addition:
  Θ * ,   Θ * + Π * ,   Π * = Θ * + Π * ,   Θ * + Π * ,
  • Multiplication:
Θ * ,   Θ * × Π * ,   Π * = m i n Θ * Π * ,   Θ * Π * ,   Θ * Π * ,   Θ * Π * ,   m a x Θ * Π * ,   Θ * Π * ,   Θ * Π * ,   Θ * Π * .
The inclusion means that
Π Θ if and only if   Π * , Π * Θ * , Θ * , and if and only if
Π * Θ * ,   Θ * Π * .
Remark 1.
([32]) (i) The relation  p is defined on R I by
Θ * ,   Θ * p Π * ,   Π *  if and only if Θ * Π * ,   Θ * Π * ,
for all Θ * ,   Θ * ,   Π * ,   Π * R I , and it is a pseudo-order relation. The relation Θ * ,   Θ * p Π * ,   Π * coincident to Θ * ,   Θ * Π * ,   Π * on R I when it is p .
(ii) It can be easily seen that p looks like “left and right” on the real line R , so we call p “left and right” (or “ L R ” order, in short).
Definition 3.
According to [32], the mapping  Υ : ɣ 1 , ɣ 2 R I + is referred to be L R I V convex mapping on ɣ 1 , ɣ 2 if
Υ g ȵ + 1 g ȶ p g Υ ȵ + 1 g Υ ȶ ,
for all   ȵ ,   ȶ ɣ 1 , ɣ 2 ,   and g 0 ,   1 . If the inequality (15) is reversed, then Υ is referred to be L R I V concave mapping on ɣ 1 , ɣ 2 .
Definition 4.
According to [31], the mapping  Υ : ɣ 1 , ɣ 2 R I + is referred to be L R -interval-valued harmonically convex mapping ( L R I V H convex mapping) on   ɣ 1 , ɣ 2 if
Υ ȵ ȶ g ȶ + ( 1 g ) ɣ 1 p g Υ ȵ + 1 g Υ ȶ ,
for all   ȵ ,   ȶ ɣ 1 , ɣ 2   and g 0 ,   1 . If the inequality (16) is reversed, then Υ is referred to be L R I V H concave mapping on ɣ 1 , ɣ 2 .

3. Generalized Interval Fractional Integrals and Related Hermite–Hadamard Inequalities

Exponential kernels are a feature of new operators for interval-valued fractional integrals. The performance and application of the more general operator are highlighted by the way the suggested method precisely matches inequalities pertaining to L R I V H convexity and L R I V convexity. We now present a generalized form of interval fractional integrals related to fractional integrals with an exponential kernel.
We introduced the more general concept of the fractional integral operator with an exponential in the kernel as follows:
Definition 5.
Let  Υ : R I , 0 < ɣ 1 < ɣ 2 be an interval-valued mapping defined by Υ = Υ * , Υ * such that Υ is a non-negative and integrable, and let ɦ be a differentiable and strictly non-decreasing on ɣ 1 , ɣ 2 . Then, the interval fractional integral operators J ɣ 1 a , ɦ and J ɣ 2 a , ɦ of order a > 0 are stated as
J ɣ 1 + a , ɦ Υ = 1 a ɣ 1     e 1 a a ɦ ψ τ ɦ τ Υ τ d τ ,   > ɣ 1 ,
and
  J ɣ 2 a , ɦ Υ = 1 a ɣ 2     e 1 a a ɦ τ ɦ ɦ τ Υ τ d τ , < ɣ 2 .
Obviously, we have
J ɣ 1 + a , ɦ Υ = J ɣ 1 + a , ɦ Υ * , J ɣ 1 + a , ɦ Υ * ,
and
J ɣ 2 a , ɦ Υ = J ɣ 2 a , ɦ Υ * , J ɣ 2 a , ɦ Υ * .
Next, we give the following description of the one-sided definition of a more extended fractional integral operator with an exponential kernel.
Definition 6.
Let  Υ : R I , 0 < ɣ 1 < ɣ 2 be a mapping such that Υ is a non-negative and integrable, and let ɦ be a differentiable and strictly non-decreasing on ɣ 1 , ɣ 2 . Then, the one-sided fractional integral operator J 0 + , a , ɦ is stated as
J 0 + , a , ɦ Υ ( ) = 1 a 0 e 1 a a ( ɦ ( ) ψ ( τ ) ) ɦ ( τ ) Υ ( τ ) d τ ,   > τ .
Obviously, we have
J 0 + , a , ɦ Υ = J 0 + , a , ɦ Υ * , J 0 + , a , ɦ Υ * .
Throughout the upcoming results, we set  φ = 1 a a ɣ 2 ɣ 1 ɣ 2 ɣ 1 .
For the applications of newly defined integrals, we now provide the following derivation of the H H inequality for L R I V H convex mappings in the frame of a new fractional integral operator.
Theorem 1.
For  a > 0 , there is a non-negative mapping Υ : R { 0 } R I with ɣ 2 > ɣ 1 and Υ L 1 ɣ 1 , ɣ 2 , R I . If Υ is a L R I V H convex mapping on , then
Υ 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 p 1 a 2 1 e φ J 1 ɣ 1 a ( Υ Q ) 1 ɣ 2 + J 1 + ɣ 2 a ( Υ Q ) 1 ɣ 1 p Υ ɣ 1 + Υ ɣ 2 2 ,
where Q ( ) = 1 , 1 ɣ 2 , 1 ɣ 1 .
Proof. 
By utilizing the L R I V H convexity of Υ on I , we obtain the following for every ʎ 1 , ʎ 2 I with g = 1 2 :
Υ * 2 ʎ 1 ʎ 2 ʎ 1 + ʎ 2 Υ * ʎ 1 + Υ * ʎ 2 2 Υ * 2 ʎ 1 ʎ 2 ʎ 1 + ʎ 2 Υ * ʎ 1 + Υ * ʎ 2 2 .
By choosing ʎ 1 = ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 , ʎ 2 = ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 , and (24) takes the following form:
2 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 Υ * ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 2 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 .
By multiplying both sides by e φ g , and then integrating them with respect to g from 0 to 1, we obtain
0 1     e φ g Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 d g 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g 2 1 e φ φ Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 ɣ 1 ɣ 2 ɣ 2 ɣ 1 1 ɣ 2 1 ɣ 1     e ɣ 1 ɣ 2 ( 1 a ) a ɣ 2 ɣ 1 ʎ 1 ɣ 2 Υ * 1 d + 1 ɣ 2 1 ɣ 1     e ɣ 1 ɣ 2 ( 1 a ) a ɣ 2 ɣ 1 1 ɣ 1 ʎ Υ * 1 d = a ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ * Q ) 1 ɣ 2 + J 1 ɣ 2 + a ( Υ * Q ) 1 ɣ 1 .
Similarly, for Υ * , we have
2 1 e φ φ Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g ɣ 1 ɣ 2 ɣ 2 ɣ 1 1 ɣ 2 1 ɣ 1     e ɣ 1 ɣ 2 ( 1 a ) a ɣ 2 ɣ 1 ʎ 1 ɣ 2 Υ * 1 d + 1 ɣ 2 1 ɣ 1     e ɣ 1 ɣ 2 ( 1 a ) a ɣ 2 ɣ 1 1 ɣ 1 ʎ Υ * 1 d = a ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ * Q ) 1 ɣ 2 + J 1 ɣ 2 + a ( Υ * Q ) 1 ɣ 1 .
From (26) and (27), we obtain the first inequality.
First, we observe that if Υ is a L R I V H convex mapping, then for g [ 0,1 ] , it provides the second inequality in (23).
Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 g Υ * ɣ 1 + ( 1 g ) Υ * ɣ 2
and
Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 g Υ * ɣ 2 + 1 g Υ * ɣ 1 ,
By adding the above inequalities, we have
Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 + Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 Υ * ɣ 1 + Υ * ɣ 2 Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 + Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 Υ * ɣ 1 + Υ * ɣ 2 .
After that, one obtains the following by multiplying both sides of (28) by e φ g and integrating the inequality from 0 to 1 :
0 1 e φ g Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1 e φ g Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g Υ * ɣ 1 + Υ * ɣ 2 0 1     e φ g d g
0 1 e φ g Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1 e φ g Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g Υ * ɣ 1 + Υ * ɣ 2 0 1     e φ g d g .
As a result, we have
a ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ * Q ) 1 ɣ 2 + J 1 + ɣ 2 a ( Υ * Q ) 1 ɣ 1 1 e φ φ Υ * ɣ 1 + Υ * ɣ 2
a ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ * Q ) 1 ɣ 2 + J 1 + ɣ 2 a ( Υ * Q ) 1 ɣ 1 1 e φ φ Υ * ɣ 1 + Υ * ɣ 2 .
Which implies that
a ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a Υ * Q 1 ɣ 2 , J 1 ɣ 1 a ( Υ * Q ) 1 ɣ 2 + J 1 + ɣ 2 a Υ * Q 1 ɣ 1 , J 1 + ɣ 2 a ( Υ * Q ) 1 ɣ 1
p 1 e φ φ Υ * ɣ 1 , Υ * ɣ 1 + Υ * ɣ 2 , Υ * ɣ 2 ,
Hence,
a ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ Q ) 1 ɣ 2 + J 1 + ɣ 2 a ( Υ Q ) 1 ɣ 1 p 1 e φ φ Υ ɣ 1 + Υ ɣ 2
The proof is concluded. □
Remark 2.
As suggested by Iscan in [34], in the limiting situation,
l i m a 1   1 a 2 1 e 1 a a ɣ 2 ɣ 1 ɣ 1 ɣ 2 = ɣ 1 ɣ 2 2 ɣ 2 ɣ 1 .
and Υ * = Υ * .
We now go over the Pachpatte-type inequalities proved in Theorems 2 and 3 for L R I V H convex mappings:
Theorem 2.
For  a > 0 , there are two L R I V H convex mappings, Υ , P : R { 0 } R I such that Υ , P L 1 ɣ 1 , ɣ 2 , R I with ɣ 2 > ɣ 1 and ɣ 1 , ɣ 2 , then
a ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a Υ 1 ɣ 2 P 1 ɣ 2 + J 1 ɣ 2 + a Υ 1 ɣ 1 P 1 ɣ 1   p Υ 1 ɣ 1 , ɣ 2 φ 2 2 φ + 4 e φ φ 2 + 2 φ + 4 2 φ 3 .   + Υ 2 ɣ 1 , ɣ 2 φ 2 + e φ ( φ + 2 ) φ 3 ,
where
Υ 1 ɣ 1 , ɣ 2 = Υ ɣ 1 P ɣ 1 + Υ ɣ 2 P ɣ 2
and
Υ 2 ɣ 1 , ɣ 2 = Υ ɣ 1 P ɣ 2 + Υ ɣ 2 P ɣ 1 .
Proof. 
Since Υ and P are L R I V H convex mappings on , then for g [ 0,1 ] ,
Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 g 2 Υ * ɣ 1 P * ɣ 1 + ( 1 g ) 2 Υ * ɣ 2 P * ɣ 2 + g 1 g Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 g 2 Υ * ɣ 1 P * ɣ 1 + ( 1 g ) 2 Υ * ɣ 2 P * ɣ 2 + g 1 g Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 .
and
Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 g 2 Υ * ɣ 2 P * ɣ 2 + ( 1 g ) 2 Υ * ɣ 1 P * ɣ 1 + g ( 1 g ) Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 1 + 1 g ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + 1 g ɣ 2 g 2 Υ * ɣ 2 P * ɣ 2 + ( 1 g ) 2 Υ * ɣ 1 P * ɣ 1 + g 1 g Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 .
Adding (34) and (35), we obtain
Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 2 g 2 2 g + 1 Υ * ɣ 1 P * ɣ 1 + Υ * ɣ 2 P * ɣ 2 + 2 g ( 1 g ) Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 2 g 2 2 g + 1 Υ * ɣ 1 P * ɣ 1 + Υ * ɣ 2 P * ɣ 2 + 2 g 1 g Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 .
After that, one obtains the following by multiplying both sides of (35) by e φ g and integrating the inequality with respect to g from 0 to 1 :
0 1     e φ g Υ * ɣ 1 ɣ 2 ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g Υ * ɣ 1 P * ɣ 1 + Υ * ɣ 2 P * ɣ 2 0 1     e φ g 2 g 2 2 g + 1 d g + 2 Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 0 1     e φ g 2 g 2 2 g + 1 × g ( 1 g ) d g 0 1     e φ g Υ * ɣ 1 ɣ 2 ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g Υ * ɣ 1 P * ɣ 1 + Υ * ɣ 2 P * ɣ 2 0 1     e φ g 2 g 2 2 g + 1 d g + 2 Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 0 1     e φ g 2 g 2 2 g + 1 × g 1 g d g .
Consequently, we obtain
a ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a Υ * 1 ɣ 2 P * 1 ɣ 2 , J 1 ɣ 1 a Υ * 1 ɣ 2 P * 1 ɣ 2 + J 1 ɣ 2 + a Υ * 1 ɣ 1 P * 1 ɣ 1 , J 1 ɣ 2 + a Υ * 1 ɣ 1 P * 1 ɣ 1   p Υ * ɣ 1 P * ɣ 1 , Υ * ɣ 1 P * ɣ 1 + Υ * ɣ 2 P * ɣ 2 , Υ * ɣ 2 P * ɣ 2 1 e φ φ 2 + 2 φ + 4 2 φ 3 + Υ * ɣ 1 P * ɣ 2 , Υ * ɣ 1 P * ɣ 2 + Υ * ɣ 2 P * ɣ 1 , Υ * ɣ 2 P * ɣ 1 φ 2 + e φ ( φ + 2 ) φ 3 = Υ * 1 ɣ 1 , ɣ 2 , Υ 1 * ɣ 1 , ɣ 2 φ 2 2 φ + 4 e φ φ 2 + 2 φ + 4 2 φ 3 + Υ * 2 ɣ 1 , ɣ 2 , Υ 2 * ɣ 1 , ɣ 2 φ 2 + e φ ( φ + 2 ) φ 3 .
This concludes the proof of (30). □
Theorem 3.
For  a > 0 , there are two L R I V H convex mappings Υ , P : R { 0 } R I , such that Υ , P L 1 ɣ 1 , ɣ 2 , R I with ɣ 2 > ɣ 1 and ɣ 1 , ɣ 2 , then
2 Υ 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 p 1 a 2 1 e φ J 1 ɣ 1 a Υ 1 ɣ 2 P 1 ɣ 2 + J 1 ɣ 2 + a Υ 1 ɣ 1 P 1 ɣ 1   + φ 2 2 φ + 4 e φ φ 2 + 2 φ + 4 2 φ 2 1 e φ Υ 2 ɣ 1 , ɣ 2 + φ 2 + ( φ + 2 ) e φ φ 2 1 e φ Υ 1 ɣ 1 , ɣ 2 ,
where
ɣ 1 ɣ 1 , ɣ 2 = Υ ɣ 1 P ɣ 1 + Υ ɣ 2 P ɣ 2 ,
and
Υ 2 ɣ 1 , ɣ 2 = Υ ɣ 1 P ɣ 2 + Υ ɣ 2 P ɣ 1 .
Proof. 
By utilizing the L R I V H convexity of the mappings Υ and P on I , we obtain the following for all ʎ 1 , ʎ 2 :
Υ * 2 ʎ 1 ʎ 2 ʎ 1 + ʎ 2 Υ * ʎ 1 + Υ * ʎ 2 2 Υ * 2 ʎ 1 ʎ 2 ʎ 1 + ʎ 2 Υ * ʎ 1 + Υ * ʎ 2 2 ,
and
P * 2 ʎ 1 ʎ 2 ʎ 1 + ʎ 2 P * ʎ 1 + P * ʎ 2 2 P * 2 ʎ 1 ʎ 2 ʎ 1 + ʎ 2 P * ʎ 1 + P * ʎ 2 2 .
Substituting ʎ 1 = ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 and ʎ 2 = ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 , we have
  4 Υ * ( 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 P * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2   Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 + Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2   + Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 + Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1   = Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 + Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2   + g 2 + ( 1 g ) 2 Υ * ɣ 2 P * ɣ 1 + Υ * ɣ 1 P * ɣ 2   + 2 g ( 1 g ) Υ * ɣ 1 P * ɣ 1 + Υ * ɣ 2 P * ɣ 2   = Υ * ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 + Υ * ɣ 1 ɣ 2 g ɣ 1 + 1 g ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + 1 g ɣ 2   + 2 g 2 2 g + 1 Υ * 2 ɣ 1 , ɣ 2 + 2 g 1 g Υ * 1 ɣ 1 , ɣ 2 ,
and
4 Υ * ( 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 P * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 Υ * ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 + Υ * ɣ 1 ɣ 2 g ɣ 1 + 1 g ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + 1 g ɣ 2 + 2 g 2 2 g + 1 Υ 2 * ɣ 1 , ɣ 2 + 2 g ( 1 g ) Υ 1 * ɣ 1 , ɣ 2
After that, one obtains the following by multiplying both sides of (35) by e φ g and integrating the inequality with respect to g from 0 to 1 :
4 1 e φ φ Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 P * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 ,   Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 P * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g , 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 P * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g , 0 1     e φ g Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 P * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g = Υ * 2 ɣ 1 , ɣ 2 , Υ 2 * ɣ 1 , ɣ 2 φ 2 2 φ + 4 e φ φ 2 + 2 φ + 4 2 φ 3 + Υ * 1 ɣ 1 , ɣ 2 , Υ 1 * ɣ 1 , ɣ 2 φ 2 + e φ ( φ + 2 ) φ 3 .
following appropriate reorganizations, we obtain the intended inequality (36). □
We need the following Lemma 1 in order to produce our next important conclusion, which will let us prove the H H –Fejér-type inequality.
Lemma 1.
For  a > 0 , there is a mapping Q : I R { 0 } R I integrable and harmonically symmetric with respect to 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 , then
J 1 ɣ 2 a Q D 1 ɣ 1 = J 1 ɣ 1 a ( Q D ) 1 ɣ 2 = 1 2 J 1 ɣ 2 a ( Q D ) 1 ɣ 1 + J 1 ɣ 1 a ( Q D ) 1 ɣ 2 .
where a > 0 and D ( ʎ ) = 1 ʎ , ʎ 1 ɣ 2 , 1 ɣ 1 .
Proof. 
Using the given assumption, we can substitute g = 1 ɣ 1 + 1 ɣ 2 ʎ in the integral below and compute the result.
J 1 ɣ 2 + a ( Q D ) 1 ɣ 1 = 1 a 1 ɣ 2 1 ɣ 1     e φ 1 ɣ 1 g Q 1 g d g = 1 a 1 ɣ 2 1 ɣ 1     e φ g 1 ɣ 2 Q 1 1 ɣ 1 + 1 ɣ 2 ʎ d = 1 a 1 ɣ 1 1 ɣ 2     e φ g 1 ɣ 2 Q 1 ʎ d ʎ = 1 a 1 ɣ 1 1 ɣ 2     e φ g 1 ɣ 2 Q 1 ʎ d ʎ = J 1 ɣ 1 a Q D 1 ɣ 2 ,
the desired outcome. □
Theorem 4.
For  a > 0 , there is a L R I V H convex mapping Υ : R { 0 } R I , such that Υ L 1 ɣ 1 , ɣ 2 , R I with ɣ 2 > ɣ 1 and ɣ 1 , ɣ 2 . Also, if there is a non-negative that is integrable and harmonically symmetric with respect to 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 , then
Υ 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 J 1 ɣ 1 a ( Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Q D ) 1 ɣ 1 p J 1 ɣ 1 a ( Υ Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Υ Q D ) 1 ɣ 1 p Υ ɣ 1 + Υ ɣ 2 J 1 ɣ 1 a ( Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Q D ) 1 ɣ 1 .
where  D ( ʎ ) = 1 ʎ , ʎ 1 ɣ 2 , 1 ɣ 1 .
Proof. 
For all g [ 0,1 ] , we obtain inequality (24) because Υ is an L R I V H convex mapping on . After multiplying both sides of (25) by e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 , we integrate the inequality from 0 to 1 with respect to g .
2 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d
and
2 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 0 1     e φ g D ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 d g + 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 1 + 1 g ɣ 2 d g .
By setting ʎ = g ɣ 2 + ( 1 g ) ɣ 1 ɣ 1 ɣ 2 and utilizing Q , which is harmonically symmetric, we obtain
2 ɣ 1 ɣ 2 ɣ 2 ɣ 1 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 1 ɣ 2 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2     e φ ɣ 1 ɣ 2 ɣ 2 ɣ 1 ʎ 1 ɣ 2 Q 1 1 ɣ 1 + 1 ɣ 2 ʎ d   ɣ 1 ɣ 2 ɣ 2 ɣ 1 1 ɣ 2 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2     e φ ɣ 1 ɣ 2 ɣ 2 ɣ 1 ʎ 1 ɣ 2 Q 1 ʎ Υ * 1 1 ɣ 1 + 1 ɣ 2 ʎ d ʎ   + 1 ɣ 2 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2     e φ ɣ 1 ɣ 2 ɣ 2 ɣ 1 ʎ 1 ɣ 2 Q 1 ʎ Υ * 1 ʎ d ʎ ,
and
2 ɣ 1 ɣ 2 ɣ 2 ɣ 1 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 1 ɣ 2 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2     e φ ɣ 1 ɣ 2 ɣ 2 ɣ 1 ʎ 1 ɣ 2 Q 1 1 ɣ 1 + 1 ɣ 2 ʎ d   ɣ 1 ɣ 2 ɣ 2 ɣ 1 1 ɣ 2 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2     e φ ɣ 1 ɣ 2 ɣ 2 ɣ 1 ʎ 1 ɣ 2 Q 1 ʎ Υ * 1 1 ɣ 1 + 1 ɣ 2 ʎ d ʎ   + 1 ɣ 2 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2     e φ ɣ 1 ɣ 2 ɣ 2 ɣ 1 ʎ 1 ɣ 2 Q 1 ʎ Υ * 1 ʎ d ʎ .
It follows that
ɣ 1 ɣ 2 a ɣ 2 ɣ 1 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 J 1 ɣ 1 a ( Q D ) 1 ɣ 2 ɣ 1 ɣ 2 a ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ * Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Υ * Q D ) 1 ɣ 1 ,
and
ɣ 1 ɣ 2 a ɣ 2 ɣ 1 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 J 1 ɣ 1 a ( Q D ) 1 ɣ 2 ɣ 1 ɣ 2 a ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ * Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Υ * Q D ) 1 ɣ 1 .
Lemma 1 is applied to the left side of (49), giving us
ɣ 1 ɣ 2 ɣ 2 ɣ 1 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 J 1 ɣ 1 a ( Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Q D ) 1 ɣ 1 ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ * Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Υ * Q D ) 1 ɣ 1
and
ɣ 1 ɣ 2 ɣ 2 ɣ 1 Υ * 2 ɣ 1 ɣ 2 ɣ 1 + ɣ 2 J 1 ɣ 1 a ( Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Q D ) 1 ɣ 1 ɣ 1 ɣ 2 ɣ 2 ɣ 1 J 1 ɣ 1 a ( Υ * Q D ) 1 ɣ 2 + J 1 ɣ 2 + a ( Υ * Q D ) 1 ɣ 1 .
By multiplying both sides of (25) by e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 and integrating the inequality with respect to g from 0 to 1, we can prove the second inequality in (44).
0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 1 + 1 g ɣ 2 d g Υ * ɣ 1 + Υ * ɣ 2 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g ,
and
0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 Υ * ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g Υ * ɣ 1 + Υ * ɣ 2 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + 1 g ɣ 1 d g .
From (53) and (54), we have
0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 Υ ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g + 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 Υ ɣ 1 ɣ 2 g ɣ 1 + ( 1 g ) ɣ 2 d g p Υ ɣ 1 + Υ ɣ 2 0 1     e φ g Q ɣ 1 ɣ 2 g ɣ 2 + ( 1 g ) ɣ 1 d g .
Again, by setting ʎ = g ɣ 2 + ( 1 g ) ɣ 1 ɣ 1 ɣ 2 and after simple calculations, the second inequality is concluded in (44). □
Remark 3.
From Theorems 3 and 4, if  Υ * = Υ * , then
(1) 
Theorem 4 in [35] is obtained if one chooses a 1 .
(2) 
Theorem 2 in [35] can be obtained if one accepts Q ( ) = 1 and a 1 .

4. New Extensions for Convex Mappings via Interval Fractional Integral with an Exponential in the Kernel

In this article, we will assume that ɦ(g) is a monotone, non-decreasing, non-negative mapping defined on [ 0 , ) such that ɦ ( 0 ) = 0 , and ɦ ( g ) is continuous on [ 0 , ) .
Theorem 5.
For  a > 0 , let Υ and D be two non-negative mappings with Υ D defined on [ 0 , ) . Additionally, if an L R I V convex mapping S with S ( 0 ) = 0 and a non-decreasing mapping Υ and a decreasing mapping Υ D defined on [ 0 , ) , then the following inequality is satisfied by the fractional integral operator stated in (21) such that
J 0 + , a , ɦ [ Υ ( ) ] J 0 + , a , ɦ [ D ( ) ] p J 0 + , a , ɦ [ S ( Υ ( ) ) ] J 0 + , a , ɦ [ S ( D ( ) ) ] .
Proof. 
The mapping S ( ) is non-decreasing according to the hypothesis that is provided. Υ and the mapping S ( ) are both non-decreasing. There is an obvious decrease in the mapping Υ ( ) D ( ) . Thus, we obtain the following for any g , [ 0 , ) :
  S * ( Υ ( g ) ) Υ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( ) D ( ) Υ ( g ) D ( g ) 0     S * ( Υ ( g ) ) Υ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( ) D ( ) Υ ( g ) D ( g ) 0 .
It follows that
  S * ( Υ ( g ) ) Υ ( g ) Υ ( ) D ( ) + S * ( Υ ( ) ) Υ ( ) Υ ( g ) D ( g ) S * Υ Υ Υ D S * ( Υ ( g ) ) Υ ( g ) Υ ( g ) D ( g ) 0     S * ( Υ ( g ) ) Υ ( g ) Υ ( ) D ( ) + S * ( Υ ( ) ) Υ ( ) Υ ( g ) D ( g ) S * Υ Υ Υ D S * Υ g Υ g Υ g D g 0 .
When we multiply (57) by D ( g ) D ( ) , we obtain
  S * Υ g Υ g Υ ( ) D ( g ) + S * Υ Υ Υ ( g ) D ( ) S * Υ Υ Υ ( ) D ( g ) S * Υ g Υ g Υ ( g ) D ( ) 0 ,     S * Υ g Υ g Υ ( ) D ( g ) + S * Υ Υ Υ ( g ) D ( ) S * Υ Υ Υ ( ) D ( g ) S * Υ g Υ g Υ ( g ) D ( ) 0 .
After integrating the inequality from 0 to and multiplying (58) by 1 a e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) , which is non-negative because g 0 , , > 0 , we obtain
  1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) Υ ( ) D ( g ) d g + 1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( g ) D ( ) d g   1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( ) D ( g ) d g 1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) Υ ( g ) D ( ) d g 0   1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) Υ ( ) D ( g ) d g + 1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( g ) D ( ) d g   1 a 0     e 1 a a ɦ ψ g ɦ ( g ) S * Υ Υ Υ ( ) D ( g ) d g 1 a 0     e 1 a a ɦ ψ g ɦ ( g ) S * Υ g Υ g Υ ( g ) D ( ) d g 0 .
This follows that
  Υ ( ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) + S * ( Υ ( ) ) Υ ( ) D ( ) J 0 + , a , ɦ ( Υ ( ) ) S * Υ Υ Υ J 0 + , a , ɦ ( D ( ) ) D ( ) J 0 + , a , ɦ S * Υ Υ Υ 0 ,   Υ ( ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) + S * ( Υ ( ) ) Υ ( ) D ( ) J 0 + , a , ɦ ( Υ ( ) ) S * Υ Υ Υ J 0 + , a , ɦ ( D ( ) ) D ( ) J 0 + , a , ɦ S * Υ Υ Υ 0 .
Once more, we derive the following by multiplying (59) by 1 a e 1 a a ( ɦ ( ) ɦ ( ) ) ɦ ( ) , which is non-negative because ( 0 , ) , > 0 , and we integrate the resulting identity from 0 to :
  J 0 + , a , ɦ Υ J 0 + , a , ɦ S * Υ Υ D + J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) J 0 + , a , ɦ ( Υ ( ) J 0 + , a , ɦ D J 0 + , a , ɦ S * Υ + J 0 + , a , ɦ S * Υ J 0 + , a , ɦ ( D ( ) ) ,   Υ J 0 + , a , ɦ Υ J 0 + , a , ɦ S * Υ Υ D + J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) J 0 + , a , ɦ ( Υ ( ) J 0 + , a , ɦ D J 0 + , a , ɦ S * Υ + J 0 + , a , ɦ S * Υ J 0 + , a , ɦ D .
It follows that
  J 0 + , a , ɦ Υ J 0 + , a , ɦ ( D ( ) ) J 0 + , a , ɦ S * Υ J 0 + , a , ɦ Υ ,   J 0 + , a , ɦ Υ J 0 + , a , ɦ ( D ( ) ) J 0 + , a , ɦ S * Υ J 0 + , a , ɦ Υ .
Now, since Υ D is defined on [ 0 , ) and S ( ) is a non-decreasing mapping, for g [ 0 , ) , we have
  S * ( Υ ( g ) ) Υ ( g ) S * ( D ( g ) ) D ( g ) ,   S * ( Υ ( g ) ) Υ ( g ) S * ( D ( g ) ) D ( g ) .
When we multiply (62) by 1 a e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) D ( g ) , we obtain a non-negative result because g ( 0 , ) , > 0 . We then integrate the inequality from 0 to .
  1 a 0     e 1 a a ɦ ψ g ɦ g S * Υ g Υ g D g d g   1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( D ( g ) ) D ( g ) D ( g ) d g ,   1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) D ( g ) d g   1 a 0     e 1 a a ɦ ψ g ɦ g S * D g D g D g d g .
Using (21), it is evident that
  J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) J 0 + , a , ɦ ( S * ( D ( ) ) ) ,   J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) J 0 + , a , ɦ ( S * ( D ( ) ) ) .
Thus, we have the necessary outcome from (61) and (63). □
Theorem 6.
For  a > 0 , let Υ and D be two non-negative mappings with Υ D defined on [ 0 , ) . Additionally, if an L R I V convex mapping S with S ( 0 ) = 0 and a non-decreasing mapping Υ and a decreasing mapping Υ D is defined on [ 0 , ) , then the following inequality is satisfied by the fractional integral operator stated in (21) such that
J 0 + , a , ɦ [ Υ ( ) ] J 0 + , b , ɦ [ S ( D ( ) ) ] + J 0 + , b , ɦ [ Υ ( ) ] J 0 + , a , ɦ [ S ( D ( ) ) ] J 0 + , a , ɦ [ D ( ) ] J 0 + , b , ɦ [ S ( Υ ( ) ) ] + J 0 + , b , ɦ [ D ( ) ] J 0 + , a , ɦ [ S ( Υ ( ) ) ] p 1 .
Proof. 
The mapping S ( ) is non-decreasing, just as Υ is. For every g , [ 0 , ) , it is evident that the mapping Υ ( ) D ( ) is decreasing. 1 b e 1 b b ( ɦ ( ) ɦ ( ) ) ɦ ( ) is multiplied, which is non-negative since ( 0 , ) , > 0 , and the resulting identity is integrated from 0 to .
  J 0 + , b , ɦ Υ J 0 + , a , ɦ S * Υ Υ D + J 0 + , b , ɦ ( Υ ( ) ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( )   J 0 + , a , ɦ ( D ( ) ) J 0 + , b , ɦ S * ( Υ ( ) ) Υ ( ) Υ ( ) J 0 + , b , ɦ ( D ( ) ) ,   J 0 + , b , ɦ Υ J 0 + , a , ɦ S * Υ Υ D + J 0 + , b , ɦ ( Υ ( ) ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( )   J 0 + , a , ɦ D J 0 + , b , ɦ S * Υ Υ Υ J 0 + , b , ɦ D .
Now, since Υ D is defined on [ 0 , ) and S * ( ) is a non-decreasing mapping, for g , [ 0 , ) , we have
  S * ( Υ ( g ) ) Υ ( g ) S * ( D ( g ) ) D ( g ) ,   S * ( Υ ( g ) ) Υ ( g ) S * ( D ( g ) ) D ( g ) .
The mapping 1 a e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) D ( g ) is the product of (66), which is non-negative since g ( 0 , ) , > 0 , and integrating the inequality from 0 to produces
  1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) D ( g ) d g   1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( D ( g ) ) D ( g ) D ( g ) d g ,   1 a 0     e 1 a a ( ɦ ( ) ψ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) D ( g ) d g   1 a 0     e 1 a a ɦ ψ g ɦ g S * D g D g D g d g .
Using (21), it is evident that
  J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) J 0 + , a , ɦ ( S * ( D ( ) ) ) ,   J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) J 0 + , a , ɦ ( S * ( D ( ) ) ) .
Hence, we obtain the necessary outcomes from (67) and (68). □
Remark 4.
Theorem 6 becomes Theorem 5 if one assumes that  b = a .
Theorem 7.
For  a > 0 , let Υ , D , and Q be two non-negative mappings with Υ D defined on [ 0 , ) . Additionally, if an L R I V convex mapping S with S ( 0 ) = 0 and two non-decreasing mappings Υ and Q and a decreasing mapping Υ D are defined on [ 0 , ) , then the following inequality is satisfied by the fractional integral operator stated in (21) such that
J 0 + , a , ɦ [ Υ ( ) ] J 0 + , a , ɦ [ D ( ) ] p J 0 + , a , ɦ S Υ Q J 0 + , a , ɦ S D Q .
Proof. 
Since Υ D is defined on [ 0 , ) and S ( ) is non-decreasing, for g , [ 0 , ) , we have
  S * ( Υ ( g ) ) Υ ( g ) S * ( D ( g ) ) D ( g ) ,   S * ( Υ ( g ) ) Υ ( g ) S * ( D ( g ) ) D ( g ) .
This is non-negative since g ( 0 , ) , > 0 and the inequality’s integration from 0 to produces
  1 a 0   e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) D ( g ) Q ( g ) d g   1 a 0 e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) S * ( D ( g ) ) D ( g ) D ( g ) Q ( g ) d g ,   1 a 0   e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) D ( g ) Q ( g ) d g   1 a 0 e a 1 a ɦ ɦ g ɦ g S * D g D g D g Q g d g .
Using (21), it is evident that
  J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) J 0 + , a , ɦ ( S * ( D ( ) ) Q ( ) ) ,   J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) J 0 + , a , ɦ ( S * ( D ( ) ) Q ( ) ) .
Also, since the mapping S is L R I V H convex mapping and S ( 0 ) = 0 , S ( g ) g is non-decreasing. Since Υ is non-decreasing, so is S ( Υ ( g ) ) Υ ( g ) . Clearly, the mapping Υ ( g ) D ( g ) is decreasing for all g , [ 0 , ) , > 0 . Thus,
  S * ( Υ ( g ) ) Υ ( g ) Q ( g ) S * ( Υ ( ) ) Υ ( ) Q ( ) ( Υ ( ) D ( g ) Υ ( g ) D ( ) ) 0 ,   S * ( Υ ( g ) ) Υ ( g ) Q ( g ) S * ( Υ ( ) ) Υ ( ) Q ( ) ( Υ ( ) D ( g ) Υ ( g ) D ( ) ) 0 .
It follows that
  S * ( Υ ( g ) ) Q ( g ) Υ ( g ) Υ ( ) D ( g ) S * ( Υ ( ) ) Q ( ) Υ ( ) Υ ( g ) D ( )   S * ( Υ ( ) ) Q ( ) Υ ( ) Υ ( ) D ( g ) S * ( Υ ( g ) ) Q ( g ) Υ ( g ) Υ ( ) D ( g ) 0 ,   S * ( Υ ( g ) ) Q ( g ) Υ ( g ) Υ ( ) D ( g ) S * ( Υ ( ) ) Q ( ) Υ ( ) Υ ( g ) D ( )   S * Υ Q Υ Υ ( ) D ( g ) S * Υ g Q g Υ g Υ ( ) D ( g ) 0 .
We multiply (74) by 1 a e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) , which is non-negative since g ( 0 , ) , > 0 . By integrating the final identity between 0 to , we obtain
  1 a 0     e a 1 a ɦ ɦ g ɦ g S * Υ g Υ g Υ D g Q g d g + 1 a 0     e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( g ) D ( ) Q ( ) d g   1 a 0     e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( ) D ( ) Q ( g ) d g   1 a 0     e a 1 a ɦ ɦ g ɦ ( g ) S * Υ g Υ g Υ ( ) D ( g ) Q ( ) d g 0 ,   1 a 0     e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) S * ( Υ ( g ) ) Υ ( g ) Υ ( ) D ( g ) Q ( g ) d g   + 1 a 0     e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( g ) D ( ) Q ( ) d g   1 a 0     e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) S * ( Υ ( ) ) Υ ( ) Υ ( ) D ( ) Q ( g ) d g   1 a 0     e a 1 a ɦ ɦ g ɦ ( g ) S * Υ g Υ g Υ ( ) D ( g ) Q ( ) d g 0 .
It follows that
  Υ ( ) J 0 + , a , ɦ S * Υ Υ D Q + S * Υ Υ D Q J 0 + , a , ɦ Υ   S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) J 0 + , a , ɦ ( D ( ) ) D ( ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) 0 ,   Υ J 0 + , a , ɦ S * Υ Υ D Q + S * Υ Υ D Q J 0 + , a , ɦ Υ   S * Υ Υ D Q J 0 + , a , ɦ ( D ( ) ) D ( ) J 0 + , a , ɦ S * Υ Υ D Q 0 .
Again, we multiply (75) by 1 a e a 1 a ( ɦ ( ) ɦ ( ) ) ɦ ( ) , which is non-negative since g ( 0 , ) , > 0 . By integrating the final identity between 0 to g , we obtain
  J 0 + , a , ɦ Υ J 0 + , a , ɦ S * Υ Υ D Q + J 0 + , a , ɦ ( Υ ( ) ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( )   J 0 + , a , ɦ Υ J 0 + , a , ɦ S * Υ Υ D Q + J 0 + , a , ɦ ( Υ ( ) ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) ,   J 0 + , a , ɦ Υ J 0 + , a , ɦ S * Υ Υ D Q + J 0 + , a , ɦ ( Υ ( ) ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( )   J 0 + , a , ɦ Υ J 0 + , a , ɦ S * Υ Υ D Q + J 0 + , a , ɦ ( Υ ( ) ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( )
It follows that
  J 0 + a , ( Υ ( ) ) J 0 + , a , ɦ ( D ( ) ) J 0 + , a , ɦ S * Υ Q J 0 + , a , ɦ S * Υ Υ D Q   ,   J 0 + a , ( Υ ( ) ) J 0 + , a , ɦ ( D ( ) ) J 0 + , a , ɦ S * Υ Q J 0 + , a , ɦ S * Υ Υ D Q   .
From (76) and (77), we thus obtain the necessary outcome. □
Theorem 8.
For  a > 0  , let Υ , D , and Q be two non-negative mappings with Υ D defined on [ 0 , ) . Additionally, if an L R I V convex mapping S with S ( 0 ) = 0 and two non-decreasing mappings Υ and Q and a decreasing mapping Υ D are defined on [ 0 , ) , then the following inequality is satisfied by the fractional integral operator stated in (21) such that
J 0 + , a , ɦ [ Υ ( ) ] J 0 + , b [ S ( Υ ( ) ) Q ( ) ] + J 0 + , b [ Υ ( ) ] J 0 + , a , ɦ [ S ( Υ ( ) ) Q ( ) ] J 0 + , a , ɦ [ D ( ) ] J 0 + , b [ S ( Υ ( ) ) Q ( ) ] + J 0 + , b [ D ( ) ] J 0 + , a , ɦ [ S ( Υ ( ) ) Q ( ) ] p 1 .
Proof. 
The inequality from 0 to can be integrated to obtain the following result by multiplying both sides of (75) by 1 b e b 1 b ( ɦ ( ) ɦ ( ) ) ɦ ( ) , which is non-negative because ( 0 , ) , > 0 .
  J 0 + , a , ɦ Υ J 0 + , a , ɦ S * Υ Υ D Q + J 0 + , a , ɦ ( Υ ( ) ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( )   J 0 + , a , ɦ ( D ( ) ) J 0 + , a , ɦ ( S * ( Υ ( ) ) Q ( ) ) + J 0 + , a , ɦ ( S * ( Υ ( ) ) Q ( ) ) J 0 + , a , ɦ ( D ( ) ) ,   J 0 + , a , ɦ Υ J 0 + , a , ɦ S * Υ Υ D Q + J 0 + , a , ɦ ( Υ ( ) ) J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( )   J 0 + , a , ɦ ( D ( ) ) J 0 + , a , ɦ ( S * ( Υ ( ) ) Q ( ) ) + J 0 + , a , ɦ ( S * ( Υ ( ) ) Q ( ) ) J 0 + , a , ɦ ( D ( ) )
Given that Υ D on [ 0 , ) and S ( ) is non-decreasing, we obtain the following for g , [ 0 , ) :
  S * ( Υ ( g ) ) Υ ( g ) S * ( D ( g ) ) D ( g ) ,   S * ( Υ ( g ) ) Υ ( g ) S * ( D ( g ) ) D ( g ) .
Once we multiply both sides of (80) by 1 a e a 1 a ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) D ( g ) Q ( g ) , g ( 0 , ) , g > 0 and integrate the resulting identity from 0 to g , we have
  J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) J 0 + , a , ɦ ( S * ( D ( ) ) Q ( ) ) ,   J 0 + , a , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) J 0 + , a , ɦ ( S * ( D ( ) ) Q ( ) )   .
In the same way, if we multiply both sides of (80) by 1 b e b 1 b ( ɦ ( ) ɦ ( g ) ) ɦ ( g ) D ( g ) Q ( g ) , g ( 0 , ) , g > 0 and integrate the inequality from 0 to , we obtain
  J 0 + , b , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) J 0 + , b , ɦ ( S * ( D ( ) ) Q ( ) ) ,   J 0 + , b , ɦ S * ( Υ ( ) ) Υ ( ) D ( ) Q ( ) J 0 + , b , ɦ ( S * ( D ( ) ) Q ( ) )   .
Therefore, we obtain the desired result. □
Remark 5.
If we set  b  equal to a , then Theorem 8 will transform into Theorem 7.

5. Conclusions

The interval fractional integral operators with an exponential kernel have been effectively used in this work to derive interval H H , H H –Fejér, and Pachpatte-type integral inequalities involving the interval fractional integral operator. These inequalities are primarily derived from mappings exhibiting L R I V H convexity. Several generalizations of the L R I V convexity theory can be achieved through the key process of adapting the extended form with an exponential in the kernel to the more interval-general fractional integral operator. This study highlights the efficiency of this approach. We validated the findings by presenting two distinct schemes and demonstrating that the results of the proposed method align closely with those of the interval–Riemann–Liouville fractional integral operator. The results clearly indicate that both strategies presented are reliable and effective for addressing various nonlinear problems in science and engineering. We conclude that the findings in this work contribute broadly to the understanding of complex waveforms and circuit theory. Further research is needed to confirm this potential connection.

Author Contributions

Conceptualization, A.F.A. and A.A.; validation, A.F.A.; formal analysis, A.F.A.; investigation, A.A. and S.A.; resources, A.A. and S.A.; writing—original draft, A.A. and S.A.; writing—review and editing, A.A. and A.F.A.; visualization, S.A. and A.A.; supervision, S.A. and A.A.; project administration, S.A. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Taif University, Saudi Arabia, project No (TU-DSPP-2024-87).

Data Availability Statement

There is no data availability statement to be declared.

Conflicts of Interest

The authors affirm that they have no conflicts of interest.

References

  1. Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite–Had amard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef]
  2. Jiang, X.; Wang, Y.; Zhao, D.; Shi, L. Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Sci. China Inf. Sci. 2024, 67, 140202. [Google Scholar] [CrossRef]
  3. Jia, G.; Luo, J.; Cui, C.; Kou, R.; Tian, Y.; Schubert, M. Valley quantum interference modulated by hyperbolic shear polaritons. Phys. Rev. B 2023, 109, 155417. [Google Scholar] [CrossRef]
  4. Kórus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions. Aequ. Math. 2019, 93, 527–534. [Google Scholar] [CrossRef]
  5. Abramovich, S.; Persson, L.E. Fejér and Hermite–Hadamard type inequalities for N-quasi-convex functions. Math. Notes 2017, 102, 599–609. [Google Scholar] [CrossRef]
  6. Delavar, M.R.; De La Sen, M. A mapping associated to h-convex version of the Hermite–Hadamard inequality with applications. J. Math. Inequal. 2020, 14, 329–335. [Google Scholar] [CrossRef]
  7. Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2018, 112, 1033–1048. [Google Scholar] [CrossRef]
  8. Marinescu, D.Ş.; Monea, M. A very short proof of the Hermite Hadamard inequalities. Am. Math. Month. 2020, 127, 850–851. [Google Scholar] [CrossRef]
  9. İşcan, İ. Weighted Hermite–Hadamard–Mercer type inequali ties for convex functions. Numer. Methods Part. Differ. Equ. 2021, 37, 118–130. [Google Scholar] [CrossRef]
  10. Kadakal, M.; Karaca, H.; İşcan, İ. Hermite-Hadamard type inequalities for multiplicatively geometrically P-functions Poincare. J. Anal. Appl. 2018, 2, 77–85. [Google Scholar]
  11. Kadakal, H.; Bekar, K. New inequalities for AH-convex functions using beta and hypergeometric functions. Poincare J. Anal. Appl. 2019, 2, 105–114. [Google Scholar] [CrossRef]
  12. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef]
  13. Du, T.S.; Awan, M.U.; Kashuri, A.; Zhao, S.S. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity. Appl. Anal. 2021, 100, 642–662. [Google Scholar] [CrossRef]
  14. Mohammed, P.O. Hermite–Hadamard inequalities for Riemann Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci. 2021, 44, 2314–2324. [Google Scholar] [CrossRef]
  15. Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
  16. Mehrez, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
  17. Kunt, M.; İşcan, İ.; Turhan, S.; Karapinar, D. Improvement of fractional Hermite–Hadamard type inequality for convex functions. Miskolc Math. Notes 2018, 19, 1007–1017. [Google Scholar] [CrossRef]
  18. Snyder, J.M. Interval analysis for computer graphics. ACM SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
  19. de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef]
  20. Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Educ. 2012, 55, 9–15. [Google Scholar] [CrossRef]
  21. Tian, F.; Liu, Z.; Zhou, J.; Chen, L.; Feng, X.T. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mech. Rock Eng. 2024, 57, 4835–4871. [Google Scholar] [CrossRef]
  22. Guo, S.; Zuo, X.; Wu, W.; Yang, X.; Zhang, J.; Li, Y.; Huang, C.; Bu, J.; Zhu, S. Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. Int. J. Digit. Earth 2024, 17, 2316107. [Google Scholar] [CrossRef]
  23. Zhou, T.; Yuan, Z.; Du, T. On the fractional integral inclusions having exponential kernels for interval-valued convex functions. Math. Sci. 2023, 17, 107–120. [Google Scholar] [CrossRef]
  24. Zhou, T.; Du, T. Certain fractional integral inclusions pertaining to interval-valued exponential trigonometric convex functions. J. Math. Inequal. 2023, 17, 1–30. [Google Scholar]
  25. Khan, M.B.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
  26. Khan, M.B.; Cătaş, A.; Aloraini, N.; Soliman, M.S. Some new versions of fractional inequalities for exponential trigonometric convex mappings via ordered relation on interval-valued settings. Fractal Fract. 2023, 7, 223. [Google Scholar] [CrossRef]
  27. Khan, M.B.; Macías-Díaz, J.E.; Althobaiti, A.; Althobaiti, S. Some new properties of exponential trigonometric convex functions using up and down relations over fuzzy numbers and related inequalities through fuzzy fractional integral operators having exponential kernels. Fractal Fract. 2023, 7, 567. [Google Scholar] [CrossRef]
  28. Dimitrijev, S. Effective Mass in Semiconductors; Bart. J. Van Zeghbroeck/University of Colorado: Boulder, CO, USA, 1997; pp. 1–7. [Google Scholar]
  29. Iscan, I.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
  30. Iscan, I.; Kunt, M. Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integrals. RGMIA Res. Rep. Collect. 2015, 18, 1–19. [Google Scholar]
  31. Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
  32. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
  33. Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
  34. Chang, X.; Guo, J.; Qin, H.; Huang, J.; Wang, X.; Ren, P. Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients. Water Resour. Manag. 2024, 38, 3953–3972. [Google Scholar] [CrossRef]
  35. Wang, Y.; Wu, W.; Christelle, M.; Sun, M.; Wen, Z.; Lin, Y.; Xu, J. Automated localization of mandibular landmarks in the construction of mandibular median sagittal plane. Eur. J. Med. Res. 2024, 29, 84. [Google Scholar] [CrossRef]
  36. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  37. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Aljohani, A.F.; Althobaiti, A.; Althobaiti, S. Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications. Axioms 2024, 13, 616. https://doi.org/10.3390/axioms13090616

AMA Style

Aljohani AF, Althobaiti A, Althobaiti S. Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications. Axioms. 2024; 13(9):616. https://doi.org/10.3390/axioms13090616

Chicago/Turabian Style

Aljohani, Abdulrahman F., Ali Althobaiti, and Saad Althobaiti. 2024. "Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications" Axioms 13, no. 9: 616. https://doi.org/10.3390/axioms13090616

APA Style

Aljohani, A. F., Althobaiti, A., & Althobaiti, S. (2024). Research on New Interval-Valued Fractional Integrals with Exponential Kernel and Their Applications. Axioms, 13(9), 616. https://doi.org/10.3390/axioms13090616

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop