Storage Time in Bottle: Influence on Physicochemical and Phytochemical Characteristics of Wine Spirits Aged Using Traditional and Alternative Technologies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Storage Time in the Bottle on In Vitro Antioxidant Activities and Phenolic Content
2.2. Effect of Storage Time in the Bottle on the Chromatic Characteristics of Aged WSs
2.3. Effect of Storage Time in the Bottle on the Physicochemical Characteristics of Aged WSs
2.4. Multivariate Analysis
2.5. Phenolic Characterisation of Four Years’ Bottle Storage
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Experimental Design and Aged WS Sampling
- (1)
- The ageing trial was carried out on a pilot scale in 50 L glass demijohns, covering five ageing modalities: (i) chestnut barrels (B, representing the Traditional Ageing Technology) and (ii) three MOX modalities (O15, O30, O60) and one control modality with nitrogen (N) application (representing the alternative ageing technologies). Portuguese chestnut (Castanea sativa Mill.) barrels (250 L) and staves (50 cm length × 5 cm width × 1.8 cm thickness) were manufactured by J. M. Gonçalves cooperage (Palaçoulo, Portugal). The chestnut staves were toasted at a medium-plus toasting level (90 min at an average temperature of 240 °C; 1.8 cm of toasting thickness) in an industrial oven. In addition, the barrels were heated over a fire of wood offcuts under certain conditions of temperature to ensure a similar level of toasting. The quantity of staves inserted into the demijohns in four modalities (O15, O30, O60, N) was calculated to reproduce the surface area-to-volume ratio of a 250 L barrel (85 cm2/L). In this study, two replicates of each ageing modality were carried out. The wine distillate resulted from wine obtained from a mixture of several Vitis vinifera grape varieties cultivated in the Lourinhã Designation of Origin, including “Fernão-Pires”, “Alicante-Branco”, “Vital”, “Malvasia-Rei”, and “Cabinda”, from the 2018 harvest; the winemaking process involved free-run, followed by fermentation. The distillation process was conducted in a distillation column (Adega Cooperativa da Lourinhã, Lourinhã Designation of Origin, Lourinhã, Portugal). The wine distillate (alcoholic strength by volume, 78.3% v/v; total acidity, 0.12 g acetic acid/L of absolute ethanol; volatile acidity, 0.09 g acetic acid/L of absolute ethanol; pH, 5.33) was used to fill the barrels and demijohns.
- (2)
- Storage in the bottle: after 365 days of the ageing process, the ten aged WSs were bottled on the same day in amber glass bottles (750 mL, two bottles from each demijohn), ensuring the same level of WS in each bottle. Regarding the bottle, the headspace was set at 9.8 mL of air in all bottles to ensure that the oxygen ingress into the aged WSs was similar, thereby controlling oxidation and allowing the main effects observed to be attributable to the ageing modality and storage time [80]. The cork stoppers were sealed with parafilm (Parafilm®, Bemis Company, Neenah, WI, EUA) to reduce evaporation. The bottles were transported in the same day and stored in the cellar of INIAV—Dois Portos at 19 °C and 80% relative humidity for 48 months. Sampling was carried out at one and four years after bottling. These sampling times were selected to carry out physicochemical and phytochemical analyses, based on two reasons: (i) this work is a continuity of a previous study performed under the Oxyrebrand Project, as aforementioned, in which the chemical evolution of aged WSs over 12 months of storage in the bottle was assessed; (ii) according to our team’s knowledge, for this spirit beverage, a storage period of at least one year in the bottle is usual to promote the desired balance. Long-term bottle storage in the cellar is common and also valuable (two to eight years), so four years was chosen as an average time. The data set included two technical replicates of each ageing modality (B, O15, O30, O60, and N)—Figure 5. Thus, a total of 40 samples [2 replicates of each modality (5 modalities) × 2 sampling bottles of each replicate × 2 storage times (one and four years)] of WSs were taken and analysed to determine the chromatic and chemical characteristics, total phenolic index, antioxidant activities, low molecular weight composition, phenolic profile, and their correlations as well.
3.3. Chromatic Characteristics
3.4. Physicochemical Characteristics
3.5. In Vitro Antioxidant Activity Analyses
3.5.1. ABTS Assay
3.5.2. DPPH Assay
3.5.3. FRAP Assay
3.6. Analyses of Low Molecular Weight Compounds
3.6.1. HPLC-DAD-ESI-MS/MS Identification
3.6.2. Low Molecular Weight Composition Determination
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gazzola, P.; Pavione, E.; Amelio, S.; Mauri, M. Sustainable Strategies and Value Creation in the Food and Beverage Sector: The Case of Large Listed European Companies. Sustainability 2024, 16, 9798. [Google Scholar] [CrossRef]
- Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 9 December 2024).
- Aschemann-Witzel, J.; Varela, P.; Peschel, A.O. Consumers’ categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Fernandes, T.A.; Anjos, O.; Belchior, A.P.; Catarino, S. Sustainable use of wood in wine spirit production. In Improving Sustainable Viticulture and Winemaking Practices; Costa, J.M., Catarino, S., Escalona, J.M., Piergiorgio, C., Eds.; Elsevier: London, UK, 2022; pp. 259–280. [Google Scholar] [CrossRef]
- 100% Sustainable from #Farm2Glass: The European Spirits Sector & the Green Deal. Available online: https://spirits.eu/issues/sustainable-from-farm2glass/introduction-8 (accessed on 9 December 2024).
- Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. LWT 2019, 111, 260–269. [Google Scholar] [CrossRef]
- Nocera, A.; Ricardo-Da-Silva, J.M.; Canas, S. Antioxidant activity and phenolic composition of wine spirit resulting from an alternative ageing technology using micro-oxygenation: A preliminary study. OENO One 2020, 54, 485–496. [Google Scholar] [CrossRef]
- Caldeira, I.; Anjos, O.; Portal, V.; Belchior, A.P.; Canas, S. Sensory and chemical modifications of wine-brandy aged with chestnut and oak wood fragments in comparison to wooden barrels. Anal. Chim. Acta 2010, 660, 43–52. [Google Scholar] [CrossRef]
- Canas, S. Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef]
- Cernîşev, S. Analysis of lignin-derived phenolic compounds and their transformations in aged wine distillates. Food Control 2017, 73, 281–290. [Google Scholar] [CrossRef]
- Granja-Soares, J.; Roque, R.; Cabrita, M.J.; Anjos, O.; Belchior, A.P.; Caldeira, I.; Canas, S. Effect of innovative technology using staves and micro-oxygenation on the sensory and odorant profile of aged wine spirit. Food Chem. 2020, 333, 127450. [Google Scholar] [CrossRef]
- Reg. EU nº 2019/787 of the European Parliament and of the Council of 17 April 2019 on the Definition, Description, Presentation and Labelling of Spirit Drinks, the Use of the Names of Spirit Drinks in the Presentation and Labelling of Other Foodstuffs, the Protection of Geographical Indications for Spirit Drinks, the Use of Ethyl Alcohol and Distillates of Agricultural Origin in Alcoholic Beverages, and Repealing Regulation (EC) No 110/2008; OJEU. L130 European Union. 2019, pp. 1–54. Available online: https://eur-lex.europa.eu/eli/reg/2019/787/2022-08-15 (accessed on 3 December 2024).
- Caldeira, I.; Vitória, C.; Anjos, O.; Fernandes, T.A.; Gallardo, E.; Fargeton, L.; Boissier, B.; Catarino, S.; Canas, S. Wine spirit ageing with chestnut staves under different micro-oxygenation strategies: Effects on the volatile compounds and sensory profile. Appl. Sci. 2021, 11, 3991. [Google Scholar] [CrossRef]
- Canas, S.; Danalache, F.; Anjos, O.; Fernandes, T.A.; Caldeira, I.; Santos, N.; Fargeton, L.; Boissier, B.; Catarino, S. Behaviour of Low Molecular Weight Compounds, Iron and Copper of Wine Spirit Aged with Chestnut Staves under Different Levels of Micro-Oxygenation. Molecules 2020, 25, 5266. [Google Scholar] [CrossRef] [PubMed]
- Canas, S.; Anjos, O.; Caldeira, I.; Fernandes, T.A.; Santos, N.; Lourenço, S.; Granja-Soares, J.; Fargeton, L.; Boissier, B.; Catarino, S. Micro-oxygenation level as a key to explain the variation in the colour and chemical composition of wine spirits aged with chestnut wood staves. LWT 2022, 154, 112658. [Google Scholar] [CrossRef]
- Krstić, J.D.; Kostić-Stanković, M.M.; Veljović, S.P. Traditional and Innovative Aging Technologies of distilled Beverages: The Influence on the Quality and Consumer Preferences of Aged Spirit Drinks. J. Agric. Sci. 2021, 66, 209–230. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.; Lourenço, S.; Anjos, O.; Fernandes, T.A.; Caldeira, I.; Catarino, S.; Canas, S. Influence of the Storage in Bottle on the Antioxidant Activities and Related Chemical Characteristics of Wine Spirits Aged with Chestnut Staves and Micro-Oxygenation. Molecules 2022, 27, 106. [Google Scholar] [CrossRef]
- Mercanti, N.; Macaluso, M.; Pieracci, Y.; Brazzarola, F.; Palla, F.; Verdini, P.G.; Zinnai, A. Enhancing wine shelf-life: Insights into factors influencing oxidation and preservation. Heliyon 2024, 10, e35688. [Google Scholar] [CrossRef] [PubMed]
- Echave, J.; Barral, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Bottle Aging and Storage of Wines: A Review. Molecules 2021, 26, 713. [Google Scholar] [CrossRef]
- Hart, A.; Kleinig, A. The role of oxygen in the aging of bottled wine. Aust. N. Z. Wine Ind. J. 2005, 20, 46–50. [Google Scholar]
- Anli, R.E.; Cavuldak, Ö.A. A review of microoxygenation application in wine. J. Inst. Brew. 2012, 118, 368–385. [Google Scholar] [CrossRef]
- Anjos, O.; Comesaña, M.M.; Caldeira, I.; Pedro, S.I.; Oller, P.E.; Canas, S. Application of Functional Data Analysis and FTIR-ATR Spectroscopy to Discriminate Wine Spirits Ageing Technologies. Mathematics 2020, 8, 896. [Google Scholar] [CrossRef]
- Vacca, V.; Piga, A.; Del Caro, A.; Fenu, P.A.M.; Agabbio, M. Changes in phenolic compounds, colour and antioxidant activity in industrial red myrtle liqueurs during storage. Nahrung/Food 2003, 47, 442–447. [Google Scholar] [CrossRef]
- Karabegović, I.T.; Vukosavljević, P.; Novaković, M.M.; Gorjanović, S.; Dzamić, A.M.; Lazić, M.L. Influence of the storage on bioactive compounds and sensory attributes of herbal liqueur. Dig. J. Nanomater. Biostruct. 2012, 7, 1587–1598. [Google Scholar]
- Espejo, F.; Armada, S. Colour Changes in Brandy Spirits Induced by Light-Emitting Diode Irradiation and Different Temperature Levels. Food Bioprocess Technol. 2014, 7, 2595–2609. [Google Scholar] [CrossRef]
- Fernandes, T.A.; Antunes, A.M.M.; Caldeira, I.; Anjos, O.; Freitas, V.; Fargeton, L.; Boissier, B.; Catarino, S.; Canas, S. Identification of gallotannins and ellagitannins in aged wine spirits: A new perspective using alternative ageing technology and high-resolution mass spectrometry. Food Chem. 2022, 382, 132322. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Pérez, M.D.; Muñiz, P.; González-Sanjosé, M.L. Antioxidant Profile of Red Wines Evaluated by Total Antioxidant Capacity, Scavenger Activity, and Biomarkers of Oxidative Stress Methodologies. J. Agric. Food Chem. 2007, 55, 5476–5483. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C.; Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and Mechanisms of Antioxidant Activity using the DPPH. Free Radical Method. LWT 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Da Porto, C.; Calligaris, S.; Celotti, E.; Nicoli, M.C. Antiradical properties of commercial cognacs assessed by the DPPH(.) test. J. Agric. Food Chem. 2000, 48, 4241–4245. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Martínez, C.; Bosquet, V.; Guillén, D.; Barroso, C.G. Antioxidant activity of Brandy de Jerez and other aged distillates, and correlation with their polyphenolic content. Food Chem. 2009, 116, 29–33. [Google Scholar] [CrossRef]
- Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. Technological aspects and stability of polyphenols. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 295–323. [Google Scholar] [CrossRef]
- Nowak, A.; Duchnik, W.; Muzykiewicz-Szymańska, A.; Kucharski, Ł.; Zielonka-Brzezicka, J.; Nowak, A.; Klimowicz, A. The Changes of Antioxidant Activity of Three Varieties of ‘Nalewka’, a Traditional Polish Fruit Alcoholic Beverage during Long-Term Storage. Appl. Sci. 2023, 13, 1114. [Google Scholar] [CrossRef]
- De Beer, D.; Joubert, E.; Gelderblom, W.C.A.; Manley, M. Changes in the phenolic composition and antioxidant activity of pinotage, cabernet sauvignon, chardonnay and chenin blanc wines during bottle ageing. S. Afr. J. Enol. Vitic. 2005, 26, 6–15. [Google Scholar] [CrossRef]
- Alonso, A.M.; Castro, R.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Study of the antioxidant power of brandies and vinegars derived from Sherry wines and correlation with their content in polyphenols. Food Res. Int. 2004, 37, 715–721. [Google Scholar] [CrossRef]
- Mrvčić, J.; Posavec, S.; Kazazic, S.; Stanzer, D.; Peša, A.; Stehlik-Tomas, V. Spirit drinks: A source of dietary polyphenols. Croat. J. Food Sci. Technol. 2012, 4, 102–111. [Google Scholar]
- Priyadarsini, K.I.; Khopde, S.M.; Kumar, S.S.; Mohan, H. Free Radical Studies of Ellagic Acid, a Natural Phenolic Antioxidant. J. Agric. Food Chem. 2002, 50, 2200–2206. [Google Scholar] [CrossRef] [PubMed]
- Molski, M. Theoretical study on the radical scavenging activity of gallic acid. Heliyon 2023, 9, e12806. [Google Scholar] [CrossRef] [PubMed]
- Gangadharan, G.; Gupta, S.; Kudipady, M.L.; Puttaiahgowda, Y.M. Gallic Acid Based Polymers for Food Preservation: A Review. ACS Omega 2024, 9, 37530–37547. [Google Scholar] [CrossRef]
- Roussey, C.; Colin, J.; Teissier du Cros, R.; Casalinho, J.; Perré, P. In-Situ Monitoring of Wine Volume, Barrel Mass, Ullage Pressure and Dissolved Oxygen for a Better Understanding of Wine-Barrel-Cellar Interactions. J. Food Eng. 2021, 291, 110233. [Google Scholar] [CrossRef]
- Castellari, M.; Matricardi, L.; Arfelli, G.; Galassi, S.; Amati, A. Level of single bioactive phenolics in red wine as a function of the oxygen supplied during storage. Food Chem. 2000, 69, 61–67. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.C.S.; Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Lourenço, S.; Anjos, O.; Caldeira, I.; Alves, S.O.; Santos, N.; Canas, S. Natural Blending as a Novel Technology for the Production Process of Aged Wine Spirits: Potential Impact on Their Quality. Appl. Sci. 2022, 12, 10055. [Google Scholar] [CrossRef]
- Canas, S.; Casanova, V.; Belchior, A.P. Antioxidant activity and phenolic content of Portuguese wine aged brandies. J. Food Compos. Anal. 2008, 21, 626–633. [Google Scholar] [CrossRef]
- Silvello, G.C.; Bortoletto, A.M.; Castro, M.C.; Alcarde, A.R. New approach for barrel-aged distillates classification based on maturation level and machine learning: A study of cachaça. LWT 2021, 140, 110836. [Google Scholar] [CrossRef]
- Caldeira, I.; Sousa, R.B.; Belchior, A.P.; Clímaco, M.C. A sensory and chemical approach to the aroma of wooden aged Lourinhã wine brandy. Ciência Técnica Vitivinícola 2008, 23, 97–110. [Google Scholar]
- Le Floch, A.; Jourdes, M.; Teissedre, P.-L. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review. Carbohydr. Res. 2015, 417, 94–102. [Google Scholar] [CrossRef]
- Gupta, N.K.; Fukuoka, A.; Nakajima, K. Metal-Free and Selective Oxidation of Furfural to Furoic Acid with an N-Heterocyclic Carbene Catalyst. ACS Sustain. Chem. Eng. 2018, 6, 3434–3442. [Google Scholar] [CrossRef]
- Pérez-Prieto, L.J.; López-Roca, J.M.; Martínez-Cutillas, A.; Pardo-Mínguez, F.; Gómez-Plaza, E. Extraction and Formation Dynamic of Oak-Related Volatile Compounds from Different Volume Barrels to Wine and Their Behavior during Bottle Storage. J. Agric. Food Chem. 2003, 51, 5444–5449. [Google Scholar] [CrossRef] [PubMed]
- Sarni, F.; Moutounet, M.; Puech, J.-L.; Rabier, P. Effect of heat treatment of oak wood extractable compounds. Holzforschung 1990, 44, 461–466. [Google Scholar] [CrossRef]
- Caldeira, I.; Belchior, A.P.; Climaco, M.C.; de Sousa, R.B. Aroma profile of Portuguese brandies aged in chestnut and oak woods. Anal. Chim. Acta 2002, 458, 55–62. [Google Scholar] [CrossRef]
- Giménez Martínez, R.; De La Serrana, H.L.G.; Villalón Mir, M.; Alarcón, M.N.; Herrera, M.O.; Vique, C.C.; Martínez, M.C.L. Study of Vanillin, Syringaldehyde and Gallic Acid Content in Oak Wood and Wine Spirit Mixtures: Influence of Heat Treatment and Chip Size. J. Wine Res. 2001, 12, 175–182. [Google Scholar] [CrossRef]
- Caldeira, M.; Rodrigues, F.; Perestrelo, R.; Marques, J.C.; Camara, J.S. Comparison of two extraction methods for evaluation of volatile constituents patterns in commercial whiskeys elucidation of the main odour-active compounds. Talanta 2007, 74, 78–90. [Google Scholar] [CrossRef]
- Abdelaziz, O.Y.; Brink, D.P.; Prothmann, J.; Ravi, K.; Sun, M.; García-Hidalgo, J.; Sandahl, M.; Hulteberg, C.P.; Turner, C.; Lidén, G.; et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 2016, 34, 1318–1346. [Google Scholar] [CrossRef] [PubMed]
- Bianco, M.-A.; Handaji, A.; Savolainen, H. Quantitative analysis of ellagic acid in hardwood samples. Sci. Total Environ. 1998, 222, 123–126. [Google Scholar] [CrossRef]
- Hernanz, D.; Gallo, V.; Recamales, Á.F.; Meléndez-Martínez, A.J.; González-Miret, M.L.; Heredia, F.J. Effect of storage on the phenolic content, volatile composition and colour of white wines from the varieties Zalema and Colombard. Food Chem. 2009, 113, 530–537. [Google Scholar] [CrossRef]
- Burin, V.M.; Costa, L.L.F.; Rosier, J.P.; Bordignon-Luiz, M.T. Cabernet Sauvignon wines from two different clones, characterization and evolution during bottle ageing. LWT 2011, 44, 1931–1938. [Google Scholar] [CrossRef]
- García-Falcón, M.S.; Pérez-Lamela, C.; Martínez-Carballo, E.; Simal-Gándara, J. Determination of phenolic compounds in wines: Influence of bottle storage of young red wines on their evolution. Food Chem. 2007, 105, 248–259. [Google Scholar] [CrossRef]
- Vico, T.A.; Arce, V.B.; Fangio, M.F.; Gende, L.B.; Bertran, C.A.; Mártire, D.O.; Churio, M.S. Two choices for the functionalization of silica nanoparticles with gallic acid: Characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae. J. Nanoparticle Res. 2016, 18, 348. [Google Scholar] [CrossRef]
- Severino, J.F.; Goodman, B.A.; Kay, C.W.M.; Stolze, K.; Tunega, D.; Reichenauer, T.G.; Pirker, K.F. Free radicals generated during oxidation of green tea polyphenols: Electron paramagnetic resonance spectroscopy combined with density functional theory calculations. Free. Radic. Biol. Med. 2009, 46, 1076–1088. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Singleton, V.L. Oxygen with phenols and related reactions in musts, wines, and model systems: Observations and practical implications. Am. J. Enol. Vitic. 1987, 38, 69–77. [Google Scholar] [CrossRef]
- Tulyathan, V.; Boulton, R.B.; Singleton, V.L. Oxygen uptake by gallic acid as a model for similar reactions in wines. J. Agric. Food Chem. 1989, 37, 844–849. [Google Scholar] [CrossRef]
- Tan, J.; Vincken, J.-P.; van Zadelhoff, A.; Hilgers, R.; Lin, Z.; de Bruijn, W.J.C. Presence of free gallic acid and gallate moieties reduces auto-oxidative browning of epicatechin (EC) and epicatechin gallate (ECg). Food Chem. 2023, 425, 136446. [Google Scholar] [CrossRef]
- Galato, D.; Ckless, K.; Susin, M.F.; Giacomelli, C.; Ribeiro-do-Valle, R.M.; Spinelli, A. Antioxidant capacity of phenolic and related compounds: Correlation among electrochemical, visible spectroscopy methods and structure–antioxidant activity. Redox Rep. 2001, 6, 243–250. [Google Scholar] [CrossRef]
- Guiberteau-Cabanillas, A.; Godoy-Cancho, B.; Bernalte, E.; Tena-Villares, M.; Guiberteau Cabanillas, C.; Martínez-Cañas, M.A. Electroanalytical Behavior of Gallic and Ellagic Acid Using Graphene Modified Screen-Printed Electrodes. Method for the Determination of Total Low Oxidation Potential Phenolic Compounds Content in Cork Boiling Waters. Electroanalysis 2015, 27, 177–184. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Gil-Chávez, J.; Sotelo-Mundo, R.R.; Namiesnik, J.; Gorinstein, S.; González-Aguilar, G.A. Antioxidant Interactions between Major Phenolic Compounds Found in ‘Ataulfo’ Mango Pulp: Chlorogenic, Gallic, Protocatechuic and Vanillic Acids. Molecules 2012, 17, 12657–12664. [Google Scholar] [CrossRef]
- Malinda, K.; Sutanto, H.; Darmawan, A. Characterization and antioxidant activity of gallic acid derivative. In Proceedings of the 3rd International Symposium on Applied Chemistry, Jakarta, Indonesia, 23–24 October 2017; AIP Publishing: Jakarta, Indonesia, 2017; Volume 1904, pp. 020030-1–020030-7. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free. Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Chen, P.X.; Tang, Y.; Zhang, B.; Liu, R.; Marcone, M.F.; Li, X.; Tsao, R. 5-Hydroxymethyl-2-furfural and Derivatives Formed during Acid Hydrolysis of Conjugated and Bound Phenolics in Plant Foods and the Effects on Phenolic Content and Antioxidant Capacity. J. Agric. Food Chem. 2014, 62, 4754–4761. [Google Scholar] [CrossRef] [PubMed]
- Potapovich, M.V.; Kurchenko, V.P.; Metelitza, D.I.; Shadyro, O.I. Antioxidant activity of oxygen-containing aromatic compounds. Appl. Biochem. Microbiol. 2011, 47, 346–355. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Macdougall, D.B. Colour measurement of food: Principles and practice. In Colour Measurement; Woodhead Publishing Series in Textiles; Gulrajani, M.L., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 312–342. [Google Scholar] [CrossRef]
- Granato, D.; Masson, M.L. Instrumental color and sensory acceptance of soy-based emulsions: A response surface approach. Ciência Tecnol. Alimentos 2010, 30, 1090–1096. [Google Scholar] [CrossRef]
- Fujieda, M.; Tanaka, T.; Suwa, Y.; Koshimizu, S.; Kouno, I. Isolation and Structure of Whiskey Polyphenols Produced by Oxidation of Oak Wood Ellagitannins. J. Agric. Food Chem. 2008, 56, 7305–7310. [Google Scholar] [CrossRef] [PubMed]
- Karbowiak, T.; Crouvisier-Urion, K.; Lagorce, A.; Ballester, J.; Geoffroy, A.; Roullier-Gall, C.; Chanut, J.; Gougeon, R.D.; Schmitt-Kopplin, P.; Bellat, J.-P. Wine aging: A bottleneck story. NPJ Sci. Food 2019, 3, 14. [Google Scholar] [CrossRef]
- Belchior, A.; Caldeira, I.; Costa, S.; Lopes, C.; Tralhão, G.; Ferrão, A.; Mateus, A.M.; Carvalho, E. Evolução das características físico-químicas e organolépticas de aguardentes Lourinhã ao longo de cinco anos de envelhecimento em madeiras de carvalho e de castanheiro. Ciência Técnica Vitivinícola 2001, 16, 81–95. [Google Scholar]
- Anjos, O.; Caldeira, I.; Pedro, S.I.; Canas, S. FT-Raman methodology applied to identify different ageing stages of wine spirits. LWT Food Sci. Technol. 2020, 134, 110179. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Pilone, G.J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Nose, A.; Hojo, M.; Suzuki, M.; Ueda, T. Solute Effects on the Interaction between Water and Ethanol in Aged Whiskey. J. Agric. Food Chem. 2004, 52, 5359–5365. [Google Scholar] [CrossRef]
- Huang, Z.J.; Zeng, Y.H.; Sun, Q.Y.; Zhang, W.H.; Wang, S.T.; Shen, C.H.; Shi, B. Insights into the mechanism of flavor compound changes in strong flavor baijiu during storage by using the density functional theory and molecular dynamics simulation. Food Chem. 2022, 373, 131522. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, S.K.C.; Stringer, S.J.; Zhang, Y. Characterization of Titratable Acids, Phenolic Compounds, and Antioxidant Activities of Wines Made from Eight Mississippi-Grown Muscadine Varieties during Fermentation. LWT 2017, 86, 302–311. [Google Scholar] [CrossRef]
- Qiao, H.; Sun, T. Changes of enological variables, metal ions, and aromas in Fenjiu during 3 years of ceramic and glass bottle ageing. CyTA—J. Food 2015, 13, 366–372. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Contreras, M.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J. Chromatogr. A 2013, 1313, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Papetti, A.; Maietta, M.; Corana, F.; Marrubini, G.; Gazzani, G. Polyphenolic profile of green/red spotted Italian Cichorium intybus salads by RP-HPLC-PDA-ESI-MSn. J. Food Compos. Anal. 2017, 63, 189–197. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Andrade, F.; Prazeres, I.; Silva, A.; Capelo, J.; Duarte, B.; Caçador, I.; Coelho, J.; Serra, A.; Bronze, M. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia ramosissima J. Woods. Antioxidants 2021, 10, 1312. [Google Scholar] [CrossRef]
- Meyers, K.J.; Swiecki, T.J.; Mitchell, A.E. Understanding the Native Californian Diet: Identification of Condensed and Hydrolyzable Tannins in Tanoak Acorns (Lithocarpus densiflorus). J. Agric. Food Chem. 2006, 54, 7686–7691. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Pereira, R.S.; Pereira, A.B.; Ferreira, A.; Mecha, E.; Silva, A.B.; Serra, A.T.; Bronze, M.R. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: Nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Res. Int. 2020, 131, 109026. [Google Scholar] [CrossRef] [PubMed]
- Soong, Y.Y.; Barlow, P.J. Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus longan Lour.) seed by high-performance liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A 2005, 1085, 270–277. [Google Scholar] [CrossRef]
- Regalado, E.L.; Tolle, S.; Pino, J.A.; Winterhalter, P.; Menendez, R.; Morales, A.R.; Rodríguez, J.L. Isolation and identification of phenolic compounds from rum aged in oak barrels by high-speed counter current chromatography/high-performance liquid chromatography-diode array detection-electrospray ionization mass spectrometry and screening for antioxidant activity. J. Chromatogr. A 2011, 1218, 7358–7364. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Fernández de Simón, B.; Hernández, T.; Estrella, I. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage. J. Agric. Food Chem. 2010, 58, 9631–9640. [Google Scholar] [CrossRef]
- Flamini, R.; Panighel, A.; De Marchi, F. Mass spectrometry in the study of wood compounds released in the barrel-aged wine and spirits. Mass Spectrom. Rev. 2023, 42, 1174–1220. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, X.; Zhang, H.; Wei, J.; Huo, Z.; Ji, W. Simultaneous detection of furfural, 5-methylfurfural and 5-hydroxymethylfurfural in tsamba, roasted highland barley flour, by UPLC–MS/MS. J. Food Compos. Anal. 2023, 116, 105095. [Google Scholar] [CrossRef]
- Schwarz, M.; Weber, F.; Durán-Guerrero, E.; Castro, R.; Rodríguez-Dodero, M.d.C.; García Moreno, M.V.; Winterhalter, P.; Guillén-Sánchez, D. HPLC-DAD-MS and Antioxidant Profile of Fractions from Amontillado Sherry Wine Obtained Using High-Speed Counter Current Chromatography. Foods 2021, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Alves, S.C.; Vendramini-Costa, D.B.; Cazarin, C.B.B.; Maróstica Júnior, M.R.; Ferreira, J.P.B.; Silva, A.B.; Prado, M.A.; Bronze, M.R. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem. 2017, 232, 295–305. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Gu, L. Antioxidant Capacity, Phenolic Content, and Profiling of Phenolic Compounds in the Seeds, Skin, and Pulp of Vitis rotundifolia (Muscadine Grapes) As Determined by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2010, 58, 4681–4692. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; de Simón, B.F.; Esteruelas, E.; Muñoz, A.M.; Cadahía, E.; Hernández, M.T.; Estrella, I.; Martinez, J. Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels. Anal. Chim. Acta 2012, 732, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Patyra, A.; Dudek, M.K.; Kiss, A.K. LC-DAD–ESI-MS/MS and NMR Analysis of Conifer Wood Specialized Metabolites. Cells 2022, 11, 3332. [Google Scholar] [CrossRef]
- Khatib, M.; Campo, M.; Bellumori, M.; Cecchi, L.; Vignolini, P.; Innocenti, M.; Mulinacci, N. Tannins from Different Parts of the Chestnut Trunk (Castanea sativa Mill.): A Green and Effective Extraction Method and Their Profiling by High-Performance Liquid Chromatography-Diode Array Detector-Mass Spectrometry. ACS Food Sci. Technol. 2023, 3, 1903–1912. [Google Scholar] [CrossRef]
- Garcia, R.; Soares, B.; Dias, C.B.; Freitas, A.M.C.; Cabrita, M.J. Phenolic and Furanic Compounds of Portuguese Chestnut and French, American and Portuguese Oak Wood Chips. Eur. Food Res. Technol. 2012, 235, 457–467. [Google Scholar] [CrossRef]
- Wyrepkowski, C.C.; Gomes da Costa, D.L.M.; Sinhorin, A.P.; Vilegas, W.; De Grandis, R.A.; Resende, F.A.; Varanda, E.A.; Dos Santos, L.C. Characterization and Quantification of the Compounds of the Ethanolic Extract from Caesalpinia ferrea Stem Bark and Evaluation of Their Mutagenic Activity. Molecules 2014, 19, 16039–16057. [Google Scholar] [CrossRef]
- De Rosso, M.; Panighel, A.; Dalla Vedova, A.; Stella, L.; Flamini, R. Changes in Chemical Composition of a Red Wine Aged in Acacia, Cherry, Chestnut, Mulberry, and Oak Wood Barrels. J. Agric. Food Chem. 2009, 57, 1915–1920. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Sanz, M.; Cadahía, E.; Martínez, J.; Esteruelas, E.; Muñoz, A.M. Polyphenolic compounds as chemical markers of wine ageing in contact with cherry, chestnut, false acacia, ash and oak wood. Food Chem. 2014, 143, 66–76. [Google Scholar] [CrossRef]
- Sádecká, J.; Májek, P.; Tóthová, J. CE Profiling of Organic Acids in Distilled Alcohol Beverages Using Pattern Recognition Analysis. Chroma 2008, 67, 69–74. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, K.R.; Kim, J.H. Gas Chromatographic Organic Acid Profiling Analysis of Brandies and Whiskeys for Pattern Recognition Analysis. J. Agric. Food Chem. 1999, 47, 2322–2326. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Namkung, W.; Thiagarajah, J.R.; Phuan, P.W.; Verkman, A.S. Inhibition of Ca2+-activated Cl− channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J. 2010, 24, 4178–4186. [Google Scholar] [CrossRef]
- Smith, M.A.; Klebanoff, L.E.; Morrow, C.T.; Sandel, B.B. 3-Substituted Flavones. 1. Reduction of and Conjugate Addition to (E)-2-Methoxy-3- (carbethoxymethy1ene) flavones. J. Org. Chem. 1982, 47, 1702–1706. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Analysis of Spirituous Beverages of Vitivinicultural Origin; International Organisation of Vine and Wine: Paris, France, 2019. [Google Scholar]
- Cetó, X.; Gutiérrez, J.M.; Gutiérrez, M.; Céspedes, F.; Capdevila, J.; Mínguez, S.; Jiménez-Jorquera, C.; del Valle, M. Determination of total polyphenol index in wines employing a voltammetric electronic tongue. Anal. Chim. Acta 2012, 732, 172–179. [Google Scholar] [CrossRef]
- Rufino, M.D.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Canas, S.; Belchior, A.P.; Spranger, M.I.; Bruno-De-Sousa, R. High-performance liquid chromatography method for analysis of phenolic acids, phenolic aldehydes, and furanic derivatives in brandies. Development and validation. J. Sep. Sci. 2003, 26, 496–502. [Google Scholar] [CrossRef]
LMW Compounds (mg/L) | 1Y | 4Y | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
B1Y | O151Y | O301Y | O601Y | N1Y | B4Y | O154Y | O304Y | O604Y | N4Y | |
5-Hydroxy- methylfurfural | 40.75 ± 1.46 Ba | 33.38 ± 11.36 Aa | 30.41 ± 4.68 Ba | 26.63 ± 1.63 Aa | 29.72 ± 5.80 Ba | 31.89 ± 0.73 Ab | 20.94 ± 6.72 Ab | 18.91 ± 2.71 Aa | 20.90 ± 7.48 Ab | 17.35 ± 4.21 Aa |
Furfural | 51.92 ± 1.72 Ba | 72.81 ± 5.83 Ac | 67.94 ± 3.73 Bc | 72.42 ± 3.55 Ac | 62.95 ± 0.97 Bb | 46.49 ± 1.80 Aa | 64.83 ± 5.80 Ac | 59.39 ± 2.88 Ac | 67.16 ± 4.19 Ac | 56.16 ± 0.99 Ab |
5-Methylfurfural | 0.87 ± 0.20 Bb | 0.82 ± 0.23 Bab | 0.71 ± 0.09 Bab | 0.60 ± 0.15 Bab | 0.48 ± 0.17 Ba | 0.27 ± 0.11 Aa | 0.21 ± 0.090 Aa | 0.21 ± 0.12 Aa | 0.34 ± 0.04 Aa | 0.19 ± 0.06 Aa |
Gallic acid | 171.70 ± 12.74 Bc | 122.50 ± 14.73 Bb | 102.30 ± 14.41 Bab | 104.60 ± 1.08 Bab | 84.14 ± 15.17 Ba | 137.70 ± 17.51 Ab | 58.06 ± 7.26 Aa | 59.36 ± 8.60 Aa | 67.34 ± 18.52 Aa | 41.66 ± 8.34 Aa |
Ellagic acid | 17.72 ± 1.03 Aa | 21.73 ± 2.29 Abc | 21.83 ± 0.86 Bbc | 23.44 ± 0.45 Ac | 19.31 ± 0.90 Bab | 16.17 ± 0.71 Aa | 18.68 ± 1.73 Aa | 19.04 ± 0.89 Aa | 22.91 ± 2.84 Ab | 16.72 ± 0.55 Aa |
Vanillic acid | 12.58 ± 0.40 Aa | 17.42 ± 5.83 Aa | 17.18 ± 2.41 Aa | 15.01 ± 0.14 Aa | 16.07 ± 2.59 Aa | 16.62 ± 2.86 Ba | 16.29 ± 6.25 Aa | 17.78 ± 3.91 Aa | 15.05 ± 0.94 Aa | 15.15 ± 3.48 Aa |
Syringic acid | 6.02 ± 0.50 Aa | 13.12 ± 1.49 Ab | 12.16 ± 0.92 Ab | 12.97 ± 0.85 Ab | 11.27 ± 0.72 Ab | 6.75 ± 0.26 Aa | 13.51 ± 0.99 Ac | 13.10 ± 0.76 Abc | 14.31 ± 1.12 Ac | 11.48 ± 1.03 Ab |
Ferulic acid | 0.26 ± 0.03 Aa | 0.37 ± 0.11 Aab | 0.46 ± 0.08 Ab | 0.43 ± 0.04 Ab | 0.33 ± 0.02 Aab | 0.29 ± 0.04 Aa | 0.55 ± 0.15 Ab | 0.50 ± 0.13 Aab | 0.48 ± 0.12 Aab | 0.37 ± 0.03 Aab |
Vanillin | 6.17 ± 0.08 Ab | 6.53 ± 0.20 Abc | 6.29 ± 0.27 Abc | 6.88 ± 0.29 Ac | 4.94 ± 0.49 Aa | 6.50 ± 0.35 Aab | 6.51 ± 0.46 Aab | 6.32 ± 0.12 Aab | 7.93 ± 1.99 Ab | 5.15 ± 0.56 Aa |
Syringaldehyde | 13.59 ± 0.19 Aa | 17.20 ± 0.11 Ab | 16.01 ± 0.49 Ab | 17.50 ± 0.38 Ab | 13.53 ± 1.89 Aa | 17.59 ± 0.78 Ba | 20.99 ± 0.91 Bab | 19.82 ± 0.88 Bab | 24.30 ± 5.43 Bb | 16.68 ± 2.30 Ba |
Coniferaldehyde | 9.17 ± 0.35 Ab | 5.82 ± 0.23 Aa | 5.81 ± 0.31 Aa | 6.09 ± 0.89 Aa | 5.62 ± 0.27 Aa | 8.90 ± 0.23 Ab | 5.57 ± 0.54 Aa | 5.51 ± 0.37 Aa | 5.96 ± 0.88 Aa | 5.36 ± 0.05 Aa |
Sinapaldehyde | 30.36 ± 1.43 Bb | 25.45 ± 0.39 Bba | 23.98 ± 0.85 Ba | 27.06 ± 2.25 Ba | 24.96 ± 1.40 Ba | 21.47 ± 2.29 Aa | 17.04 ± 2.91 Aa | 15.95 ± 2.95 Aa | 20.51 ± 2.87 Aa | 17.43 ± 1.15 Aa |
Total furanic aldehydes | 93.54 ± 3.27 Ba | 107.01 ± 16.91 Ba | 99.06 ± 1.57 Ba | 99.65 ± 5.32 Ba | 93.16 ± 6.25 Ba | 78.65 ± 2.49 Aa | 85.97 ± 12.62 Aa | 78.51 ± 1.39 Aa | 88.40 ± 11.54 Aa | 73.69 ± 4.82 Aa |
Total phenolic acids | 208.30 ± 12.83 Bc | 175.20 ± 5.76 Bb | 153.90 ± 16.91 Bab | 156.40 ± 1.13 Bab | 131.10 ± 17.17 Ba | 177.50 ± 21.18 Ab | 107.10 ± 6.02 Aa | 109.80 ± 12.80 Aa | 120.10 ± 19.39 Aa | 85.37 ± 10.61 Aa |
Total phenolic aldehydes | 59.28 ± 1.91 Bb | 54.99 ± 0.57 Ab | 52.09 ± 1.71 Aab | 57.53 ± 3.75 Ab | 49.04 ± 3.92 Aa | 54.46 ± 1.68 Ab | 50.10 ± 3.83 Aab | 47.60 ± 3.55 Aab | 58.69 ± 10.81 Ab | 44.62 ± 2.36 Aa |
Total LMWC | 361.10 ± 12.85 Bc | 337.10 ± 12.24 Bbc | 305.10 ± 17.44 Bb | 313.60 ± 7.91 Ab | 273.30 ± 20.67 Ba | 310.60 ± 24.48 Ac | 243.20 ± 17.76 Aab | 235.90 ± 14.98 Aab | 267.20 ± 40.99 Abc | 203.70 ± 12.64 Aa |
Analytical Parameters | 1Y | 4Y | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
B1y | O151y | O301y | O601y | N1y | B4y | O154y | O304y | O604y | N4y | |
Alcoholic strength by volume (% v/v) | 76.38 ± 0.13 Aa | 77.09 ± 0.11 Ab | 77.09 ± 0.11 Ab | 77.16 ± 0.17 Ab | 76.72 ± 0.26 Aab | 76.14 ± 0.20 Aa | 77.05 ± 0.17 Ab | 77.04 ± 0.21 Ab | 77.24 ± 0.22 Ab | 76.37 ± 0.33 Aa |
Total acidity (g acetic acid/L AE) | 0.89 ± 0.13 Bd | 0.69 ± 0.01 Ac | 0.66 ± 0.03 Ab | 0.67 ± 0.01 Abc | 0.58 ± 0.01 Aa | 0.82 ± 0.03 Ad | 0.74 ± 0.01 Bc | 0.70 ± 0.01 Bb | 0.71 ± 0.01 Bb | 0.64 ± 0.02 Ba |
Fixed acidity (g acetic acid/L AE) | 0.44 ± 0.02 Bc | 0.34 ± 0.01 Ab | 0.32 ± 0.02 Ab | 0.33 ± 0.01 Ab | 0.27 ± 0.02 Aa | 0.34 ± 0.02 Ac | 0.33 ± 0.03 Abc | 0.32 ± 0.02 Ab | 0.32 ± 0.01 Abc | 0.27 ± 0.01 Aa |
Volatile acidity (g acetic acid/L AE) | 0.45 ± 0.02 Ac | 0.35 ± 0.01 Ab | 0.35 ± 0.02 Ab | 0.34 ± 0.01 Ab | 0.31 ± 0.01 Aa | 0.48 ± 0.03 Bc | 0.41 ± 0.03 Bb | 0.39 ± 0.01 Bba | 0.39 ± 0.01 Bba | 0.37 ± 0.03 Ba |
Total dry extract (g/L) | 2.37 ± 0.23 Ab | 2.43 ± 0.08 Ab | 2.27 ± 0.14 Ab | 2.37 ± 0.04 Ab | 2.03 ± 0.06 Aa | 2.46 ± 0.10 Ac | 2.44 ± 0.08 Abc | 2.36 ± 0.01 Ab | 2.38 ± 0.05 Abc | 2.07 ± 0.01 Aa |
pH | 4.11 ± 0.05 Ba | 4.16 ± 0.02 Bb | 4.14 ± 0.01 Bab | 4.18 ± 0.01 Bb | 4.24 ± 0.02 Bc | 3.97 ± 0.09 Aa | 4.04 ± 0.04 Ab | 4.07 ± 0.02 Ab | 3.95 ± 0.03 Aa | 4.12 ± 0.04 Ac |
Peak | RT (min.) | λmax (nm) | Precursor Ion (m/z) [M − H]+ | Precursor Ion (m/z) [M − H]− | Product Ions m/z (% Base Peak) | Tentative Identification | References |
---|---|---|---|---|---|---|---|
1 | 6.2 | 147 | 103 (100) | Citramalic acid | [88,89] | ||
2 | 7.87 | 133 | 115 (100), 113 (40), 71 (20) | Malic acid | [88,90] | ||
3 | 8.13 | 273 | 331 | 169 (100), 125 (35) | Galloyl glucose | [27,91,92] | |
4 | 8.42 | 271 | 331 | 169 (80), 271 (20), 211 (35), 125 (55) | Mono-O-galloyl-β-D-glucose | [27,92,93] | |
5 | 15.5 | 271 | 169 | 125 (100) | Gallic acid | [94,95,96] | |
6 | 20.03 | 284 | 127 | 127 (40), 109 (100), 81 (30) | 5-Hydroxymethylfurfural | [97,98] | |
7 | 22.40 | 290, 326 | 153 | 153 (50), 109 (100) | Protocatechuic acid | [95,96,99] | |
8 | 29.85 | 281 | 97 | 97 (100), 69 (30) | Furfural | [97,98] | |
9 | 33.97 | 274 | 483 | 483 (100), 331 (20), 313 (30), 271 (20), 169 (60) | Di-O-galloyl-β-D-glucose 1 | [27,91,95] | |
10 | 34.48 | 273 | 483 | 483 (100), 331 (20), 313 (30), 271 (20), 169 (60) | Di-O-galloyl-β-D-glucose 2 | [27,91,95] | |
11 | 35.33 | 279 | 341 | 341 (100), 169 (10), 125 (10) | Gallic acid-glucoside | [27,92] | |
12 | 36.27 | 273 | 321 | 169 (100), 125 (10) | Digallate | [27,92] | |
13 | 39.95 | 273 | 635 | 635 (50), 483 (30), 465 (20), 313 (15), 211 (10), 169 (10) | Tri-O-galloyl-β-D-glucose | [27,95] | |
14 | 40.89 | 263, 292 | 167 | 167 (100), 152 (30), 108 (23), 123 (10) | Vanillic acid | [94,95] | |
15 | 41.86 | 273 | 197 | 197 (100), 161 (30), 182 (25), 153 (60) | Syringic acid | [94,95,96] | |
16 | 42.92 | 271 | 493 | 493 (100), 331 (10), 313 (10), 271 (20), 211 (30), 169 (10) | Monogalloyl-diglucose | [93,100] | |
17 | 44.05 | 278 | 289 | 289 (30), 245 (100), 203 (10), 179 (10) | Epicatechin | [101,102] | |
18 | 45.17 | 276 | 787 | 787 (30), 635 (20), 617 (20), 465 (15), 313 (10) | Tetra-O-galloyl-β-D-glucose | [27,95,103] | |
19 | 46.35 | 231, 325 | 193 | 193 (50), 178 (15), 149 (20), 134 (100), | Ferulic acid | [95,99] | |
20 | 46.65 | 276 | 939 | 939 (100), 787 (50), 769 (40), 635 (30), 617 (10) | Penta-O-galloyl-β-D-glucose | [27,92] | |
21 | 46.72 | 254, 365 | 301 | 301 (100), 229 (10) | Ellagic acid | [92,95,101] | |
22 | 47.25 | 280, 328 | 151 | 151 (60), 136 (100) | Vanillin | [94,95,104] | |
23 | 48.17 | 229, 306 | 181 | 181 (80), 166 (45), 151 (20) | Syringaldehyde | [95,96,101] | |
24 | 48.69 | 283, 307 | 167 | 167 (30), 109 (70) | Methyl protocatechuate | [94,98] | |
25 | 49.38 | 250, 361 | 585 | 585 (100), 301 (30) | Ellagic acid dimer dehydrated | [95,103,104] | |
26 | 50.48 | 320 | 307 | 307 (100), 261 (20), 235 (15) | 3-Carbethoxymethyl-flavone | [94] | |
27 | 50.93 | 290 | 361 | 361 (40), 181 (50), 137 (100) | Homovanillic acid | [94] | |
28 | 51.66 | 271 | 663 | 663 (20), 331 (100), 169 (10) | Monogalloyl-glucose dimer | [91,103] | |
29 | 52.3 | 250, 362 | 433 | 443 (100), 301 (50) | Ellagic acid pentoside | [27,91,100] | |
30 | 52.85 | 244, 345 | 207 | 207 (100), 192 (50) | Sinapaldehyde | [95,103,104] | |
31 | 53.24 | 238, 340 | 177 | 177 (100), 162 (90) | Coniferaldehyde | [95,103,104] | |
33 | 54.02 | 274 | 197 | 197 (100), 169 (20), 125 (45) | Ethyl gallate | [94,105] | |
34 | 55.88 | 265, 362 | 447 | 447 (20), 285 (100) | Kaempherol-hexoside | [100] | |
35 | 57.82 | 265, 360 | 285 | 285 (100), 283 (40), 193 (50), 177 (20) | Kaempferol | [96,101] | |
36 | 59.28 | 254, 355 | 367 | 367 (100), 301 (80) | Ellagic acid derivative | [92,95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira-Alves, S.C.; Fernandes, T.A.; Lourenço, S.; Granja-Soares, J.; Silva, A.B.; Bronze, M.R.; Catarino, S.; Canas, S. Storage Time in Bottle: Influence on Physicochemical and Phytochemical Characteristics of Wine Spirits Aged Using Traditional and Alternative Technologies. Molecules 2025, 30, 2018. https://doi.org/10.3390/molecules30092018
Oliveira-Alves SC, Fernandes TA, Lourenço S, Granja-Soares J, Silva AB, Bronze MR, Catarino S, Canas S. Storage Time in Bottle: Influence on Physicochemical and Phytochemical Characteristics of Wine Spirits Aged Using Traditional and Alternative Technologies. Molecules. 2025; 30(9):2018. https://doi.org/10.3390/molecules30092018
Chicago/Turabian StyleOliveira-Alves, Sheila C., Tiago A. Fernandes, Sílvia Lourenço, Joana Granja-Soares, Andreia B. Silva, Maria Rosário Bronze, Sofia Catarino, and Sara Canas. 2025. "Storage Time in Bottle: Influence on Physicochemical and Phytochemical Characteristics of Wine Spirits Aged Using Traditional and Alternative Technologies" Molecules 30, no. 9: 2018. https://doi.org/10.3390/molecules30092018
APA StyleOliveira-Alves, S. C., Fernandes, T. A., Lourenço, S., Granja-Soares, J., Silva, A. B., Bronze, M. R., Catarino, S., & Canas, S. (2025). Storage Time in Bottle: Influence on Physicochemical and Phytochemical Characteristics of Wine Spirits Aged Using Traditional and Alternative Technologies. Molecules, 30(9), 2018. https://doi.org/10.3390/molecules30092018