Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (225)

Search Parameters:
Keywords = HPLC-DAD-ESI-MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1689 KiB  
Article
Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum
by Doina Clapa, Monica Hârţa, Ana Maria Radomir, Adrian George Peticilă, Loredana Leopold, Floricuţa Ranga and Dorin Ioan Sumedrea
Plants 2025, 14(15), 2437; https://doi.org/10.3390/plants14152437 - 6 Aug 2025
Abstract
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator [...] Read more.
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator treatments and culture periods. Shoots were grown on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) or meta-topoline (mT) and analyzed after 40 and 60 days. MS medium supplemented with 0.2 mg/L BA was the most effective condition for promoting biomass across all species, with shoot fresh weight increasing significantly at 60 days, particularly in H. olympicum, H. perforatum, and H. triquetrifolium. High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) identified 13 phenolic compounds, including flavonols, hydroxycinnamic acids, anthocyanins, phloroglucinols, and naphthodianthrones. Phenolic profiles were species-specific and influenced by culture period. H. kalmianum accumulated the highest total phenolic content (37.6 mg/g DW), while H. olympicum was the top producer of hypericin and pseudohypericin. These results highlight the crucial role of culture conditions in regulating both biomass and phytochemical production and provide a promising approach for producing bioactive metabolites in Hypericum species through in vitro systems. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

15 pages, 966 KiB  
Article
Isolation of a Novel Bioactive Fraction from Saffron (Crocus sativus L.) Leaf Waste: Optimized Extraction and Evaluation of Its Promising Antiproliferative and Chemoprotective Effects as a Plant-Based Antitumor Agent
by Raúl Sánchez-Vioque, Julio Girón-Calle, Manuel Alaiz, Javier Vioque-Peña, Adela Mena-Morales, Esteban García-Romero, Lourdes Marchante-Cuevas and Gonzalo Ortiz de Elguea-Culebras
Appl. Sci. 2025, 15(13), 7376; https://doi.org/10.3390/app15137376 - 30 Jun 2025
Viewed by 313
Abstract
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched [...] Read more.
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched fraction. The main components of this fraction were identified by HPLC-DAD/ESI-MS and the antiproliferative and metal-chelating effects on colon cancer cells (Caco-2) and Fe2+ and Cu2+ ions, respectively, were evaluated. The process involved the extraction of saffron leaves with a 70% hydroalcoholic solution, followed by purification using liquid chromatography. Chemical characterization revealed the presence of several phenolic compounds, including flavonoids (kaempferol, luteolin and quercetin glycosides) as major constituents; whereas, in vitro assays revealed a strong dose-dependent inhibition of cell proliferation. Likewise, the sample exhibited significant iron- and copper-chelating activity, suggesting its potential as a natural chelator to help mitigate the carcinogenic effects of metal accumulation in humans. In summary, this study underscores the potential of the saffron leaf fraction as a promising natural and complementary chemoprotective agent in colorectal cancer. Additionally, these results underscore the value of agricultural by-products, supporting a circular bioeconomy by reducing environmental impact and promoting the sustainable use of natural resources. Full article
Show Figures

Figure 1

16 pages, 926 KiB  
Article
Valorizing Brazilian Propolis Residue: Comprehensive Characterization for Sustainable Reutilization Strategies
by Agnese Santanatoglia, Laura Acquaticci, Maria Cristina Marcucci, Filippo Maggi, Carlos Rocha Oliveira and Giovanni Caprioli
Plants 2025, 14(13), 1989; https://doi.org/10.3390/plants14131989 - 29 Jun 2025
Viewed by 419
Abstract
This study presents the first comprehensive characterization of Brazilian propolis residue, revealing its rich content of bioactive compounds, essential nutrients, and volatile substances, showcasing its potential for sustainable utilization. The term “residue” refers to the solid by-product remaining after ethanolic extraction of raw [...] Read more.
This study presents the first comprehensive characterization of Brazilian propolis residue, revealing its rich content of bioactive compounds, essential nutrients, and volatile substances, showcasing its potential for sustainable utilization. The term “residue” refers to the solid by-product remaining after ethanolic extraction of raw propolis, which is typically discarded, despite retaining significant nutritional value. HPLC-ESI-MS/MS analysis identified significant concentrations of p-coumaric acid (637.80 mg/kg), chlorogenic acid (497.93 mg/kg), kaempferol (295.82 mg/kg), and caffeic acid (115.11 mg/kg); while HPLC-DAD revealed also artepillin-C (56.56 mg/kg), illustrating strong antioxidant properties. Nutritional analyses showed high moisture content (37.08%), protein (12.56%) and dietary fiber (24.2%). Additionally, the mineral profile highlighted potassium (9800 mg/kg), phosphorus (2520 mg/kg), and calcium (2100 mg/kg). Volatile compounds analysis via HS-SPME-GC-MS identified a diverse class of components, predominantly terpenoids such as α-pinene (20.09%) and caryophyllene (9.76%), suggesting potential applications in fragrance and flavor industries. The multifunctional nature of propolis residue aligns with circular economy principles and highlights its value as a resource for diverse applications. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

19 pages, 2306 KiB  
Article
Effect of Soil-Applied Metabolic Modulators on the Accumulation of Specialized Metabolites in Chelidonium majus L.
by Maria Stasińska-Jakubas, Sławomir Dresler, Maciej Strzemski, Magdalena Wójciak, Katarzyna Rubinowska and Barbara Hawrylak-Nowak
Molecules 2025, 30(13), 2782; https://doi.org/10.3390/molecules30132782 - 27 Jun 2025
Viewed by 330
Abstract
Various metabolic modulators have been widely used in recent years to increase the accumulation of desired secondary metabolites in medicinal plants, although most studies to date have focused on in vitro systems. Although simpler and cheaper, their potential application in vivo is still [...] Read more.
Various metabolic modulators have been widely used in recent years to increase the accumulation of desired secondary metabolites in medicinal plants, although most studies to date have focused on in vitro systems. Although simpler and cheaper, their potential application in vivo is still limited. Therefore, the aim of this study was to compare the effect of three chemically different elicitors (150 mg/L chitosan lactate—ChL; 10 mg/L selenium as selenite—Se; 100 mg/L salicylic acid—SA) applied to the soil substrate on some aspects of the secondary metabolism and physiological responses of Chelidonium majus L. Using HPLC-DAD, six isoquinoline alkaloids were identified and quantified in shoot extracts. LC-ESI-TOF-MS analysis confirmed the molecular identity of all target alkaloids, supporting the identification. The strongest stimulatory effect on the accumulation of protopine, berberine, and allocryptopine was observed with the Se and SA treatment, whereas ChL was less effective. In turn, the dominant alkaloids (coptisine and chelidonine) remained unaffected. There was also an increase in total phenolic compounds, but not in soluble flavonols. The elicitor treatments caused an increase in the antioxidant activity of the plant extracts obtained. Regardless of the metabolic modulator type, the strongest effect was generally observed on days 7 and 10 after application. No visual signs of toxicity and no effect on shoot biomass were found, although some elicitor-induced changes in the oxidative status (increased H2O2 accumulation and enhanced lipid peroxidation) and free proline levels in leaves were observed. We suggest that Se or SA can be applied to C. majus grown in a controlled pot culture to obtain high-quality raw material and extracts with increased contents of valuable specialized metabolites and enhanced antioxidant capacity. Full article
Show Figures

Graphical abstract

29 pages, 4978 KiB  
Article
HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential
by Loretta Pobłocka-Olech, Mirosława Krauze-Baranowska, Sylwia Godlewska and Katarzyna Kimel
Int. J. Mol. Sci. 2025, 26(13), 6189; https://doi.org/10.3390/ijms26136189 - 27 Jun 2025
Viewed by 378
Abstract
Poplar leaves (Populi folium) are a herbal remedy traditionally used for the treatment of rheumatic diseases and prostate inflammation. The aim of our study was a comprehensive identification of secondary metabolites occurring in the leaves of Populus alba, Populus × [...] Read more.
Poplar leaves (Populi folium) are a herbal remedy traditionally used for the treatment of rheumatic diseases and prostate inflammation. The aim of our study was a comprehensive identification of secondary metabolites occurring in the leaves of Populus alba, Populus × candicans, and Populus nigra, in order to search for a source of raw plant material rich in active compounds. Total salicylate (TSC), flavonoid (TFC), and phenolic compound (TPC) contents were determined, and the antioxidant potential was assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) diammonium salt), and FRAP (ferric reducing antioxidant power) assays as well as 2D-TLC (two-dimensional thin layer chromatography) bioautography using DPPH, riboflavin-light-NBT (nitro blue tetrazolium chloride), and xanthine oxidase inhibition tests. Secondary metabolites present in the analyzed poplar leaves were identified under the developed HPLC-DAD-ESI/MS (high performance liquid chromatography with photodiode array detection and electrospray ionization mass spectrometric detection analysis conditions and using the 2D-TLC method. Among the 80 identified compounds, 13 were shown for the first time in the genus Populus. The most diverse and similar set of flavonoids characterized the leaves of P. × candicans and P. nigra, while numerous salicylic compounds were present in the leaves of P. alba and P. × candicans. All analyzed leaves are a rich source of phenolic compounds. The highest flavonoid content was found in the leaves of P. × candicans and P. nigra, while the leaves of P. alba were characterized by the highest content of salicylates. All examined poplar leaves demonstrated antioxidant potential in all the assays used, which decreased in the following order: P. nigra, P. × candicans, P. alba. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

23 pages, 3794 KiB  
Article
Phenolic Profiling and Bioactive Properties of Arthrospira platensis Extract in Alleviating Acute and Sub-Chronic Colitis
by Meriem Aziez, Ramona Suharoschi, Mohamed Sofiane Merakeb, Oana Lelia Pop, Călina Ciont, Floricuța Ranga, Riad Ferhat, Safia Affenai, Dan C. Vodnar, Angela Cozma, Adriana Fodor, Elhadia Mansouri, Dalila Smati and Noureddine Bribi
Int. J. Mol. Sci. 2025, 26(12), 5692; https://doi.org/10.3390/ijms26125692 - 13 Jun 2025
Viewed by 565
Abstract
Arthrospira platensis, a filamentous photosynthetic cyanobacterium, is widely recognized for its high nutritional value, broad spectrum of bioactive compounds, and excellent safety profile, making it a promising natural source for health-promoting applications. This study aimed to profile the phenolic constituents of an [...] Read more.
Arthrospira platensis, a filamentous photosynthetic cyanobacterium, is widely recognized for its high nutritional value, broad spectrum of bioactive compounds, and excellent safety profile, making it a promising natural source for health-promoting applications. This study aimed to profile the phenolic constituents of an ethanolic extract of A. platensis (EAP) using HPLC-DAD-ESI-MS and to investigate its pharmacological effects in attenuating acute and sub-chronic experimental colitis, as well as its antioxidant and antifungal properties. Colitis was induced in BALB/c mice by intrarectal administration of 2,4-dinitrobenzenesulfonic acid (DNBS), followed by oral administration of EAP at doses of 50, 100, and 200 mg/kg. Phenolic profiling revealed eight major compounds, with a cumulative content of 6.777 mg/g of extract, with Pyrogallol, Ferulic acid, and Chlorogenic acid being the most abundant. In vivo, EAP treatment significantly reduced the Disease Activity Index (DAI), alleviated macroscopic colonic damage, and preserved colonic mucosal integrity in both inflammatory phases. Biochemical analyses revealed significant reductions in myeloperoxidase (MPO) activity, nitric oxide (NO), and malondialdehyde (MDA) levels, accompanied by increased reduced glutathione (GSH) content and catalase activity. In vitro, EAP demonstrated notable antioxidant effects, including 56% DPPH and 47% ABTS radical scavenging activities, and an 81% ferrous ion-chelating capacity. Furthermore, it exhibited antifungal activity, with inhibition zones of 20 mm against Candida albicans and 15 mm against Aspergillus flavus, respectively. These findings highlight the multitarget bioactivity of EAP and support its potential as a natural agent for managing intestinal inflammation and oxidative stress across both acute and sub-chronic phases. Full article
Show Figures

Graphical abstract

22 pages, 2086 KiB  
Article
Chemical Composition and In Vitro Biological Activity of the Polar and Non-Polar Fractions Obtained from the Roots of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim
by Jakub Gębalski, Milena Małkowska, Ewa Kiełkowska, Filip Graczyk, Sylwia Wnorowska, Iga Hołyńska-Iwan, Maciej Strzemski, Magdalena Wójciak and Daniel Załuski
Int. J. Mol. Sci. 2025, 26(12), 5619; https://doi.org/10.3390/ijms26125619 - 12 Jun 2025
Viewed by 469
Abstract
Eleutherococcus senticosus (ES) has been used in traditional medicine for immune-boosting, stress-reducing, and endurance-enhancing properties. In this study, the chemical composition and biological activity of polar and non-polar fractions obtained from 75% methanol E. senticosus roots extract were evaluated. Spectrophotometric methods were used [...] Read more.
Eleutherococcus senticosus (ES) has been used in traditional medicine for immune-boosting, stress-reducing, and endurance-enhancing properties. In this study, the chemical composition and biological activity of polar and non-polar fractions obtained from 75% methanol E. senticosus roots extract were evaluated. Spectrophotometric methods were used to assess the antioxidant (DPPH, ABTS, FRAP, CUPRAC, O2•−) and anti-enzymatic (hyaluronidase, acetylcholinesterase, butyrylcholinesterase, α-amylase, and tyrosinase) activities. Metabolic profiling was carried out using HPLC-DAD and UHPLC-DAD/ESI-TOF-MS. The ethyl acetate fraction (EtOAc) showed the highest antioxidant activity with IC50 values of 82.73 ± 0.065 µg/mL (DPPH) and 9.92 ± 0.17 µg/mL (ABTS). The EtOAc fraction also exhibited strong anti-enzymatic effects against hyaluronidase and α-amylase (125.24 ± 12.29 and 97.34 ± 9.18 µg/mL, resp.). In turn, the hexane fraction exhibited the most potent anti-AChE activity with IC50 equal 245.72 ± 11.82 µg/mL. The HPLC-DAD analysis revealed the presence of caffeic acid derivatives. These results suggest that the ethyl acetate fraction may have therapeutic relevance in inflammation- and metabolic-related diseases. We perceive the potential of this fraction as a rich source of compounds with an anti-inflammatory activity; however, more advanced research in in vivo model is required. Full article
(This article belongs to the Special Issue Plant Bioactive Substances and Potential Applications)
Show Figures

Figure 1

21 pages, 2202 KiB  
Article
Acute and Subacute Oral Toxicity Assessment of Kinkeliba (Combretum micranthum G. Don) Ethanolic Extract in BALB/c Mice
by Ibrahima Mamadou Sall, Alina Diana Haşaş, Amiali Malek, Dan Cristian Vodnar, Meriem Aziez, Ecaterina Semzenisi, Dragoş Hodor, Romelia Pop and Alexandru-Flaviu Tăbăran
Plants 2025, 14(12), 1776; https://doi.org/10.3390/plants14121776 - 10 Jun 2025
Viewed by 639
Abstract
Combretum micranthum G. Don (kinkeliba) is a medicinal plant traditionally employed in West Africa for its diuretic and gastrointestinal therapeutic properties. Despite its extensive ethnomedicinal use, comprehensive toxicological assessments are still lacking. This study aimed to characterize the phenolic composition of C. micranthum [...] Read more.
Combretum micranthum G. Don (kinkeliba) is a medicinal plant traditionally employed in West Africa for its diuretic and gastrointestinal therapeutic properties. Despite its extensive ethnomedicinal use, comprehensive toxicological assessments are still lacking. This study aimed to characterize the phenolic composition of C. micranthum ethanolic leaf extract using HPLC-DAD-ESI-MS and evaluate its acute and subacute oral toxicity in BALB/c mice, per OECD Guideline 420. Female mice received oral doses of 50, 300, and 2000 mg/kg of extract for acute toxicity assessment for 14 days. In the subacute study, both sexes were administered daily doses at the same concentrations over 28 days. Clinical signs, body weight, and food and water consumption were regularly monitored throughout both protocols. At the end of each study, hematological, biochemical, and histopathological parameters were analyzed. Phenolic profiling revealed nine major compounds with a total of 293.54 mg/g extract. No mortality or significant clinical manifestations were observed at any dose. However, significant variations in platelet counts and amylase activity were noted in the acute phase. In the subacute model, slight, non-critical alterations in hepatic and renal biomarkers were observed, without signs of systemic toxicity. Histopathological examination revealed similar lesions in both acute and subacute phases, including multifocal inflammatory infiltrates (lymphocytes and neutrophils) in the periportal area of the liver, minimal bacterial overgrowth in the superficial layer of the gastric mucosa, minimal medullary mineralization and inflammatory infiltrates with lymphocytes in the kidneys, and minimal to moderate vacuolization in the pancreatic acini. These results indicate that C. micranthum ethanolic extract is relatively safe at the tested doses, reinforcing its traditional use and supporting further research into its pharmacological potential. Full article
(This article belongs to the Special Issue Phytochemistry, Pharmacology, and Toxicity of Medicinal Plants)
Show Figures

Graphical abstract

19 pages, 2387 KiB  
Article
BRS Carmem Grape Liqueurs: Influence of Alcoholic Base on Physicochemical Characteristics, Anthocyanin Composition, and Sensory Acceptance
by Francielli Brondani da Silva, Taís Gaspar, Victoria Diniz Shimizu-Marin, Yara Paula Nishiyama-Hortense, José Pérez-Navarro, Sergio Gómez-Alonso and Ellen Silva Lago-Vanzela
Molecules 2025, 30(11), 2270; https://doi.org/10.3390/molecules30112270 - 22 May 2025
Viewed by 464
Abstract
Grape liqueurs are a promising approach to diversifying fruit-derived beverages and adding value to local raw materials. This study evaluated the impact of cereal alcohol (A) and white cachaça (C) on the physicochemical composition, anthocyanin profile, and sensory attributes of liqueurs made with [...] Read more.
Grape liqueurs are a promising approach to diversifying fruit-derived beverages and adding value to local raw materials. This study evaluated the impact of cereal alcohol (A) and white cachaça (C) on the physicochemical composition, anthocyanin profile, and sensory attributes of liqueurs made with the Brazilian cultivar BRS Carmem. Both products met regulatory requirements (alcohol content > 15% v/v and sugar > 100 g⋅L−1). The alcoholic base significantly influenced most physicochemical parameters but not the anthocyanin profile. The liqueur with A resulted in higher extraction of organic acids (0.39 vs. 0.33 g tartaric acid⋅100 g−1) and phenolic compounds (607.45 vs. 457.64 mg gallic acid⋅100 g−1). HPLC-DAD-ESI-MS/MS analysis showed a predominance of diglycosylated anthocyanins (98%), with concentrations of 420.04 mg⋅L−1 (A) and 456.44 mg⋅L−1 (C). Both liqueurs were well accepted (overall impression: A = 7.1, C = 7.2) with good purchase intent (A = 63.03% and C = 56.75%). Significant differences were observed for appearance and color (preferred in A) and aroma (preferred in C). These attributes correlated strongly with the overall impression, but flavor and alcohol content were the key factors influencing purchase decisions. The findings demonstrate that the choice of alcoholic base affects the composition and sensory acceptance of grape liqueurs, highlighting their importance to enhance the product’s quality. Full article
(This article belongs to the Special Issue Molecules in 2025)
Show Figures

Graphical abstract

31 pages, 2919 KiB  
Article
Multitargeted Effects of Plantago ovata Ethanol Extract in Experimental Rat Streptozotocin-Induced Diabetes Mellitus and Letrozole-Induced Polycystic Ovary Syndrome
by Lia-Oxana Usatiuc, Raluca Maria Pop, Surd Adrian, Marcel Pârvu, Mădălina Țicolea, Ana Uifălean, Dan Vălean, Laura-Ioana Gavrilaș, Szabo Csilla-Enikő, Loredana Florina Leopold, Floricuța Ranga, Florinela Adriana Cătoi and Alina Elena Pârvu
Int. J. Mol. Sci. 2025, 26(10), 4712; https://doi.org/10.3390/ijms26104712 - 14 May 2025
Viewed by 787
Abstract
Polycystic ovary syndrome (PCOS), a common and multifactorial endocrine disorder in reproductive-aged women, is strongly associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), and also affects up to one in four women with type 1 diabetes mellitus (T1DM). The current [...] Read more.
Polycystic ovary syndrome (PCOS), a common and multifactorial endocrine disorder in reproductive-aged women, is strongly associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), and also affects up to one in four women with type 1 diabetes mellitus (T1DM). The current study explored the potential of Plantago ovata (P. ovata) seed ethanol extract (POEE) to modulate oxidative stress (OS), inflammatory responses, metabolic profiles, and hormonal levels in rat Streptozotocin (STZ)-induced DM and Letrozole (LET)-induced PCOS. Phytochemical analysis measured total phenolic content (TPC) and total flavonoid content (TFC) using HPLC-DAD-ESI MS for compound identification. POEE’s antioxidant activity was evaluated in vitro through DPPH, H2O2, FRAP, and NO scavenging assays. Rats received POEE, metformin, or Trolox (TX) for 10 days. PCOS confirmation was achieved via ultrasound and histopathology. Serum levels of OS markers (TOS, TAC, OSI, MDA, AOPP, 8-OHdG, NO, 3-NT, AGEs, and SH), inflammatory markers (NF-κB, IL-1β, IL-18, Gasdermin D, and IL-10), metabolic parameters (fasting blood glucose, lipid profile, and liver enzymes), and hormone levels (LH, FSH, estrogen, testosterone, and insulin) were assessed. Additionally, the Triglyceride–Glucose index (TyG) and HOMA-IR were calculated. POEE had a medium content of polyphenols and a good in vitro antioxidant effect. In vivo, POEE administration in diabetic rats led to a reduction in OS markers and an increase in antioxidant levels, alongside decreases in inflammatory cytokines, blood glucose levels, and transaminase activity and improvements in lipid profile. In the PCOS model, POEE treatment effectively reduced total OS and lowered levels of LH, FSH, and testosterone, while elevating estrogen concentrations and reducing insulin resistance. These therapeutic effects were dose-dependent, with higher doses producing more pronounced outcomes, comparable to those observed with metformin and TX treatment. Full article
Show Figures

Figure 1

34 pages, 3112 KiB  
Article
Storage Time in Bottle: Influence on Physicochemical and Phytochemical Characteristics of Wine Spirits Aged Using Traditional and Alternative Technologies
by Sheila C. Oliveira-Alves, Tiago A. Fernandes, Sílvia Lourenço, Joana Granja-Soares, Andreia B. Silva, Maria Rosário Bronze, Sofia Catarino and Sara Canas
Molecules 2025, 30(9), 2018; https://doi.org/10.3390/molecules30092018 - 30 Apr 2025
Viewed by 699
Abstract
Few studies have investigated the influence on physicochemical and phytochemical compositions during storage in the bottle of wine spirits (WSs) aged using alternative ageing technology (AAT) compared to traditional ageing technology (TAT). The aim of this study was to evaluate the effect of [...] Read more.
Few studies have investigated the influence on physicochemical and phytochemical compositions during storage in the bottle of wine spirits (WSs) aged using alternative ageing technology (AAT) compared to traditional ageing technology (TAT). The aim of this study was to evaluate the effect of the bottle storage over one and four years on the evolution of chromatic characteristics (CIELab method) and physicochemical characteristics (alcoholic strength, acidity, and total dry extract), total phenolic index (TPI), low molecular weight compound contents (HPLC-DAD technique), in vitro antioxidant activities (DPPH, FRAP, and ABTS assays), and phenolic characterisation (HPLC-DAD-ESI-MS/MS technique) of WSs aged with chestnut wood using TAT (barrels, B) and AAT (micro-oxygenation levels (MOX): O15, O30, and O60; and control (N)). The results showed that after four years of storage in the bottle, the O60 modality resulted in smaller changes in physicochemical characteristics, higher preservation of phenolic content, and greater evolution of chromatic characteristics, ensuring its overall quality compared to other modalities. Antioxidant activity decreased similarly in both technologies, such as phenolic acid content, in particular, gallic acid content. According to the findings of this study, alternative ageing technology might be the best alternative for wine spirit quality and ageing process sustainability. Full article
Show Figures

Graphical abstract

20 pages, 7306 KiB  
Article
Chemical Composition and Bioactivity of Extracts Obtained from Prunus spinosa Seeds by Supercritical CO2 Extraction
by Alessandra Piras, Silvia Porcedda, Antonella Smeriglio, Domenico Trombetta, Franca Piras, Valeria Sogos and Antonella Rosa
Molecules 2025, 30(8), 1757; https://doi.org/10.3390/molecules30081757 - 14 Apr 2025
Viewed by 711
Abstract
This study investigates the potential reuse of Prunus spinosa (blackthorn) seeds, a food industry by-product. Traditionally discarded, these seeds are now being explored for their bioactive compounds. In this work, seeds were used as raw material for supercritical CO2 extraction. Two distinct [...] Read more.
This study investigates the potential reuse of Prunus spinosa (blackthorn) seeds, a food industry by-product. Traditionally discarded, these seeds are now being explored for their bioactive compounds. In this work, seeds were used as raw material for supercritical CO2 extraction. Two distinct extracts were obtained at low and high pressure (SFE90 and SFE200) and both extracts presented an aqueous phase (WE90 and WE200). SFE90 analysis by GC/MS allowed us to identify benzaldehyde and fatty acids (mainly oleic and linoleic acids). The fatty acid profile of SFE200, determined by HPLC-DAD/ELSD, showed that oleic and linoleic acids were predominant in supercritical oil. The phytochemical composition of the water extracts, analyzed via LC-DAD-ESI-MS, revealed that higher pressure enhanced the recovery of specific flavonols and anthocyanins, while lower pressure preserved various polyphenolic subclasses. WE90 was rich in 3-feruloylquinic acid and cyanidin-3-O-rutinoside, whereas WE200 was rich in caffeic acid hexoside 2 and dihydro-o-coumaric acid glucoside. Benzaldehyde was individuated in WE90 and WE200 by HPLC-DAD analysis. Cytotoxicity assays demonstrated that WE90, WE200 and SFE200 had anticancer effects on SH-SY5Y neuroblastoma cells, while all extracts did not remarkably affect the viability and morphology of human skin keratinocytes (HaCaT cells). These results suggest that P. spinosa seed extracts have potential nutraceutical and pharmaceutical applications. Full article
Show Figures

Graphical abstract

22 pages, 2583 KiB  
Article
Impact of Winemaking Techniques on the Phenolic Composition and Antioxidant Properties of Touriga Nacional Wines
by Zélia Branco, Filipa Baptista, Jessica Paié-Ribeiro, Irene Gouvinhas and Ana Novo Barros
Molecules 2025, 30(7), 1601; https://doi.org/10.3390/molecules30071601 - 3 Apr 2025
Cited by 1 | Viewed by 1143
Abstract
The Touriga Nacional grape variety is renowned in Portuguese red wines for its intense color and aromatic complexity, largely attributed to its rich phenolic composition. Several factors influence the phenolic profile of wines, including edapho-climatic conditions, grape variety, and winemaking techniques such as [...] Read more.
The Touriga Nacional grape variety is renowned in Portuguese red wines for its intense color and aromatic complexity, largely attributed to its rich phenolic composition. Several factors influence the phenolic profile of wines, including edapho-climatic conditions, grape variety, and winemaking techniques such as fermentation, maceration, barrel aging, and maturation. In this study, the technique for winemaking was the only controlled variable, allowing for a specific evaluation of its impact on phenolic composition and antioxidant capacity. Ten single-varietal Touriga Nacional wine samples from the 2019 vintage, produced in the Cima Corgo sub-region of the Douro by different wineries, were analyzed. The phenolic composition was determined using colorimetric methods to quantify total phenols, ortho-diphenols, flavonoids, anthocyanins, and tannins. Antioxidant capacity was assessed through the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and Ferric Reducing Antioxidant Power (FRAP) assays. Since all wines shared the same grape variety, region, and harvest year, the fermentation technique was the main differentiating factor, enabling a direct comparison of its influence on phenolic extraction and antioxidant properties. Additionally, Reversed-Phase High-Performance Liquid Chromatography with Photodiode Array Detection coupled with Mass Spectrometry (RP-HPLC-DAD-ESI-MS/MS) was employed to identify and quantify individual phenolic compounds. This study highlights the key role of winemaking techniques in modulating the phenolic composition and antioxidant potential of Touriga Nacional wines. Full article
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Optimization of Two Methods for the Rapid and Effective Extraction of Quinine from Cinchona officinalis
by Gianella Ochoa, Leonardo Armijos, Jorge G. Figueroa, Ximena Jaramillo-Fierro and Natalí Solano-Cueva
Plants 2025, 14(3), 364; https://doi.org/10.3390/plants14030364 - 25 Jan 2025
Cited by 2 | Viewed by 2173
Abstract
This study successfully optimized two advanced extraction methods, microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), for the efficient and rapid recovery of quinine from Cinchona officinalis. Among the evaluated parts of the plant, the bark consistently yielded the highest quinine concentration, highlighting [...] Read more.
This study successfully optimized two advanced extraction methods, microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), for the efficient and rapid recovery of quinine from Cinchona officinalis. Among the evaluated parts of the plant, the bark consistently yielded the highest quinine concentration, highlighting its significance as the primary source for alkaloid extraction. The optimized conditions for MAE (65% ethanol, 130 °C, 34 min) achieved a maximum yield of 3.93 ± 0.11 mg/g, while UAE (61% ethanol, 25 °C, 15 min) provided a faster but slightly lower yield of 2.81 ± 0.04 mg/g. These findings confirm the superiority of MAE and UAE over conventional methods like Soxhlet extraction in terms of time efficiency and sustainability. The quantification of quinine using high-performance liquid chromatography (HPLC) coupled with advanced detection methods further validated the reliability and reproducibility of the results. While this study focused on optimizing extraction and quantification parameters, it sets the groundwork for future research into the sustainable utilization and potential valorization of C. officinalis byproducts. These findings not only provide a standardized protocol for extracting quinine but also contribute to the broader application of green chemistry principles in pharmaceutical production. Full article
Show Figures

Figure 1

24 pages, 2346 KiB  
Article
Nutrients, Phytochemicals, and In Vitro Biological Activities of Goldenberry (Physalis peruviana L.) Fruit and Calyx
by Mikel Añibarro-Ortega, Maria Inês Dias, Jovana Petrović, Filipa Mandim, Sonia Núñez, Marina Soković, Víctor López, Lillian Barros and José Pinela
Plants 2025, 14(3), 327; https://doi.org/10.3390/plants14030327 - 22 Jan 2025
Cited by 3 | Viewed by 3234
Abstract
This study provides a comprehensive characterization of Physalis peruviana L., covering the nutritional composition of the fruit and the phytochemical profiles and in vitro bioactive properties of berry and calyx extracts. The fresh fruit stood out as a source of dietary fiber (5.16 [...] Read more.
This study provides a comprehensive characterization of Physalis peruviana L., covering the nutritional composition of the fruit and the phytochemical profiles and in vitro bioactive properties of berry and calyx extracts. The fresh fruit stood out as a source of dietary fiber (5.16 g/100 g) and is low in fat (0.49 g/100 g). A 100-g serving also contained notable amounts of ascorbic acid (32.0 mg), tocopherols (2.34 mg), potassium (253 mg), phosphorus (45 mg), and magnesium (20 mg). HPLC-DAD-ESI/MS analysis tentatively identified five physalin derivatives and one withanolide in the fruit extract, which showed significant antiproliferative activity against human colorectal adenocarcinoma (Caco-2) and non-small-cell lung carcinoma (NCI-H460) cells. The calyx extracts contained three phenolic acids and four flavonoids, demonstrating high antioxidant activity through physiologically relevant cell-based assays, the ability to inhibit advanced glycation end products (AGEs) formation and nitric oxide production, and also antiproliferative properties. These findings highlight goldenberry as a nutrient-dense fruit rich in vitamins and functional compounds with potential health benefits, supporting its recognition as a “superfruit”. Furthermore, the fruit calyx emerged as a valuable source of bioactive secondary metabolites with potential applications in food and pharmaceutical industries and related sectors. Full article
Show Figures

Figure 1

Back to TopTop