Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,257)

Search Parameters:
Keywords = HPLC/MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 904 KB  
Review
Research Progress on the Insecticidal and Antibacterial Properties and Planting Applications of the Functional Plant Cnidium monnieri in China
by Shulian Shan, Qiantong Wei, Chongyi Liu, Sirui Zhao, Feng Ge, Hongying Cui and Fajun Chen
Plants 2026, 15(2), 281; https://doi.org/10.3390/plants15020281 (registering DOI) - 17 Jan 2026
Abstract
Cnidium monnieri (L.) Cusson is a species of Umbelliferae plants, and it is one of China’s traditional medicinal herbs, widely distributed in China owing to its strong adaptability in fields. In this article, the research progress on the taxonomy, distribution, cultivation techniques, active [...] Read more.
Cnidium monnieri (L.) Cusson is a species of Umbelliferae plants, and it is one of China’s traditional medicinal herbs, widely distributed in China owing to its strong adaptability in fields. In this article, the research progress on the taxonomy, distribution, cultivation techniques, active components, analysis methods, antibacterial and insecticidal properties, and ecological applications of C. monnieri was reviewed. The main active components in C. monnieri are coumarins (mainly osthole) and volatile compounds, exhibiting multiple pharmacological effects, e.g., anti-inflammatory, antibacterial, antioxidant, anti-tumor, and immune-regulating effects. Some modern analytical techniques (e.g., HPLC, GC-MS, and UPLC-QTOF-MS) have enabled more precise detection and quality control of these chemical components in C. monnieri. The specific active constituents in C. monnieri (e.g., coumarins and volatile components) exhibit significant inhibitory effects against various pathogenic fungi and insect pests. Simultaneously, the resources provided during its flowering stage (e.g., pollen and nectar) and the specific volatiles released can repel herbivorous insect pests while attracting natural enemies, such as ladybugs, lacewings, and hoverflies, thereby enhancing ecological control of insect pests in farmland through a “push–pull” strategy. Additionally, C. monnieri has the ability to accumulate heavy metals, e.g., Zn and Cu, indicating its potential value for ecological restoration in agroecosystems. Overall, C. monnieri has medicinal, ecological, and economic value. Future research should focus on regulating active-component synthesis, improving our understanding of ecological mechanisms, and developing standardized cultivation systems to enhance the applications of C. monnieri in modernized traditional Chinese medicine and green agriculture production. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

8 pages, 1314 KB  
Proceeding Paper
Exploring Flavonoids and Citric Acid Extraction Yields from Lemon Peels Across Glucanase, Cellulase, and Pectinase Enzymes
by Rosa Zapata, Lorena Martínez-Zamora and Francisco Artés-Hernández
Biol. Life Sci. Forum 2026, 56(1), 7; https://doi.org/10.3390/blsf2026056007 - 15 Jan 2026
Abstract
Lemon peel, which contains a wide variety of antioxidant compounds and biopolymers, is an interesting byproduct for valorization. In this study, pectin and cellulose were obtained from lemon peel with 36% and 23% extraction yields. Meanwhile, when evaluating the extraction of secondary metabolites [...] Read more.
Lemon peel, which contains a wide variety of antioxidant compounds and biopolymers, is an interesting byproduct for valorization. In this study, pectin and cellulose were obtained from lemon peel with 36% and 23% extraction yields. Meanwhile, when evaluating the extraction of secondary metabolites using various enzymes, it was found that their concentrations increased the most in the case of pectin methylesterase, by up to 21.7% for eriocitrin, although the solid residue was not affected spectroscopically by the enzymatic activity. In contrast, enzyme mixes with β-glucosidase activity showed no presence of the O-glycosylated flavonoids, suggesting their hydrolysis into the aglycones. Full article
Show Figures

Figure 1

21 pages, 4628 KB  
Article
Effect of Popping and Steam Cooking on Total Ferulic Acid, Phenolic and Flavonoid Contents, and Antioxidant Properties of Sukhothai Fragrant Black Rice
by Thayada Phimphilai, Onsaya Kerdto, Kajorndaj Phimphilai, Phronpawee Srichomphoo, Wachiraporn Tipsuwan, Pornpailin Suwanpitak, Yanping Zhong and Somdet Srichairatanakool
Foods 2026, 15(2), 320; https://doi.org/10.3390/foods15020320 - 15 Jan 2026
Viewed by 73
Abstract
This study investigated the effects of thermal processing and extraction solvents on the phytochemical composition, antioxidant potential, and cytotoxic activity of Sukhothai fragrant rice (Oryza sativa L.). Rice subjected to three processing methods, unprocessed (raw), popped/puffed and steam-cooked, was extracted using hot [...] Read more.
This study investigated the effects of thermal processing and extraction solvents on the phytochemical composition, antioxidant potential, and cytotoxic activity of Sukhothai fragrant rice (Oryza sativa L.). Rice subjected to three processing methods, unprocessed (raw), popped/puffed and steam-cooked, was extracted using hot water or 70% (v/v) ethanol, yielding six extracts. Trans-ferulic acid, γ-oryzanol and anthocyanins were quantified using HPLC-DAD and HPLC-ESI-MS, while total phenolic and flavonoid contents, and antioxidant activities were evaluated using Folin–Ciocalteu, aluminium chloride, DPPH and ABTS assays. Cytotoxicity was assessed in Huh7 hepatocellular carcinoma cells. Water extracts consistently produced higher yields and contained greater total phenolic, flavonoid and anthocyanin contents, resulting in stronger antioxidant activity. Unprocessed rice water extract exhibited the highest trans-ferulic acid recovery and antioxidant capacity. Thermal processing, particularly steamed cooking, markedly reduced phytochemical contents, likely due to heat-induced degradation. In contrast, ethanolic extracts yielded lower quantities but higher concentrations of less polar bioactive compounds and exhibited greater cytotoxic effects. Overall, minimal thermal processing combined with aqueous extraction best preserved antioxidant compounds, while ethanolic extraction enhanced biological potency. These findings highlight the importance of processing intensity and solvent polarity in optimizing the nutraceutical and functional potential of black rice. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

34 pages, 6047 KB  
Article
HPLC-ESI-QTOF-MS/MS-Guided Profiling of Bioactive Compounds in Fresh and Stored Saffron Corms Reveals Potent Anticancer Activity Against Colorectal Cancer
by Sanae Baddaoui, Ennouamane Saalaoui, Oussama Khibech, Diego Salagre, Álvaro Fernández-Ochoa, Samira Mamri, Nahida Aktary, Muntajin Rahman, Amama Rani, Abdeslam Asehraou, Bonglee Kim and Ahmad Agil
Pharmaceuticals 2026, 19(1), 149; https://doi.org/10.3390/ph19010149 - 14 Jan 2026
Viewed by 80
Abstract
Background: Saffron (Crocus sativus L.) corms, often discarded as agricultural by-products, are a promising and sustainable source of bioactive metabolites with potential therapeutic relevance. However, their anticancer potential remains largely underinvestigated. Objectives: This study aimed to compare the phytochemical composition [...] Read more.
Background: Saffron (Crocus sativus L.) corms, often discarded as agricultural by-products, are a promising and sustainable source of bioactive metabolites with potential therapeutic relevance. However, their anticancer potential remains largely underinvestigated. Objectives: This study aimed to compare the phytochemical composition of hydroethanolic extracts from fresh (HEEF) and stored (HEES) saffron corms and to evaluate their anticancer effectiveness against colorectal cancer cells. Methods: Phytochemical profiling was performed using HPLC-ESI-QTOF-MS/MS. Cytotoxicity against T84 and SW480 colorectal cancer cell lines was determined by the crystal violet assay. Apoptosis-related protein modulation was assessed by Western blotting. Additionally, molecular docking, molecular dynamics simulations, and MM/GBSA calculations were used to investigate ligand–target binding affinities and stability. Results: Both extracts contained diverse primary and secondary metabolites, including phenolic acids, flavonoids, triterpenoids, lignans, anthraquinones, carotenoids, sugars, and fatty acids. HEES showed higher relative abundance of key bioactive metabolites than HEEF, which was enriched mainly in primary metabolites. HEES showed significantly greater dose-dependent cytotoxicity, particularly against SW480 cells after 24 h (IC50 = 34.85 ± 3.35). Apoptosis induction was confirmed through increased expression of caspase-9 and p53 in T84 cells. In silico studies revealed strong and stable interactions of major metabolites, especially 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid with COX2 and crocetin with VEGFR2. Conclusions: Stored saffron corms possess a richer bioactive profile and show enhanced anticancer effects in vitro compared with fresh saffron corms, suggesting that they may represent a promising source of compounds for the future development of colorectal cancer therapeutics. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

15 pages, 1506 KB  
Review
Lipid Analysis by Thin-Layer Chromatography—Detection, Staining and Derivatization
by Johanna W. Schubarth, Jenny Leopold, Kathrin M. Engel and Jürgen Schiller
Lipidology 2026, 3(1), 3; https://doi.org/10.3390/lipidology3010003 - 13 Jan 2026
Viewed by 115
Abstract
Thin-layer chromatography (TLC) remains a widely used, cost-effective and convenient method to separate small molecules, particularly in the field of natural products and (phospho)lipids. Despite advances in chromatographic methods such as high-performance liquid chromatography (HPLC), TLC retains several advantages, including simplicity and accessibility. [...] Read more.
Thin-layer chromatography (TLC) remains a widely used, cost-effective and convenient method to separate small molecules, particularly in the field of natural products and (phospho)lipids. Despite advances in chromatographic methods such as high-performance liquid chromatography (HPLC), TLC retains several advantages, including simplicity and accessibility. However, a critical step is the visualization of the separated lipids on the TLC plate. Although the majority of the regularly used methods were established decades ago, there are still a number of potential pitfalls and widely unknown aspects. This review provides a concise overview about commonly used stationary phases and the solvent systems in TLC analysis of lipids. The main focus is on visualization techniques, spanning from non-specific, destructive (charring by semi-concentrated acids) to specific, non-destructive approaches (e.g., exposition to iodine to monitor unsaturated lipids). The advantages and disadvantages of the different methods will be critically discussed and frequently occurring problems highlighted. Furthermore, the combination of TLC with mass spectrometry (MS) detection will be introduced, covering both extraction-based electrospray ionization MS techniques as well as desorption techniques such as matrix-assisted laser desorption/ionization MS. MS detection, while generally more sensitive and offering molecular specificity, introduces higher technical and financial requirements compared to conventional staining. Nonetheless, the combination of TLC with MS holds significant potential for enhancing lipidomic workflows, particularly in complex biological samples. Full article
Show Figures

Graphical abstract

14 pages, 1487 KB  
Article
Sexual Hormones Determination in Biofluids by In-Vial Polycaprolactone Thin-Film Microextraction Coupled with HPLC-MS/MS
by Francesca Merlo, Silvia Anselmi, Andrea Speltini, Clàudia Fontàs, Enriqueta Anticó and Antonella Profumo
Molecules 2026, 31(2), 255; https://doi.org/10.3390/molecules31020255 - 12 Jan 2026
Viewed by 140
Abstract
The in-vial microextraction technique is emerging as an alternative sample treatment, as it integrates sorbent preparation, adsorption, and desorption of analytes in a single device before instrumental analysis. In this work, the applicability of polycaprolactone polymeric film, recently used for the in-vial microextraction [...] Read more.
The in-vial microextraction technique is emerging as an alternative sample treatment, as it integrates sorbent preparation, adsorption, and desorption of analytes in a single device before instrumental analysis. In this work, the applicability of polycaprolactone polymeric film, recently used for the in-vial microextraction of sex hormones from environmental waters, is studied in a low-capacity format for unconjugated sex hormones determination in biological samples by HPLC-MS/MS. Its performance was evaluated in urine and serum, achieving extraction in a short time (10 and 30 min, in turn) and satisfactory elution with ethanol, with recovery in the range of 65–111% in urine, 55–122% in bovine serum albumin (BSA) solution, and 66–121% in fetal bovine serum (FBS). In the case of protein matrices, a dilution to 20 g L−1 protein content and washing step (3 × 1 mL ultrapure water) afore the elution are required to achieve clean extract, as verified by a Bradford assay. Matrix-matched calibration was used for quantification, obtaining correlation coefficients greater than 0.9929; limits of detection and quantification were in the range of 0.01–0.65 and 0.03–1.96 ng mL−1 in urine, 0.02–0.8 and 0.05–2.5 ng mL−1 in BSA, and 0.02–1.0 and 0.06–3.0 g mL−1 in FBS, respectively. The in-vial polycaprolactone film proved to be reusable for several cycles (up to ten), and the greenness assessment revealed a good adhesion to green sample preparation principles. All these achievements further strengthen its feasibility for efficient extraction/clean-up of trace sex hormones in complex biological samples. Full article
Show Figures

Figure 1

17 pages, 962 KB  
Review
The Medicinal Mushroom Ganoderma: A Review of Systematics, Phylogeny, and Metabolomic Insights
by Gideon Adotey, Abraham Quarcoo, Mohammed Ahmed Gedel, Paul Yerenkyi, Phyllis Otu, Abraham K. Anang, Laud K. N. Okine, Winfred S. K. Gbewonyo, John C. Holliday and Vincent C. Lombardi
J. Fungi 2026, 12(1), 58; https://doi.org/10.3390/jof12010058 - 12 Jan 2026
Viewed by 240
Abstract
Ganoderma is a genus of medically significant fungi, that is used in traditional medicine and is increasingly incorporated into modern nutraceuticals and pharmaceuticals. Accurate species identification and product standardization remain major challenges due to morphological plasticity and cryptic diversity. This review articulates current [...] Read more.
Ganoderma is a genus of medically significant fungi, that is used in traditional medicine and is increasingly incorporated into modern nutraceuticals and pharmaceuticals. Accurate species identification and product standardization remain major challenges due to morphological plasticity and cryptic diversity. This review articulates current advances in Ganoderma systematics, phylogenetics, and metabolomics, with an emphasis on molecular identification strategies and chemical profiling. Internal transcribed spacer (ITS) sequencing has substantially improved species delineation compared with morphology alone, but its resolving power is limited in closely related species complexes, necessitating complementary multilocus approaches. Advances in metabolomics, and LC-MS- and HPLC-based profiling of triterpenes and polysaccharides, have enhanced species discrimination, chemotaxonomic resolution, and quality control of commercial products. Integrating molecular barcoding with metabolomic fingerprints provides a more robust framework for classification, pharmacological evaluation, and standardization. This review also highlights significant geographic knowledge gaps, particularly in Africa, where molecular and metabolomic data remain scarce despite high species diversity. Full article
(This article belongs to the Special Issue Molecular Biology of Mushroom)
Show Figures

Figure 1

26 pages, 2593 KB  
Review
Experimental and In Silico Approaches to Study Carboxylesterase Substrate Specificity
by Sergio R. Ribone and Mario Alfredo Quevedo
J. Xenobiot. 2026, 16(1), 11; https://doi.org/10.3390/jox16010011 - 12 Jan 2026
Viewed by 200
Abstract
Human carboxylesterases (CES) are enzymes that play a central role in the metabolism and biotransformation of diverse endogenous substances and xenobiotics. The two most relevant isoforms, CES1 and CES2, are crucial in clinical pharmacotherapy as they catalyze the hydrolysis of numerous approved drugs [...] Read more.
Human carboxylesterases (CES) are enzymes that play a central role in the metabolism and biotransformation of diverse endogenous substances and xenobiotics. The two most relevant isoforms, CES1 and CES2, are crucial in clinical pharmacotherapy as they catalyze the hydrolysis of numerous approved drugs and prodrugs. Elucidating the structural basis of CES isoform substrate specificity is essential not only for understanding and anticipating the biological fate of administered drugs, but also for designing prodrugs with optimized site-specific bioactivation. Additionally, this knowledge is also important for the design of biomedically useful molecules such as subtype-targeted CES inhibitors and fluorescent probes. In this context, both experimental and computational methodologies have been used to explore the mechanistic and thermodynamic properties of CES-mediated catalysis. Experimental designs commonly employ recombinant CES or human tissue microsomes as enzyme sources, utilizing quantification methods such as spectrophotometry (UV and fluorescence) and mass spectrometry. Computational approaches fall into two categories: (1) modeling substrate: CES recognition and affinity (molecular docking, molecular dynamics simulation, and free-energy binding calculations), and (2) modeling substrate: CES reaction coordinates (hybrid QM/MM simulations). While experimental and theoretical approaches are highly synergistic in studying the catalytic properties of CES subtypes, they represent distinct technical and scientific fields. This review aims to provide an integrated discussion of the key concepts and the interplay between the most commonly used wet-lab and dry-lab strategies for investigating CES catalytic activity. We hope this report will serve as a concise resource for researchers exploring CES isoform specificity, enabling them to effectively utilize both experimental and computational methods. Full article
Show Figures

Figure 1

31 pages, 4403 KB  
Article
HPLC/GC–MS and Electronic Sensing Reveal Tissue-Wide Differences in Bioactive and Flavor Compound Distribution in Coffee Fruits Across Multiple Varieties
by Lu-Xia Ran, Xiao-Hua Dai, Er-Fang Ren, Jin-Hong Li, Lin Yan, Usman Rasheed and Gan-Lin Chen
Foods 2026, 15(2), 269; https://doi.org/10.3390/foods15020269 - 12 Jan 2026
Viewed by 353
Abstract
The quality of different coffee varieties varies, and the corresponding bioactive value of coffee processing byproducts is often overlooked. For that, we employed HPLC, GC-MS, and electronic sensory analyses to evaluate the key bioactive components, antioxidant potential, and flavor traits of green coffee [...] Read more.
The quality of different coffee varieties varies, and the corresponding bioactive value of coffee processing byproducts is often overlooked. For that, we employed HPLC, GC-MS, and electronic sensory analyses to evaluate the key bioactive components, antioxidant potential, and flavor traits of green coffee bean and coffee processing byproducts of seven coffee varieties. The results showed that green coffee beans (Oe+Ie) and exocarp (Ep) possessed strong antioxidant activity and high total phenolic content (TPC), caffeine and trigonelline content. Among the varieties, DR390 contained higher levels of total phenols, caffeine, and trigonelline, whereas DR402 was rich in caffeine and chlorogenic acid. In addition, RY3 exhibited higher TPC, total flavonoid content (TFC), caffeine, and chlorogenic acid. The parchment (Pc) layer was rich in soluble sugars (1.83–5.43%), while the silverskin (Sk) contained relatively high levels of chlorogenic acid (3.58–4.69 mg/g). Flavor analysis identified eleven classes of volatile compounds in green coffee bean (Oe+Ie) and byproducts (Ep, Pc, Sk), with esters, ketones, alcohols, and aldehydes being the most prevalent. Seven key aroma compounds, including methyl salicylate, phenethyl alcohol, nonanal, and benzaldehyde, were identified across the various structural tissues of coffee fruit. Distinct flavor profiles were observed among the coffee fruit parts: green coffee bean (Oe+Ie) was nutty; the Ep showed fruity and cocoa-like aromas; the Pc and Sk exhibited papery and nutty aromas, respectively. Varieties DR397, DR402, and RY3 exhibited pronounced aroma profiles. Comprehensive analysis showed that DR402 and RY3 had higher overall scores for bioactive and flavor components than other varieties in their groups. In summary, green coffee bean (Oe+Ie) exhibited strong antioxidant activity and high levels of bioactive compounds. Coffee byproducts, such as the Ep, hold potential for extracting natural antioxidants and bioactive compounds to develop specialty products or for other high-value utilization. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 1963 KB  
Article
Juniperus communis L. Needle Extract Modulates Oxidative and Inflammatory Pathways in an Experimental Model of Acute Inflammation
by Dinu Bolunduț, Alina Elena Pârvu, Andra Diana Cecan, Anca Elena But, Florica Ranga, Marcel Pârvu, Iulia Ioana Morar and Ciprian Ovidiu Dalai
Molecules 2026, 31(2), 247; https://doi.org/10.3390/molecules31020247 - 11 Jan 2026
Viewed by 199
Abstract
Juniperus communis L. is a conifer widely used in traditional European medicine for the management of inflammatory disorders. However, its effects on oxidative stress and inflammation remain incompletely characterized. The present study investigated the antioxidant and anti-inflammatory potential of an ethanolic needle extract [...] Read more.
Juniperus communis L. is a conifer widely used in traditional European medicine for the management of inflammatory disorders. However, its effects on oxidative stress and inflammation remain incompletely characterized. The present study investigated the antioxidant and anti-inflammatory potential of an ethanolic needle extract of J. communis using in vitro assays and an in vivo model of acute inflammation induced by turpentine oil in rats. Phytochemical profiling by HPLC–DAD–ESI–MS revealed a polyphenol-rich extract dominated by flavonols, flavanols, and hydroxybenzoic acids, with quercetin derivatives and taxifolin as major constituents. In vitro analyses demonstrated radical-scavenging and reducing capacities, exceeding or comparable to reference antioxidants in DPPH, hydrogen peroxide, ferric-reducing, and nitric oxide scavenging assays. In vivo, both therapeutic and prophylactic administration of the extract significantly attenuated oxidative and nitrosative stress, as evidenced by reductions in total oxidant status, oxidative stress index, malondialdehyde, advanced oxidation protein products, nitric oxide, 3-nitrotyrosine, and 8-hydroxy-2′-deoxyguanosine, alongside restoration of total antioxidant capacity and thiol levels. These effects were concentration-dependent. Concomitantly, inflammatory signaling was suppressed, with decreased NF-κB activity and reduced levels of interleukin-1β and interleukin-18. These results support the use of these extracts, whose benefits have been observed in traditional medicine, providing scientific support for the anti-inflammatory and antioxidant capacity of J. communis extract. Full article
Show Figures

Figure 1

16 pages, 1437 KB  
Article
Inhibitory Effect of Trichoderma longibrachiatum on Growth of Fusarium Species and Accumulation of Fumonisins
by Ruiqing Zhu, Ying Li, María Viñas, Qing Kong, Manlin Xu, Xia Zhang, Xinying Song, Kang He and Zhiqing Guo
J. Fungi 2026, 12(1), 49; https://doi.org/10.3390/jof12010049 - 10 Jan 2026
Viewed by 200
Abstract
Fusarium spp. cause devastating crop diseases and produce carcinogenic mycotoxins such as fumonisins, threatening global food safety and human health. In this study, Trichoderma longibrachiatum A25011, isolated from apples in Aksu, Xinjiang, exhibited significant antagonistic activity with mycelial growth inhibition rates of 54.52% [...] Read more.
Fusarium spp. cause devastating crop diseases and produce carcinogenic mycotoxins such as fumonisins, threatening global food safety and human health. In this study, Trichoderma longibrachiatum A25011, isolated from apples in Aksu, Xinjiang, exhibited significant antagonistic activity with mycelial growth inhibition rates of 54.52% against F. verticillioides 48.62% against F. proliferatum, and 58.22% against F. oxysporum in confrontation assays. Enzyme activity detection revealed high chitinase (583.21 U/mg protein) and moderate cellulase (43.92 U/mg protein) production, which may have the capacity to degrade fungal cell walls. High-Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS/MS) analyses enabled the quantification of fungal hormones including gibberellin A3 (GA3, 2.44 mg/L), cytokinins (cis-zeatin riboside (CZR): 0.69 mg/L; trans-zeatin riboside (TZR): 0.004 mg/L; kinetin: 0.006 mg/L), and auxins (indole-3-acetic acid (IAA): 0.35 mg/L; abscisic acid: 0.06 mg/L). Application of a T. longibrachiatum A25011 spore suspension around the roots of peanut plants enhanced growth by 13.20% (height), 5.65% (stem and leaf biomass), and 39.13% (root biomass). Notably, A25011 reduced F. proliferatum-derived fumonisin accumulation in rice-based cultures by 93.58% (6 d) and 99.35% (10 d), suggesting biosynthetic suppression. The results demonstrated that T. longibrachiatum strain A25011 exhibited excellent biocontrol capability against Fusarium spp., proving its dual role in simultaneously suppressing fungal growth and fumonisin accumulation while promoting plant growth. T. longibrachiatum A25011 could be applied as a multifunctional biocontrol agent in sustainable agriculture in the future. Full article
(This article belongs to the Special Issue Advances in the Control of Plant Fungal Pathogens)
Show Figures

Figure 1

16 pages, 1035 KB  
Article
Proteomic and Functional Characterization of Antimicrobial Peptides Derived from Fisheries Bycatch via Enzymatic Hydrolysis
by Vicky Balesteros S. Blumen Galendi, Guilherme Rabelo Coelho, Letícia Murback, Wagner C. Valenti, Tavani Rocha Camargo, Marcia Regina Franzolin, Daniel Carvalho Pimenta and Rui Seabra Ferreira
Mar. Drugs 2026, 24(1), 36; https://doi.org/10.3390/md24010036 - 10 Jan 2026
Viewed by 154
Abstract
Fisheries bycatch, while representing a major ecological concern due to the incidental capture of non-target species, also constitutes an underexplored source of marine biomass with biotechnological potential. This study aimed to generate and characterize bioactive peptides from the muscle tissue of three common [...] Read more.
Fisheries bycatch, while representing a major ecological concern due to the incidental capture of non-target species, also constitutes an underexplored source of marine biomass with biotechnological potential. This study aimed to generate and characterize bioactive peptides from the muscle tissue of three common bycatch species from the Brazilian coast: Paralonchurus brasiliensis, Micropogonias furnieri, and Hepatus pudibundus. Muscle homogenates were hydrolyzed using either Alcalase or Protamex to produce peptide-rich hydrolysates, which were analyzed through SDS-PAGE, HPLC-UV, MALDI-TOF, and LC-MS/MS. De novo sequencing and bioinformatic analyses predicted bioactivities that were subsequently validated by in vitro assays. The results demonstrated that enzyme selection strongly influenced both peptide profiles and bioactivity. The Protamex hydrolysate of P. brasiliensis (PBP) exhibited potent antifungal activity, inhibiting Candida albicans growth by 81%, whereas the Alcalase hydrolysate (PBA) showed moderate inhibition of Staphylococcus aureus (29%). No significant effect was observed against Escherichia coli. Overall, this study highlights a sustainable strategy for the valorization of fisheries bycatch through the production of bioactive marine peptides and identifies P. brasiliensis hydrolyzed with Protamex as a promising source of anti-Candida peptides for pharmaceutical and nutraceutical applications. Full article
Show Figures

Graphical abstract

13 pages, 394 KB  
Article
Phenolic-Driven Evaluation of Maclura tinctoria (Tajuva) Wood as a Sustainable Alternative to Oak for Alcoholic Beverage Aging
by Fernanda Wouters Franco, Clarissa Obem dos Santos, Juciane Prois Fortes, Taísa Ceratti Treptow, Vivian Caetano Bochi, Douglas Gonçalves Friedrichs, Sabrina Somacal and Cláudia Kaehler Sautter
Beverages 2026, 12(1), 10; https://doi.org/10.3390/beverages12010010 - 8 Jan 2026
Viewed by 174
Abstract
Oak (Quercus spp.), traditionally used for aging alcoholic beverages, is not native in many countries, which increases production costs and environmental impact. During the aging process of alcoholic beverages, complex physical and chemical transformations occur that determine their chemical composition and sensory [...] Read more.
Oak (Quercus spp.), traditionally used for aging alcoholic beverages, is not native in many countries, which increases production costs and environmental impact. During the aging process of alcoholic beverages, complex physical and chemical transformations occur that determine their chemical composition and sensory quality, many of which are unique depending on the type of wood used in the process. In this context, Maclura tinctoria (Tajuva), a native Brazilian species rich in phenolic compounds, was evaluated based on its phenolic composition and extraction behavior as a sustainable alternative for beverage aging. Wood chips were subjected to three toasting levels (untoasted, medium, and high) and aged for up to 360 days in two hydroethanolic model systems (10% and 14% v/v ethanol). The total and individual phenolic compounds were determined using the Folin–Ciocalteu method and HPLC–DAD/LC–MS/MS analysis. Results showed that toasting level, ethanol concentration, and aging time significantly influenced phenolic extraction. Untoasted Tajuva released the highest amounts of phenolic acids and flavonoids, particularly gallic and caffeic acids, and quercetin, respectively; while medium toasting favored the formation of thermally derived aromatic compounds, such as vanillic acid. The 14% ethanol system enhanced extraction efficiency for most analytes. Overall, Tajuva wood exhibited higher phenolic yields than French oak under comparable conditions, highlighting its chemical richness and extraction reactivity. These findings support the use of M. tinctoria as an eco-efficient and functional alternative to oak for the maturation of alcoholic beverages. Full article
(This article belongs to the Special Issue New Insights into Artisanal and Traditional Beverages)
Show Figures

Graphical abstract

17 pages, 2269 KB  
Article
Purification, Structural Characterization, and Antibacterial Evaluation of Poly-γ-Glutamic Acid from Bacillus subtilis
by Gobinath Chandrakasan, Genaro Martin Soto-Zarazúa, Manuel Toledano-Ayala, Priscila Sarai Flores-Aguilar and Said Arturo Rodríguez-Romero
Polymers 2026, 18(2), 172; https://doi.org/10.3390/polym18020172 - 8 Jan 2026
Viewed by 222
Abstract
Extracellular poly-γ-glutamic acid (γ-PGA) produced by Bacillus species demonstrates significant antibacterial properties, positioning it as a promising candidate for diverse biomedical and industrial applications. This study focused on molecular identification of Bacillus subtilis using Polymerase Chain Reaction (PCR) and evaluated the initial production [...] Read more.
Extracellular poly-γ-glutamic acid (γ-PGA) produced by Bacillus species demonstrates significant antibacterial properties, positioning it as a promising candidate for diverse biomedical and industrial applications. This study focused on molecular identification of Bacillus subtilis using Polymerase Chain Reaction (PCR) and evaluated the initial production of γ-PGA from a novel biological source of Bacillus subtilis. Shake flask fermentation was utilized for γ-PGA production, with three distinct growth media (Tryptic, MRS, and Mineral medium) assessed for their efficiency in polymer yield. Characterization of γ-PGA was conducted through FT-IR, HPLC, and GC-MS analyses. FT-IR spectroscopy confirmed the presence of characteristic functional groups such as carbonyl, amide, and hydroxyl groups. HPLC and GC-MS analyses provided insights into the polymer’s purity and molecular composition, highlighting components like methyl esters, hexanoic acid, and monomethyl esters. Furthermore, the study quantified γ-PGA production during a four-day shake flask fermentation period. These findings contribute significantly to bacterial characterization, optimization of fermentation processes, and the exploration of γ-PGA’s potential as an antibacterial agent. Future research directions include refining purification techniques to enhance γ-PGA’s antibacterial efficacy and expanding its applications across various fields. Full article
Show Figures

Graphical abstract

19 pages, 1836 KB  
Protocol
Decoding Cerebrospinal Fluid: Integrative Metabolomics Across Multiple Platforms
by Antoine Presset, Sylvie Bodard, Antoine Lefèvre, Edward Oujagir, Camille Dupuy, Jean-Michel Escoffre and Lydie Nadal-Desbarats
Methods Protoc. 2026, 9(1), 8; https://doi.org/10.3390/mps9010008 - 8 Jan 2026
Viewed by 214
Abstract
Cerebrospinal fluid (CSF) is a key biological matrix that reflects the physiological and pathological states of the central nervous system (CNS). It supports brain function by regulating ionic balance, facilitating molecular transport, and clearing metabolic waste. In this article, we present a standardized [...] Read more.
Cerebrospinal fluid (CSF) is a key biological matrix that reflects the physiological and pathological states of the central nervous system (CNS). It supports brain function by regulating ionic balance, facilitating molecular transport, and clearing metabolic waste. In this article, we present a standardized protocol for CSF collection along with an integrative multiplatform metabolomic workflow that combines proton nuclear magnetic resonance spectroscopy (1H-NMRS) and high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Integrating these complementary analytical modalities enhances metabolite coverage and improves analytical robustness, enabling a more comprehensive and reliable characterization of the CSF metabolome. This workflow supports the discovery of potential biomarkers and advances our understanding of neurochemical alterations within the CNS. Full article
(This article belongs to the Section Omics and High Throughput)
Show Figures

Figure 1

Back to TopTop