Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,315)

Search Parameters:
Keywords = HY-2A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 2103 KiB  
Review
Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
by Manisha Nigam, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu and Gabriela Bungau
Cells 2025, 14(15), 1207; https://doi.org/10.3390/cells14151207 (registering DOI) - 6 Aug 2025
Abstract
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment [...] Read more.
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment dynamics remain unclear. Specifically, the spatial and temporal aspects of ROS regulation (i.e., the distinct effects of mitochondrial versus cytosolic ROS on the PI3K/Akt and NF-κB pathways, and the differential cellular outcomes driven by acute versus chronic ROS exposure) have been underexplored. Additionally, the specific contributions of ROS-generating enzymes, like NOX isoforms and xanthine oxidase, to tumor microenvironment remodeling and immune modulation remain poorly understood. This review synthesizes current findings with a focus on these critical gaps, offering novel mechanistic insights into the dualistic nature of ROS in cancer biology. By systematically integrating data on ROS source-specific functions and redox-sensitive signaling pathways, the complex interplay between ROS concentration, localization, and persistence is elucidated, revealing how these factors dictate the paradoxical support of tumor progression or induction of cancer cell death. Particular attention is given to antioxidant mechanisms, including NRF2-mediated responses, that may undermine the efficacy of ROS-targeted therapies. Recent breakthroughs in redox biosensors (i.e., redox-sensitive fluorescent proteins, HyPer variants, and peroxiredoxin–FRET constructs) enable precise, real-time ROS imaging across subcellular compartments. Translational advances, including redox-modulating drugs and synthetic lethality strategies targeting glutathione or NADPH dependencies, further highlight actionable vulnerabilities. This refined understanding advances the field by highlighting context-specific vulnerabilities in tumor redox biology and guiding more precise therapeutic strategies. Continued research on redox-regulated signaling and its interplay with inflammation and therapy resistance is essential to unravel ROS dynamics in tumors and develop targeted, context-specific interventions harnessing their dual roles. Full article
Show Figures

Figure 1

20 pages, 10502 KiB  
Article
Strengthening Mechanism of Char in Thermal Reduction Process of Silicon Dioxide
by Xiuli Xu, Peng Yu, Jinxiao Dou and Jianglong Yu
Materials 2025, 18(15), 3651; https://doi.org/10.3390/ma18153651 - 3 Aug 2025
Viewed by 194
Abstract
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due [...] Read more.
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due to its highly ordered microcrystalline structure, characterized by the largest aromatic cluster size (La) and lowest defect ratio (ID/IG = 0.37), which directly correlated with enhanced reaction completeness. The carbon–silicon reaction reactivity increased progressively with temperature, achieving optimal performance at 1550 °C. Addition of Fe and Fe2O3 significantly accelerated the reduction process, with Fe2O3 exhibiting superior catalytic performance by reducing activation energy and optimizing reaction kinetics. The ferrosilicon formation mechanism proceeds through a two-stage pathway: initial char-SiO2 reaction producing SiC and CO, followed by SiC–iron interaction generating FeSi, which catalytically promotes further reduction. These findings establish critical structure–performance relationships for char selection in industrial silicon production, where microcrystalline ordering emerges as the primary performance determinant. The identification of optimal temperature and additive conditions provides practical pathways to enhance energy efficiency and product quality in silicon metallurgy, enabling informed raw material selection and process optimization to reduce energy consumption and improve operational stability. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

22 pages, 4300 KiB  
Article
Optimised DNN-Based Agricultural Land Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 - 1 Aug 2025
Viewed by 280
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

15 pages, 2307 KiB  
Article
Two B-Box Proteins, GhBBX21 and GhBBX24, Antagonistically Modulate Anthocyanin Biosynthesis in R1 Cotton
by Shuyan Li, Kunpeng Zhang, Chenxi Fu, Chaofeng Wu, Dongyun Zuo, Hailiang Cheng, Limin Lv, Haiyan Zhao, Jianshe Wang, Cuicui Wu, Xiaoyu Guo and Guoli Song
Plants 2025, 14(15), 2367; https://doi.org/10.3390/plants14152367 - 1 Aug 2025
Viewed by 169
Abstract
The red plant phenotype of R1 cotton is a genetic marker produced by light-induced anthocyanin accumulation. GhPAP1D controls this trait. There are two 228 bp tandem repeats upstream of GhPAP1D in R1 cotton. In this study, GUS staining assays in transgenic Arabidopsis thaliana [...] Read more.
The red plant phenotype of R1 cotton is a genetic marker produced by light-induced anthocyanin accumulation. GhPAP1D controls this trait. There are two 228 bp tandem repeats upstream of GhPAP1D in R1 cotton. In this study, GUS staining assays in transgenic Arabidopsis thaliana (L.) Heynh. demonstrated that tandem repeats in the GhPAP1D promoter-enhanced transcriptional activity. GhPAP1D is a homolog of A. thaliana AtPAP1. AtPAP1’s expression is regulated by photomorphogenesis-related transcription factors such as AtHY5 and AtBBXs. We identified the homologs of A. thaliana AtHY5, AtBBX21, and AtBBX24 in R1 cotton, designated as GhHY5, GhBBX21, and GhBBX24, respectively. Y1H assays confirmed that GhHY5, GhBBX21, and GhBBX24 each bound to the GhPAP1D promoter. Dual-luciferase reporter assays revealed that GhHY5 weakly activated the promoter activity of GhPAP1D. Heterologous expression assays in A. thaliana indicated that GhBBX21 promoted anthocyanin accumulation, whereas GhBBX24 had the opposite effect. Dual-luciferase assays showed GhBBX21 activated GhPAP1D transcription, while GhBBX24 repressed it. Further study indicated that GhHY5 did not enhance GhBBX21-mediated transcriptional activation of GhPAP1D but alleviates GhBBX24-induced repression. Together, our results demonstrate that GhBBX21 and GhBBX24 antagonistically regulate anthocyanin accumulation in R1 cotton under GhHY5 mediation, providing insights into light-responsive anthocyanin biosynthesis in cotton. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Viewed by 283
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 232 KiB  
Article
Baicalein and Citric Acid Modulate Intestinal Morphology and Health Status in Laying Hens
by Yefei Zhou, Cunyi Qiu, Zhiding Zhou, Yanjie Zhang, Dunlin Zhang, Yao Cai, Jun Yuan, Shangxin Song, Zhihua Feng and Xinglong Wang
Vet. Sci. 2025, 12(8), 706; https://doi.org/10.3390/vetsci12080706 - 28 Jul 2025
Viewed by 247
Abstract
This study aimed to investigate the effects of baicalin and citric acid on egg production performance, egg quality, and the intestinal morphology and function of laying hens. A total of 600 Hy-Line Brown laying hens, 59 weeks old, were randomly allocated to four [...] Read more.
This study aimed to investigate the effects of baicalin and citric acid on egg production performance, egg quality, and the intestinal morphology and function of laying hens. A total of 600 Hy-Line Brown laying hens, 59 weeks old, were randomly allocated to four dietary treatments, with 10 replicates per treatment and 15 hens per replicate. The control group was fed a basal diet, while the other three groups were fed the basal diet supplemented with 150 mg/kg baicalin (B), 2000 mg/kg citric acid (CA), or 150 mg/kg baicalin plus 2000 mg/kg citric acid (B + CA), respectively. The experimental period lasted for 12 weeks, and the results indicated that neither the individual addition nor the combined application of baicalin and citric acid had a significant impact on the laying performance. However, compared with the control group, the baicalin and/or citric acid supplementation significantly increased the eggshell strength and Haugh unit. Additionally, the combination of baicalin and citric acid significantly increased the villus height and the villus height/crypt depth ratio in the duodenum and jejunum. It also enhanced the population of beneficial bacteria, such as Lactobacillus and Bifidobacterium, in the cecum and improved the activity of intestinal digestive enzymes, primarily disaccharidases. Furthermore, the addition of baicalin to the diet significantly increased the content of Secretory Immunoglobulin A in the ileum and jejunum after 12 weeks of feeding. These results suggest that the combination of baicalin and citric acid had a synergistic effect on the improvement of egg quality and intestinal morphology and function in laying hens. Overall, our findings provide important insights into the potential benefits of supplementing baicalin and citric acid in the diet of laying hens and may have practical implications for improving egg quality and poultry health status. Full article
11 pages, 5560 KiB  
Article
Pilot Study of [11C]HY-2-15: A Mixed Alpha-Synuclein and Tau PET Radiotracer
by Chia-Ju Hsieh, Dinahlee Saturnino Guarino, Anthony J. Young, Andrew D. Siderowf, Ilya Nasrallah, Alexander Schmitz, Carol Garcia, Ho Young Kim, Erin K. Schubert, Hsiaoju Lee, Joel S. Perlmutter and Robert H. Mach
Cells 2025, 14(15), 1157; https://doi.org/10.3390/cells14151157 - 26 Jul 2025
Viewed by 363
Abstract
A novel brain positron emission tomography (PET) radioligand, [11C]HY-2-15, has potential for imaging alpha-synuclein aggregations in multiple system atrophy and misfolded tau proteins in tauopathies, based on its high binding affinity in disease brain tissue homogenates. Here, we demonstrate that [ [...] Read more.
A novel brain positron emission tomography (PET) radioligand, [11C]HY-2-15, has potential for imaging alpha-synuclein aggregations in multiple system atrophy and misfolded tau proteins in tauopathies, based on its high binding affinity in disease brain tissue homogenates. Here, we demonstrate that [3H]HY-2-15 has the capability to bind to aggregated alpha-synuclein in multiple system atrophy brain and tau aggregations in progressive supranuclear palsy and corticobasal degeneration brain tissues via in vitro autoradiography study. A first-in-human pilot multicenter clinical study recruited a total of 10 subjects including healthy controls and patients with Parkinson’s disease, multiple system atrophy, or progressive supranuclear palsy. The study revealed that [11C]HY-2-15 has a relatively higher specific uptake in the pallidum and midbrain of patients with progressive supranuclear palsy. Total-body scans performed on the PennPET Explorer showed the radiotracer was cleared by renal excretion. However, the rapid metabolism and low brain uptake resulted in a limited signal of [11C]HY-2-15 in brain. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

17 pages, 424 KiB  
Article
HyMePre: A Spatial–Temporal Pretraining Framework with Hypergraph Neural Networks for Short-Term Weather Forecasting
by Fei Wang, Dawei Lin, Baojun Chen, Guodong Jing, Yi Geng, Xudong Ge, Daoming Wei and Ning Zhang
Appl. Sci. 2025, 15(15), 8324; https://doi.org/10.3390/app15158324 (registering DOI) - 26 Jul 2025
Viewed by 269
Abstract
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable [...] Read more.
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable success in meteorological forecasting by effectively capturing spatial dependencies among distributed weather stations. However, most existing GNN-based approaches rely on pairwise station connections, limiting their capacity to represent higher-order spatial interactions. Moreover, their dependence on supervised learning makes them vulnerable to spatial heterogeneity and temporal non-stationarity. This paper introduces a novel spatial–temporal pretraining framework, Hypergraph-enhanced Meteorological Pretraining (HyMePre), which combines hypergraph neural networks with self-supervised learning to model high-order spatial dependencies and improve generalization across diverse climate regimes. HyMePre employs a two-stage masking strategy, applying spatial and temporal masking separately, to learn disentangled representations from unlabeled meteorological time series. During forecasting, dynamic hypergraphs group stations based on meteorological similarity, explicitly capturing high-order dependencies. Extensive experiments on large-scale reanalysis datasets show that HyMePre outperforms conventional GNN models in predicting temperature, humidity, and wind speed. The integration of pretraining and hypergraph modeling enhances robustness to noisy data and improves generalization to unseen climate patterns, offering a scalable and effective solution for operational weather forecasting. Full article
Show Figures

Figure 1

14 pages, 1299 KiB  
Article
Host-Dependent Variation in Tetranychus urticae Fitness and Microbiota Composition Across Strawberry Cultivars
by Xu Zhang, Hongjun Yang, Zhiming Yan, Yuanhua Wang, Quanzhi Wang, Shimei Huo, Zhan Chen, Jialong Cheng and Kun Yang
Insects 2025, 16(8), 767; https://doi.org/10.3390/insects16080767 - 25 Jul 2025
Viewed by 493
Abstract
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods [...] Read more.
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods can vary significantly across different plant species and cultivars. In this study, we investigated the fecundity, longevity, growth rate, and microbiota composition of T. urticae reared on seven Chinese strawberry cultivars: Hongyan (HY), Yuexiu (YX), Tianshi (TS), Ningyu (NY), Xuetu (XT), Zhangjj (ZJ), and Xuelixiang (XLX). Our findings revealed significant differences among cultivars: mites reared on the XT cultivar exhibited the highest fecundity (166.56 ± 7.82 eggs), while those on XLX had the shortest pre-adult period (7.71 ± 0.13 days). Longevity was significantly extended in mites reared on XLX, XT, and NY cultivars (25.95–26.83 days). Microbiota analysis via 16S rRNA sequencing showed that Proteobacteria dominated (>89.96% abundance) across all mite groups, with Wolbachia as the predominant symbiont (89.58–99.19%). Male mites exhibited higher bacterial diversity (Shannon and Chao1 indices) than females, though Wolbachia abundance did not differ significantly between sexes or cultivars. Functional predictions highlighted roles of microbiota in biosynthesis, detoxification, and energy metabolism. These findings underscore the influence of host plant variety on T. urticae fitness and microbiota composition, suggesting potential strategies for breeding resistant strawberry cultivars and leveraging microbial interactions for pest management. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

20 pages, 18416 KiB  
Article
Swin-FSNet: A Frequency-Aware and Spatially Enhanced Network for Unpaved Road Extraction from UAV Remote Sensing Imagery
by Jiwu Guan, Qingzhan Zhao, Wenzhong Tian, Xinxin Yao, Jingyang Li and Wei Li
Remote Sens. 2025, 17(14), 2520; https://doi.org/10.3390/rs17142520 - 20 Jul 2025
Viewed by 401
Abstract
The efficient recognition of unpaved roads from remote sensing (RS) images holds significant value for tasks such as emergency response and route planning in outdoor environments. However, unpaved roads often face challenges such as blurred boundaries, low contrast, complex shapes, and a lack [...] Read more.
The efficient recognition of unpaved roads from remote sensing (RS) images holds significant value for tasks such as emergency response and route planning in outdoor environments. However, unpaved roads often face challenges such as blurred boundaries, low contrast, complex shapes, and a lack of publicly available datasets. To address these issues, this paper proposes a novel architecture, Swin-FSNet, which combines frequency analysis and spatial enhancement techniques to optimize feature extraction. The architecture consists of two core modules: the Wavelet-Based Feature Decomposer (WBFD) module and the Hybrid Dynamic Snake Block (HyDS-B) module. The WBFD module enhances boundary detection by capturing directional gradient changes at the road edges and extracting high-frequency features, effectively addressing boundary blurring and low contrast. The HyDS-B module, by adaptively adjusting the receptive field, performs spatial modeling for complex-shaped roads, significantly improving adaptability to narrow road curvatures. In this study, the southern mountainous area of Shihezi, Xinjiang, was selected as the study area, and the unpaved road dataset was constructed using high-resolution UAV images. Experimental results on the SHZ unpaved road dataset and the widely used DeepGlobe dataset show that Swin-FSNet performs well in segmentation accuracy and road structure preservation, with an IoUroad of 81.76% and 71.97%, respectively. The experiments validate the excellent performance and robustness of Swin-FSNet in extracting unpaved roads from high-resolution RS images. Full article
Show Figures

Figure 1

13 pages, 5276 KiB  
Technical Note
Regional Assessment of COCTS HY1-C/D Chlorophyll-a and Suspended Particulate Matter Standard Products over French Coastal Waters
by Corentin Subirade, Cédric Jamet and Bing Han
Remote Sens. 2025, 17(14), 2516; https://doi.org/10.3390/rs17142516 - 19 Jul 2025
Viewed by 241
Abstract
Chlorophyll-a (Chla) and suspended particulate matter (SPM) are key indicators of water quality, playing critical roles in understanding marine biogeochemical processes and ecosystem health. Although satellite data from the Chinese Ocean Color and Temperature Scanner (COCTS) onboard the Haiyang-1C/D satellites is freely available, [...] Read more.
Chlorophyll-a (Chla) and suspended particulate matter (SPM) are key indicators of water quality, playing critical roles in understanding marine biogeochemical processes and ecosystem health. Although satellite data from the Chinese Ocean Color and Temperature Scanner (COCTS) onboard the Haiyang-1C/D satellites is freely available, there has been limited validation of its standard Chla and SPM products. This study is a first step to address this gap by evaluating COCTS-derived Chla and SPM products against in situ measurements in French coastal waters. The matchup analysis showed robust performance for the Chla product, with a median symmetric accuracy (MSA) of 50.46% over a dynamic range of 0.13–4.31 mg·m−3 (n = 24, Bias = 41.11%, Slope = 0.93). In contrast, the SPM product showed significant limitations, particularly in turbid waters, despite a reasonable performance in the matchup exercise, with an MSA of 45.86% within a range of 0.18–10.52 g·m−3 (n = 23, Bias = −14.59%, Slope = 2.29). A comparison with another SPM model and Moderate Resolution Imaging Spectroradiometer (MODIS) products showed that the COCTS standard algorithm tends to overestimate SPM and suggests that the issue does not originate from the input radiometric data. This study provides the first regional assessment of COCTS Chla and SPM products in European coastal waters. The findings highlight the need for algorithm refinement to improve the reliability of COCTS SPM products, while the Chla product demonstrates suitability for water quality monitoring in low to moderate Chla concentrations. Future studies should focus on the validation of COCTS ocean color products in more diverse waters. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

21 pages, 9564 KiB  
Article
Sigma1 Receptor Modulates Plasma Membrane and Mitochondrial Peroxiporins
by Giorgia Pellavio, Giorgia Senise, Chiara Pia Vicenzo and Umberto Laforenza
Cells 2025, 14(14), 1082; https://doi.org/10.3390/cells14141082 - 15 Jul 2025
Viewed by 592
Abstract
Sigma1 receptor (S1R) and some aquaporins (AQPs) are involved in controlling oxidative stress, but only recently has their possible interaction emerged. S1R acts by interacting with proteins in the plasma membrane and organelles and AQPs by favoring the hydrogen peroxide (H2O [...] Read more.
Sigma1 receptor (S1R) and some aquaporins (AQPs) are involved in controlling oxidative stress, but only recently has their possible interaction emerged. S1R acts by interacting with proteins in the plasma membrane and organelles and AQPs by favoring the hydrogen peroxide (H2O2) cell removal. To date, the possible regulation of peroxiporins by S1R has not been explored. Using H2O2 HyPer7 biosensors and knockdown techniques, we investigated (1) the AQPs and S1R functional involvement in H2O2 diffusion through the plasma membrane and in the outer and inner mitochondrial membranes, and (2) the possible interaction between S1R and AQPs. Our data showed the functional involvement of different AQPs in the diffusion of H2O2: AQP3, AQP6, and AQP8 in the plasma membrane; AQP6 in the outer mitochondrial membrane; and AQP6 and AQP8 in the inner mitochondrial membrane. The knockdown of S1R demonstrated its involvement in the overall diffusion of H2O2 across the three compartments. The double knockdown of S1R and a single AQP indicated that AQP8 and AQP6 could be regulated by S1R. These findings demonstrate the coordinated role of AQPs in the mitochondria and the plasma membranes and that S1R modulates the AQP-facilitated H2O2 cell removal, thus controlling the oxidative status and, most likely, the oxidative stress. Full article
Show Figures

Graphical abstract

2 pages, 174 KiB  
Comment
Methodological Considerations for a Risk Model Adopted into the Chronic Disease Prevention Policy of Taiwan. Comment on Chang et al. Developing and Validating Risk Scores for Predicting Major Cardiovascular Events Using Population Surveys Linked with Electronic Health Insurance Records. Int. J. Environ. Res. Public Health 2022, 19, 1319
by Che-Jui Chang
Int. J. Environ. Res. Public Health 2025, 22(7), 1113; https://doi.org/10.3390/ijerph22071113 - 15 Jul 2025
Viewed by 206
Abstract
Chang, H.-Y. et al. (2022) developed a risk prediction model for major adverse cardiovascular events (MACEs), coronary heart disease (CHD), and stroke using nationwide claims data retrieved from the Taiwan National Health Insurance (NHI) records [...] Full article
15 pages, 2830 KiB  
Article
Postbiotic Intervention in Sarcopenia: The Role of Lactiplantibacillus plantarum HY7715 and Its Extracellular Vesicles
by Kippeum Lee, Soo Dong Park, Joo Yun Kim, Jae Jung Shim and Jae Hwan Lee
Life 2025, 15(7), 1101; https://doi.org/10.3390/life15071101 - 14 Jul 2025
Viewed by 328
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, is associated with inflammation, mitochondrial dysfunction, and gut barrier impairment. This study investigates the postbiotic effects of heat-killed Lactiplantibacillus plantarum HY7715 (HY7715) and its extracellular vesicles (EVs) on muscle health and intestinal integrity. [...] Read more.
Sarcopenia, the age-related loss of skeletal muscle mass and function, is associated with inflammation, mitochondrial dysfunction, and gut barrier impairment. This study investigates the postbiotic effects of heat-killed Lactiplantibacillus plantarum HY7715 (HY7715) and its extracellular vesicles (EVs) on muscle health and intestinal integrity. In C2C12 myotubes, both treatments enhanced myogenic differentiation by upregulating Myf5 and MYOG, and improved mitochondrial activity and biogenesis via increased PGC1α and mTOR expression. Under TNFα-induced muscle atrophy, they suppressed expression of atrophy-related markers (Fbox32, MuRF1, and myostatin). EVs showed stronger anti-inflammatory effects by reducing IL6 expression in muscle cells. In intestinal Caco-2 cells, HY7715-derived EVs improved barrier function by upregulating tight junction proteins (ZO-1, occludin, and claudins), and effectively reduced LPS-induced inflammation. These findings suggest that heat-killed HY7715 and its EVs may alleviate sarcopenia by enhancing muscle regeneration and maintaining intestinal homeostasis, highlighting their potential as safe, gut–muscle axis-targeting postbiotic interventions for healthy aging. Full article
Show Figures

Figure 1

11 pages, 1380 KiB  
Article
Fin Whale Acoustic Presence Increases by 3 d/y in the Migratory Corridor off Cape Leeuwin, Western Australia—An Indicator of Population Growth?
by Meghan G. Aulich, Robert D. McCauley, Brian S. Miller and Christine Erbe
Oceans 2025, 6(3), 44; https://doi.org/10.3390/oceans6030044 - 11 Jul 2025
Viewed by 878
Abstract
The population of southern fin whales (Balaenoptera physalus quoyi) was severely depleted by 19th and 20th century whaling. Its conservation status remains ‘vulnerable’, as recovery has been slow. Over 19 years of underwater acoustic recordings from the Comprehensive Nuclear-Test-Ban Treaty Organization [...] Read more.
The population of southern fin whales (Balaenoptera physalus quoyi) was severely depleted by 19th and 20th century whaling. Its conservation status remains ‘vulnerable’, as recovery has been slow. Over 19 years of underwater acoustic recordings from the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)’s hydrophones off Cape Leeuwin, Western Australia, were analyzed to monitor fin whales’ annual migration from their Southern Ocean feeding grounds (where they spend the austral summer) to their tropical breeding grounds (where they spend the austral winter) and back. Northward migrants arrived ~2 d/y earlier (2002–2020). The number of hours with fin whale acoustic presence increased by ~49 h/y and the number of days with fin whale acoustic presence by ~3 d/y. Thus, by the end of the 19-year recording period, fin whales were acoustically present on 74 more days than at the beginning of recording. While changes in habitat function, climate, and ambient noise may affect migratory behavior, the most likely explanation is a post-whaling increase in the number of animals of this Southern Hemisphere subspecies. Full article
(This article belongs to the Special Issue Marine Mammals in a Changing World, 2nd Edition)
Show Figures

Figure 1

Back to TopTop