Research Progress on the Insecticidal and Antibacterial Properties and Planting Applications of the Functional Plant Cnidium monnieri in China
Abstract
1. Introduction
2. Species Classification and Distribution of C. monnieri
3. Cultivation Techniques and Field Management of C. monnieri
4. Antibacterial and Insecticidal Properties of C. monnieri and Its Ecological Functions in Natural-Enemy Conservation
4.1. Antibacterial Activity of C. monnieri
4.2. Insecticidal Activity of C. monnieri
4.3. Ecological Function of C. monnieri in Natural-Enemy Conservation
5. Types and Functions of Active Components in C. monnieri
5.1. Coumarin Compounds and Their Functions
5.2. Volatile Components and Their Olfactory Functional Effects in C. monnieri
5.3. Other Active Components in C. monnieri
6. Identification and Analytical Methods for Bioactive Compounds in C. monnieri
6.1. Chromatographic Analysis Methods
6.2. Spectroscopic and Spectrometric Analysis Methods
6.3. Metabolomics Analysis
7. Other Applications of C. monnieri
7.1. Ecological Restoration Value
7.2. Landscape and Ecological Service Value
7.3. Economic and Nutritional Value
8. Future Prospects for Research on C. monnieri
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Luo, M.; Wang, Y.; Li, Y. Progress in plant biology research of Fructus Cnidii. J. Trop. Subtrop. Bot. 2020, 28, 644–650. [Google Scholar]
- Zhang, Z.-R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: A Review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evid.-Based Complement. Altern. Med. 2015, 2015, 919616. [Google Scholar] [CrossRef]
- Sun, M.; Sun, M.; Zhang, J. Osthole: An overview of its sources, biological activities, and modification development. Med. Chem. Res. 2021, 30, 1767–1794. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Chen, X.; Men, X.; Li, Z.; Kong, Y.; Yuan, Y.; Ge, F. Contact toxicity, antifeedant activity, and oviposition preference of osthole against agricultural pests. Insects 2023, 14, 725. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, W.; Zhang, Y.; Jia, H.; Zhang, X.; Li, H.; Zhang, J.; Ge, F.; Cai, Z. Volatile chemical cues emitted by an agricultural companion plant (Cnidium monnieri) attract predatory lacewings (Chrysoperla sinica). Biol. Control 2024, 192, 105516. [Google Scholar] [CrossRef]
- Chen, C.; Qu, H.; Hu, L.; Chen, G. Heavy metals accumulation capacity of herbaceous species under ecological rehabilitation forest in severely polluted soil. J. Hunan Ecol. Sci. 2021, 8, 8–14. [Google Scholar]
- Li, Y.-M.; Jia, M.; Li, H.-Q.; Zhang, N.-D.; Wen, X.; Rahman, K.; Zhang, Q.-Y.; Qin, L.-P. Cnidium monnieri: A Review of traditional uses, phytochemical and ethnopharmacological properties. Am. J. Chin. Med. 2015, 43, 835–877. [Google Scholar] [CrossRef]
- Liao, C.; Downie, S.; Li, Q.; Yan, Y.; He, X.; Zhou, B. New insights into the phylogeny of Angelica and its allies (Apiaceae) with emphasis on east asian Species, inferred from nrDNA, cpDNA, and morphological evidence. Syst. Bot. 2013, 38, 266–281. [Google Scholar] [CrossRef]
- Ren, T.; Aou, X.; Tian, R.; Li, Z.; Peng, C.; He, X. Complete chloroplast genome of Cnidium monnieri (Apiaceae) and comparisons with other tribe selineae species. Diversity 2022, 14, 323. [Google Scholar] [CrossRef]
- Downie, S.R.; Katz-Downie, D.S.; Watson, M.F. A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA Rpl16 and rpoC1 intron sequences: Towards a suprageneric classification of subfamily Apioideae. Am. J. Bot. 2000, 87, 273–292. [Google Scholar] [CrossRef]
- Wu, G.; Zeng, M.; Ji, Y.; Chen, Z.; Liang, J.; Chen, X. Herbalogical study of Cnidium monnieri fruit. Chin. J. Ethnomed. Ethnopharmacy 2017, 26, 72–75. [Google Scholar]
- Li, L.; Yuan, C.; Ding, Z.; Zhou, T. A taxonomic study on the genus Cnidium in China. Acta Bot. Boreali-Occident. Sin. 1993, 13, 63–69+89–90. [Google Scholar]
- Qin, L.; Zhang, H.; Zheng, S.; Zhou, H.; Qiao, C.; Su, Z. Pharmacogonstical studies on Cnidium fruits. Acad. J. Nav. Med. Univ. 1996, 17, 281–283. [Google Scholar]
- Zhang, Q. Studies on Plant Resources, Intraspecific Variations of Fructus cnidii and Its Antiosteoporotic Effects. Doctoral Dissertation, Naval Medical University, Shanghai, China, 2001. [Google Scholar]
- Li, M.; Li, M.; Wang, L.; Li, M.; Wei, J. Apiaceae medicinal plants in China: A review of traditional uses, phytochemistry, bolting and flowering (BF), and BF control methods. Molecules 2023, 28, 4384. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, A.W.H.; Lenon, G.B. Phytochemistry, ethnopharmacology, pharmacokinetics and toxicology of Cnidium monnieri (L.) Cusson. Int. J. Mol. Sci. 2020, 21, 1006. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Qin, L.; Li, H.; Zhang, N.; Jia, M. Determination of Three Coumarin Constituents in Cnidium monnieri fruit by high-performance liquid chromatography. J. Chin. Med. Mater. 2015, 38, 1441–1443. [Google Scholar]
- Zhu, Y.; Gu, Y.; Zhu, L. Analysis of the essential oil from Cnidium monnieri in two different producing areas by GC-MS. China Pharm. 2008, 2603–2605. [Google Scholar]
- Lian, L.; Lou, F.; Huang, D. Cultivation techniques of Cnidium monnieri. Rural. Sci. Exp. 2002, 22. [Google Scholar]
- Zhang, Q.; Zheng, H.; Qing, L.; Chen, L.; Li, W. Biological character and resources of Cnidium monnieri. Chin. Wild Plant Resour. 2001, 20. [Google Scholar]
- Zhang, Y. Medicinal Plant Cultivation (The 14th Five-Year Plan Textbook for Higher Education in Traditional Chinese Medicine Industry); China Press of Traditional Chinese Medicine: Beijing, China, 2021. [Google Scholar]
- Song, L.; Li, J.; Jiang, Y.; Chen, Y.; Ma, L.; Jin, H.; Chang, Y. Simultaneous determination of coumarins and fingerprint analysis in Cnidium monnieri (L.) Cusson. Tianjin J. Tradit. Chin. Med. 2016, 33, 368–372. [Google Scholar]
- Munir, N.; Mehmood, Z.; Shahid, M.; Aslam, S.; Abbas, M.; Mehboob, H.; Al-Mijallia, S.H.; Jahangeer, M.; Badar, Q.u.A. Phytochemical constituents and in vitro pharmacological response of Cnidium monnieri; a natural ancient medicinal herb. Dose-Response 2022, 20, 15593258221115543. [Google Scholar] [CrossRef]
- Yu, B.; Cai, J.; Wu, J.; Xu, G. Studies on the quality of Cnidium monnieri-compariaon of antibacterial action. China J. Chin. Mater. Medica 1991, 16, 451–453+510. [Google Scholar]
- Su, W.; Ouyang, F.; Li, Z.; Yuan, Y.; Yang, Q.; Ge, F. Cnidium monnieri (L.) Cusson flower as a supplementary food promoting the development and reproduction of ladybeetles Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Plants 2023, 12, 1786. [Google Scholar] [CrossRef]
- Zhu, X.; Song, Z.; Jiang, X.; Wei, Q.; Shan, S.; Xiao, X.; Chen, F. Behavioral responses of coccinella septempunctata to Cnidium monnieri and its volatiles infested by Semiaphis heraclei. Chin. J. Ecol. 2025, 44, 1761–1771. [Google Scholar]
- Gao, L.; Zhu, H.; Zhao, Y.; Lv, H.; Liu, C. Advances in antimicrobial activity of coumarins. Curr. Biotechnol. 2017, 7, 116–120. [Google Scholar]
- Song, G.; Cai, D.; Wang, S.; Zeng, L. Study on inhibitory effects of some plant crude extracts on Peronophythora litchi. J. Huizhou Univ. 2016, 36, 18–21. [Google Scholar]
- Liu, J.; Li, Y.; Yue, J.; Wang, H.; Shang, C.; Liu, Y.; Shi, J.; Li, E.; Zhao, M.; Zheng, H. Inhibitory effect of osthole from Chinese traditional drug Cnidium monnieri on the Botrytis cinerea in greenhouse tomato. Mol. Plant Breed. 2023, 1–10. [Google Scholar]
- Shi, Z.; Shen, S.; Xu, L.; Fan, Y. Inhibition mechanism of osthol to plant fungus pathogens. Chin. J. Pestic. Sci. 2004, 6, 28–32. [Google Scholar]
- Zheng, H.; Chen, Y.; Guo, Q.; Wei, H.; Yue, J.; Zhou, H.; Zhao, M. Inhibitory effect of osthole from Cnidium monnieri (L.) Cusson on Fusarium oxysporum, a common fungal pathogen of potato. Molecules 2021, 26, 3818. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Li, R.; Mo, F.; Ding, Y.; Zhou, A.; Guo, X.; Li, R.; Li, M.; Ou, M.; Li, M. Natural product osthole can significantly disrupt cell wall integrity and dynamic balance of Fusarium oxysporum. Pestic. Biochem. Physiol. 2023, 196, 105623. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Zhang, Y.; Deng, X.; Long, W. Study on biological activity of extracts from Cnidium monnieri etc. chineseherb extracts to several kinds of fungi. J. Jinggangshan Univ. 2005, 26, 33–34. [Google Scholar]
- Ren, Z.; Lv, M.; Li, T.; Hao, M.; Li, S.; Xu, H. Construction of oxime ester derivatives of osthole from Cnidium monnieri, and evaluation of their agricultural activities and control efficiency. Pest Manag. Sci. 2020, 76, 3560–3567. [Google Scholar] [CrossRef]
- Lv, M.; Ding, H.; Xu, H. Osthole: A coumarin with dual roles in biology and chemistry. Biology 2025, 14, 588. [Google Scholar] [CrossRef]
- Li, S.; Lv, M.; Sun, Z.; Hao, M.; Xu, H. Optimization of osthole in the lactone ring: Structural elucidation, pesticidal activities, and control efficiency of osthole ester derivatives. J. Agric. Food Chem. 2021, 69, 6465–6474. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Ou, Y.; Meng, X.; Ge, F. Discovery and utilization of a functional plant, rich in the natural enemies of insect pests, in northern China. Chin. J. Appl. Entomol. 2018, 55, 942–947. [Google Scholar]
- Cai, Z.; Ouyang, F.; Chen, J.; Yang, Q.; Desneux, N.; Xiao, Y.; Zhang, J.; Ge, F. Biological control of Aphis spiraecola in apples using an insectary plant that attracts and sustains predators. Biol. Control 2021, 155, 104532. [Google Scholar] [CrossRef]
- Lucas, É.; Coderre, D.; Brodeur, J. Intraguild predation among aphid predators: Characterization and influence of extraguild prey density. Ecology 1998, 79, 1084–1092. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, L.; He, W.; Van Puyvelde, L.; Maes, D.; Adams, A.; Zheng, H.; De Kimpe, N. Coumarins from Cnidium monnieri and their antiosteoporotic activity. Planta Medica 2007, 73, 13–19. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, M.; Duan, X.; Zheng, Y. Research progress on the processing history, chemical constituents and pharmacological effects of Cnidii Fructus. Chinese Wild Plant Resour. 2023, 42, 74–81. [Google Scholar]
- Chen, Y.; Zhang, G.; Yu, Z. The advancement in the chemical and pharmacological study of the fruits of Cnidium monnieri. J. Shenyang Pharm. Univ 2006, 23, 256–260. [Google Scholar]
- Tian, B.; Qu, X.; Lin, Y.; Yuan, H.; Song, Y. Research progress on chemical constituents and pharmacological effects of Cnidium monnieri fruit. Pharm. Clin. Chin. Mater. Medica 2020, 11, 70–73+80. [Google Scholar]
- Ceska, O.; Chaudhary, S.; Warrington, P.; Ashwood-Smith, M. Photoactive furocoumarins in fruits of some umbellifers. Phytochemistry 1986, 26, 165–169. [Google Scholar] [CrossRef]
- Lian, Q. Research progress on the chemical constituents and pharmacological effects of Cnidium monnieri fruit. J. Chin. Med. Mater. 2003, 26, 141–144. [Google Scholar]
- Xiang, R.; Zhang, X.; Han, Y.; Xia, C.; Yin, X.; Liu, D.; Huang, G.; Wang, H. Study on the active constituents of the water extract of traditional chinese medicine Cnidium monnieri. Chin. Tradit. Herb. Drugs 1999, 30, 813–815. [Google Scholar]
- Ma, D.; Dou, D.; Liu, F. Potential and application of plant volatile organic compounds in agricultural disease control. Chin. J. Pestic. Sci. 2022, 24, 682–691. [Google Scholar]
- Jia, Z.; Qiu, Y.; Zhao, Y.; Yan, X.; Xue, M.; Zhao, H. Advances of research on repellency and attraction of plant volatiles to insects. Shandong Agric. Sci. 2022, 54, 164–172. [Google Scholar]
- Qiu, Q.; Cui, Z.; Liu, T.; Dong, Y. Determination of chemical constituents of the essential oil from Cnidium monnieri by GC-MS. J. Chin. Med. Mater. 2002, 25, 561–563. [Google Scholar]
- Duan, X.; Zhang, Y.; He, P.; Ma, Z.; Fei, L. Chomones from fruit of Cnidium monnieri and their effects on proliferation of UMR106 cells. Chin. Tradit. Herb. Drugs 2015, 46, 3310–3313. [Google Scholar]
- Wang, H.; Ge, F.; Li, J.; Huang, X.; Li, Y.; Hui, G.; Wu, H.; Zhang, G. Applied study of supercritical-CO2 fluid extraction in extracting volatile constituents of Cnidium monnieri seeds. J. Chin. Med. Mater. 1996, 19, 84–86. [Google Scholar]
- Das, U.N. Essential fatty acids-a review. Curr. Pharm. Biotechnol. 2006, 7, 467–482. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, M.; Zhang, G.; Guan, J.; Gong, Z. Comparison of supercritical CO2 fluid extraction and ethyl acetate extraction for chemical constituents from Cnidium monnieri fruit. Fine Chem. 2006, 23, 1216–1220. [Google Scholar]
- Chen, J.; Liao, X.; Gan, J. Review on the protective activity of osthole against the pathogenesis of osteoporosis. Front. Pharmacol. 2023, 14, 1236893. [Google Scholar] [CrossRef] [PubMed]
- Tsivileva, O.M.; Koftin, O.V.; Evseeva, N.V. Coumarins as fungal metabolites with potential medicinal properties. Antibiotics 2022, 11, 1156. [Google Scholar] [CrossRef]
- Ji, P.; Yang, X.; Zhao, X. Application of metabolomics in quality control of traditional chinese medicines: A review. Front. Plant Sci. 2024, 15, 1463666. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Chen, L.; Zhang, Z.; Miao, X.; Zhao, L.; Zhu, Y.; Ouyang, H.; He, J. Metabolomics study on the antitumor effect of osthole on HepG2 cells using UPLC-Q-TOF-MS/MS. Biomed. Chromatogr. 2025, 39, e70215. [Google Scholar] [CrossRef]
- Chang, C.-I.; Hu, W.-C.; Shen, C.-P.; Hsu, B.-D.; Lin, W.-Y.; Sung, P.-J.; Wang, W.-H.; Wu, J.-B.; Kuo, Y.-H. 8-Alkylcoumarins from the fruits of Cnidium monnieri protect against hydrogen peroxide induced oxidative stress damage. Int. J. Mol. Sci. 2014, 15, 4608–4618. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, X.; Tan, X.; Wu, M.; Xianga, B. Comparison of micellar electrokinetic capillary chromatography and high performance liquid chromatography on fingerprint of Cnidium monnieri. Chem. Pharm. Bull. 2006, 54, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, P.; Yuan, F.; Cheng, F.; He, J.; Liu, J.; Zhang, Z. Identification and quantification of the volatile constituents in Cnidium monnieri using supercritical fluid extraction followed by GC-MS. J. Sep. Sci. 2009, 32, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wu, Y.; Qian, G.; Chang, Y. Optimum extraction of osthole and imperatorin from the fruits of Cnidium monnieri (L.) Cusson by supercritical fluid. Sep. Sci. Technol. 2013, 48, 652–658. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, G.; Zhang, Q.; Wu, H.; Wu, Y. Fingerprint analysis of the fruits of Cnidium monnieri extract by high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 43, 926–936. [Google Scholar] [CrossRef]
- Liu, B.-B.; Wu, H.-L.; Chen, Y.; Wang, T.; Yu, R.-Q. Rapid and interference-free quantification of nine coumarins in Cnidii Fructus using hplc-dad assisted with second-order calibration model. Microchem. J. 2022, 179, 107458. [Google Scholar] [CrossRef]
- Meng, X.; Li, Q.; Zhu, W.; Duan, Y.; Guo, Y. Progress on analytical methods for coumarins in medicinal plants. Bot. Res. 2017, 6, 10. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, M.; Liu, Y.; Zhang, G.; Luo, Y. Chromones and coumarins from the dried fructus of Cnidium monnieri. Fitoterapia 2011, 82, 767–771. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Guo, D.-S.; Lu, M.-H.; Yue, J.-Y.; Liu, Y.; Shang, C.-M.; An, D.-R.; Zhao, M.-M. Inhibitory effect of osthole from Cnidium monnieri on tobacco mosaic virus (TMV) infection in Nicotiana glutinosa. Molecules 2019, 25, 65. [Google Scholar] [CrossRef]
- Jia, M.; Li, Y.; Zhai, X.; Yang, Y.; Li, C.; Zhang, Q.; Qin, L. Qualitative analysis and quality evaluation of Cnidium monnieri using UHPLC-ESI-Q-TOF/MS. Chin. Herb. Med. 2016, 8, 323–330. [Google Scholar]
- Chen, X.; Liu, H.; Shen, L.; Li, D.; Zhang, B.; Ji, X.; Tian, X.; Qiu, Z.; Zheng, G.; Hu, J. Untargeted UPLC-MS-Based metabolomics analysis reveals the metabolic profile of intrahepatic cholangiocarcinoma process and the intervention effect of osthole in mice. Pharmacol. Res.-Mod. Chin. Med. 2022, 3, 100096. [Google Scholar] [CrossRef]
- Lee, K.-M.; Jeon, J.-Y.; Lee, B.-J.; Lee, H.; Choi, H.-K. Application of metabolomics to quality control of natural product derived medicines. Biomol. Ther. 2017, 25, 559. [Google Scholar] [CrossRef]
- Cai, J.N.; Zhang, L.; Wang, Z.T.; Xu, L.S.; Du, F.; Xu, G.J. Variation and regularity of coumarin constituents in Fructus cnidii collected from different regions of China. Acta Pharm. Sin. 1999, 34, 771–774. [Google Scholar]
- Yuan, Z.; Xu, H.; Wang, K.; Zhao, Z.; Hu, M. Determination of osthol and its metabolites in a phase I reaction system and the Caco-2 cell model by HPLC-UV and LC–MS/MS. J. Pharm. Biomed. Anal. 2009, 49, 1226–1232. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Wang, L. Analysis of chemical components of the essential oil from Fructus cnidii. J. Guangxi Univ. 2005, 30, 263–266. [Google Scholar]
- Li, J.; Chan, W. Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry. J. Pharm. Biomed. Anal. 2013, 74, 156–161. [Google Scholar] [CrossRef]
- Sen, K.; Bagchi, P. Studies on the ultraviolet absorption spectra of coumarins and chromones. II. hydroxy derivatives1. J. Org. Chem. 1959, 24, 316–319. [Google Scholar] [CrossRef]
- Lin, W.; Chen, T. Transition of agricultural systems to ecologicalizaton and new vision of modern eco-agriculture development in China. Chin. J. Eco-Agric. 2019, 27, 169–176. [Google Scholar]
- Zhang, Y.; Long, H. Agricultural production transition and its environmental effects: Research progress and prospect. J. Nat. Resour. 2022, 37, 1691–1706. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, Z.; Chen, J.; Liu, X.; Wang, W.; Liu, Y. Research status of phytoremediation of heavy metals contaminated soil and prospects of water and fertilizer regulating technology. Ecol. Environ. Sci. 2015, 24, 1075–1084. [Google Scholar]
- Xiang, C.; Luo, D.; Guo, L.; Du, J.; Liu, S.; Pu, S. Advances in plant-microbial combined remediation of chemically-degraded soils. Chin. J. Soil Sci. 2024, 55, 288–300. [Google Scholar]
- Chauhan, P.; Sharma, N.; Tapwal, A.; Kumar, A.; Verma, G.S.; Meena, M.; Seth, C.S.; Swapnil, P. Soil microbiome: Diversity, benefits and interactions with plants. Sustainability 2023, 15, 14643. [Google Scholar] [CrossRef]
- Molefe, R.R.; Amoo, A.E.; Babalola, O.O. Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis 2023, 90, 231–239. [Google Scholar] [CrossRef]
- Rajkumar, M.; Sandhya, S.; Prasad, M.; Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 2012, 30, 1562–1574. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Van Der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Patel, V.P.; Kherud, R.R.; Hajare, N.R.; Vavhal, V.V.; Sarode, S.S.; Baacchav, K.R. Recent developments in microbe–plant-based bioremediation. In Microbiome-Assisted Bioremediation; Academic Press: Cambridge, MS, USA, 2024; pp. 313–325. [Google Scholar]
- Tharanath, A.C.; Upendra, R.S.; Rajendra, K. Soil symphony: A comprehensive overview of plant–microbe interactions in agricultural systems. Appl. Microbiol. 2024, 4, 1549–1567. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, J. Phytoremediation for heavy metal contamination in soil metal hyperaccumulator and their genetic engineering. Chin. J. Eco-Agric. 2007, 15, 190–194. [Google Scholar]
- Guan, X.; Su, Y.; A, N.; Ou, C.; Jiang, S.; Soran, D.; Wang, J.; Dang, X. Research progress on remediation of heavy metal pollution in farmland soils at home and abroad—Based on citespace knowledge map analysis. Chin. J. Soil Sci. 2024, 55, 573–583. [Google Scholar]
- Wang, Y.; Yu, Y.; Wang, X.; Zhang, Q. Study on selective concentration of seven metallic elements from Cnidium monnieri (L.) Cusson. Guangdong Trace Elem. Kexue 2001, 8, 65–67. [Google Scholar]
- Wang, H. The serpent-associated plant: Cnidium monnieri. Inn. Mong. For. 2025, 42–44. [Google Scholar]


| Compound Category | Representative Compounds | Putative Roles in Plants | Effects on Other Organisms | References |
|---|---|---|---|---|
| Coumarin-type compounds | Osthole | Plant chemical defense and stress adaptation, often enriched in reproductive tissues and associated with protection | Anti-inflammatory, antibacterial, antifungal, antitumor, antioxidant; smooth muscle modulation; can downregulate the expression of pro-inflammatory cytokines by inhibiting the NF-κB/MAPK signaling pathways | [1,2,16] |
| Isoimperatorin; imperatorin | Plant defense-related secondary metabolites, commonly implicated in protection against pathogens/herbivores | Antibacterial, anti-inflammatory, antioxidant; inhibiting the growth of pathogenic fungi | [42,43] | |
| Psoralen; isopsoralen | Photoactive furanocoumarins implicated in plant defense | Photosensitizing activity; medical use in skin disorders | [44] | |
| Xanthotoxin; xanthotoxol | Photoactive furanocoumarins functioning in plant chemical defense | Photosensitizing furanocoumarin with antifungal and antitumor activities | [42,45] | |
| Oxypeucedanin; columbianetin | Putative roles in plant defense/stress responses as furanocoumarin-related metabolites | Anti-inflammatory and neuroprotective activities | [41,45] | |
| Angelicin; cniforin B | Putative defensive and signaling-associated roles as angular furanocoumarins in plants | Involved in immune regulation and metabolic homeostasis | [41,42] | |
| Volatile components | β-eudesmol | Volatile-mediated plant defense signaling; deterrence of herbivores | Anti-inflammatory, antibacterial; insect-repellent | [7,46] |
| Bornyl acetate | Aroma formation; volatile-mediated signaling associated with plant defense | Has soothing, sedative, and antibacterial effects | [1,46] | |
| p-cymene; limonene | Herbivore deterrence and volatile signaling in plant defense | Strong repellent activity; interference with insect chemotaxis | [47,48] | |
| Linalool | Attraction of natural enemies as an indirect defense mechanism and plant-to-plant signaling | Exhibits attractant effects on natural-enemy insects and contributes to the maintenance of ecological balance | [48] | |
| Caryophyllene; γ-terpinene | Stress- and defense-related volatile signals involved in plant defense responses | Antibacterial and antioxidant activities | [7,49] | |
| Other active components | Flavonoids (e.g., chromones, cnidimosides A/B) | Antioxidative protection, UV/stress tolerance, and defense-associated functions in plants | Antioxidant, anti-inflammatory, and immunomodulatory activities | [42,50] |
| Fatty acids (oleic acid, linoleic acid) | Membrane structure and signaling precursors; precursors for oxylipins/volatile formation involved in defense signaling | Anti-inflammatory and cardiovascular protective effects | [51,52] | |
| Steroidal compounds (β-sitosterol, stigmasterol) | Structural and signaling roles in plants as phytosterols involved in membrane integrity and stress responses | Lipid-lowering, anti-inflammatory, antitumor activities | [7,53] | |
| Triterpenoids (oleanolic acid, ursolic acid) | Putative protective/defense-associated roles in plants | Antitumor, antioxidant, and tissue-protective activities | [54] | |
| Polysaccharides and organic acids | Primary metabolism and stress adaptation, with potential contributions to plant resilience and growth–defense balance | Immunomodulatory and antioxidant activities; synergistic effects | [1,16] |
| Method Category | Representative Techniques | Analytical Principles /Detection Basis | Advantages | Limitations | Main Applications | References |
|---|---|---|---|---|---|---|
| Chromatographic analysis | TLC, HPLC, GC, GC-MS, LC-MS | Separation and detection are achieved based on differences in compound partitioning; adsorption and molecular recognition between the stationary and mobile phases | High separation efficiency, strong sensitivity, accurate quantification, suitability for multi-component detection | Complex sample pretreatment and high instrument requirements; limited detection of thermally unstable or highly polar compounds | Qualitative and quantitative analysis of major active constituents of C. monnieri, including coumarins and volatile oils | [17,22,51,62,63] |
| Spectroscopic/spectrometric analysis | UV-Vis, FTIR, NMR, MS, HPLC-MS | Based on characteristic molecular absorption, vibrational transitions, nuclear magnetic resonance signals, and ion-fragmentation patterns | Rapid analysis, Low sample consumption, capability to provide structural and functional-group information | The resolution is limited and requires validation in combination with other techniques; signal overlap may occur in certain complex samples | Structural elucidation and functional-group identification of coumarins, phenols, alcohols, and other constituents in C. monnieri | [23,64,65,66] |
| UHPLC-HRMS | UPLC-QTOF-MS, UPLC-Orbitrap-MS | Molecular-mass determination and structural identification of components | Extreme sensitivity and high resolution, suitable for both targeted and untargeted analyses | High instrument cost and complex data processing; specialized software is required for interpretation | Systematic analysis of the complex extracts and metabolite profile of C. monnieri | [67,68] |
| Metabolomics analysis | LC-MS/MS, GC-MS, UPLC-QTOF-MS, chemometrics | Systematic detection of changes in multiple metabolites within biological samples, integration with statistical and pathway analyses, reveals compositional differences | Comprehensive and systematic, capability to reveal metabolic pathways, suitable for quality evaluation and differential analysis | Large data volume and complex data interpretation; requirement for validation using conventional analytical methods | Revealing the metabolic characteristics and quality differences in active constituents in C. monnieri | [56,57,69] |
| Other emerging techniques | Supercritical fluid extraction, capillary electrophoresis | High solvation capacity for supercritical fluids, electric-field-driven separation capability | High extraction efficiency, environmentally friendly and safe; electrophoresis is suitable for the analysis of small molecules and ions | Low degree of method standardization; suitable for non-polar macromolecular compounds | Sample preparation of C. monnieri extracts, multicomponent separation | [59,60,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shan, S.; Wei, Q.; Liu, C.; Zhao, S.; Ge, F.; Cui, H.; Chen, F. Research Progress on the Insecticidal and Antibacterial Properties and Planting Applications of the Functional Plant Cnidium monnieri in China. Plants 2026, 15, 281. https://doi.org/10.3390/plants15020281
Shan S, Wei Q, Liu C, Zhao S, Ge F, Cui H, Chen F. Research Progress on the Insecticidal and Antibacterial Properties and Planting Applications of the Functional Plant Cnidium monnieri in China. Plants. 2026; 15(2):281. https://doi.org/10.3390/plants15020281
Chicago/Turabian StyleShan, Shulian, Qiantong Wei, Chongyi Liu, Sirui Zhao, Feng Ge, Hongying Cui, and Fajun Chen. 2026. "Research Progress on the Insecticidal and Antibacterial Properties and Planting Applications of the Functional Plant Cnidium monnieri in China" Plants 15, no. 2: 281. https://doi.org/10.3390/plants15020281
APA StyleShan, S., Wei, Q., Liu, C., Zhao, S., Ge, F., Cui, H., & Chen, F. (2026). Research Progress on the Insecticidal and Antibacterial Properties and Planting Applications of the Functional Plant Cnidium monnieri in China. Plants, 15(2), 281. https://doi.org/10.3390/plants15020281

