Proteomic and Functional Characterization of Antimicrobial Peptides Derived from Fisheries Bycatch via Enzymatic Hydrolysis
Abstract
1. Introduction
2. Results
2.1. Enzymatic Hydrolysis Creates Complex and Peptide Profiles
2.2. Mass Spectrometry Reveals Diverse Peptide Population
2.3. Proteomic Analysis Identifies Peptides with Potent Antimicrobial Activity
3. Discussion
Limitations and Future Directions
4. Materials and Methods
4.1. Sample Collection and Hydrolysate Preparation
4.2. Biochemical Characterization
4.3. Proteomic Analysis (LC-MS/MS) and De Novo Sequencing
4.4. Antimicrobial Activity Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, O.C.S.; Soares, A.R.; Machado, F.L.S.; Romanos, M.T.V.; Muricy, G.; Giambiagi-deMarval, M.; Laport, M.S. Investigation of Biotechnological Potential of Sponge-Associated Bacteria Collected in Brazilian Coast. Lett. Appl. Microbiol. 2015, 60, 140–147. [Google Scholar] [CrossRef]
- MarinLit—A Database of the Marine Natural Products Literature. 2025. Available online: https://marinlit.rsc.org/ (accessed on 23 May 2023).
- Roda, P.M.A.; Gilman, E.; Huntington, T.; Kennelly, S.J.; Suuronen, P.; Chaloupka, M.; Medley, P. A Third Assessment of Global Marine Fisheries Discards; Roda, P.M.A., Ed.; FAO: Rome, Italy, 2019; ISBN 978-92-5-131226-1. [Google Scholar]
- Padma, K.R.; Reshma Anjum, M.; Sankari, M.; Don, K.R.; Nakka, S.; Harathi, K.; Sirisha, T. Transforming Fish Waste into High-Value Resources: A Sustainable Approach to Circular Bioeconomy. Uttar Pradesh J. Zool. 2024, 45, 48–59. [Google Scholar] [CrossRef]
- Camargo, T.R.; Ramos, P.; Monserrat, J.M.; Prentice, C.; Fernandes, C.J.C.; Zambuzzi, W.F.; Valenti, W.C. Biological Activities of the Protein Hydrolysate Obtained from Two Fishes Common in the Fisheries Bycatch. Food Chem. 2021, 342, 128361. [Google Scholar] [CrossRef]
- Camargo, T.R.; Mantoan, P.; Ramos, P.; Monserrat, J.M.; Prentice, C.; Fernandes, C.C.; Zambuzzi, W.F.; Valenti, W.C. Bioactivity of the Protein Hydrolysates Obtained from the Most Abundant Crustacean Bycatch. Mar. Biotechnol. 2021, 23, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; Mcnevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R., Jr.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Kim, S.-K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Watabe, S.; Mizusawa, N.; Hosaka, K.; Ishizaki, S.; Peng, L.; Nagata, K.; Ueki, N. Molecular Localization of Health-Promoting Peptides Derived from Fish Protein Hydrolyzates on Fish Muscle Proteins. Mar. Biotechnol. 2024, 26, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI standard M27; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 12th ed.; CLSI standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Caruso, G.; Floris, R.; Serangeli, C.; Di Paola, L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar. Drugs 2020, 18, 622. [Google Scholar] [CrossRef]
- Ng, W.-J.; Wong, F.-C.; Abd Manan, F.; Chow, Y.-L.; Ooi, A.-L.; Ong, M.-K.; Zhang, X.; Chai, T.-T. Antioxidant Peptides and Protein Hydrolysates from Tilapia: Cellular and In Vivo Evidences for Human Health Benefits. Foods 2024, 13, 2945. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Shen, Y.; Wu, Y.; Gao, L.; Xu, X.; Hao, G. Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure-Activity Relationship. Metabolites 2024, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Ghalamara, S.; Brazinha, C.; Silva, S.; Pintado, M. Valorization of Fish Processing by-Products: Biological and Functional Properties of Bioactive Peptides. Curr. Food Sci. Technol. Rep. 2024, 2, 393–409. [Google Scholar] [CrossRef]
- Fotodimas, I.; Vidalis, K.L.; Logothetis, P.; Kanlis, G. Circular Economy Applications: The Sustainable Utilisation of Fish By-Products for Seafood Production and Its Impact on Human Health. Adv. Biosci. Biotechnol. 2025, 16, 305–331. [Google Scholar] [CrossRef]
- Hansen, I.K.Ø.; Lövdahl, T.; Simonovic, D.; Hansen, K.Ø.; Andersen, A.J.C.; Devold, H.; Richard, C.S.M.; Andersen, J.; Strøm, M.B.; Haug, T. Antimicrobial Activity of Small Synthetic Peptides Based on the Marine Peptide Turgencin A: Prediction of Antimicrobial Peptide Sequences in a Natural Peptide and Strategy for Optimization of Potency. Int. J. Mol. Sci. 2020, 21, 5460. [Google Scholar] [CrossRef] [PubMed]
- Ghalamara, S.; Brazinha, C.; Silva, S.; Pintado, M. Exploring Fish Processing By-Products as an Alternative Source of Bioactive Peptides: A Review on Extraction and Food Applications. Curr. Food Sci. Technol. Rep. 2024, 2, 377–391. [Google Scholar] [CrossRef]
- Yuan, Z.; Ye, X.Q.; Hou, Z.Q.; Chen, S.G. Sustainable utilization of proteins from fish processing by-products: Extraction, biological activities and applications. Trends Food Sci. Technol. 2024, 143, 104276. [Google Scholar] [CrossRef]
- Vitiello, A.; Ferrara, F.; Boccellino, M.; Ponzo, A.; Cimmino, C.; Comberiati, E.; Zovi, A.; Clemente, S.; Sabbatucci, M. Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines 2023, 11, 1063. [Google Scholar] [CrossRef]
- Desriac, F.; Jégou, C.; Balnois, E.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Antimicrobial peptides from marine proteobacteria. Mar. Drugs 2013, 11, 3632–3660. [Google Scholar] [CrossRef]
- Nikoo, M.; Regenstein, J.M.; Yasemi, M. Protein Hydrolysates from Fishery Processing By-Products: Production, Characteristics, Food Applications, and Challenges. Foods 2023, 12, 4470. [Google Scholar] [CrossRef]
- Anh, N.T.H.; Anh, N.M.; Huyen, V.T.T.; Dao, P.T.; Huong, D.T.M.; Van Cuong, P.; Xuan, D.T.; Tai, B.H.; Minh, L.T.H.; Van Kiem, P. Antimicrobial Activity of Depsidones and Macrocyclic Peptides Isolated from Marine Sponge-Derived Fungus Aspergillus nidulans M256. Chem. Biodivers. 2023, 20, e202301660. [Google Scholar] [CrossRef]
- Baraiya, R.; Anandan, R.; Elavarasan, K.; Prakash, P.; Rathod, S.K.; Rajasree, S.R.R.; Renuka, V. Potential of fish bioactive peptides for the prevention of global pandemic non-communicable disease: Production, purification, identification, and health benefits. Discov. Food 2024, 4, 34. [Google Scholar] [CrossRef]





| Origin | Peptide | OAC/ALC (%) | Mass (Da) | RT (min) | ppm |
|---|---|---|---|---|---|
| PBA | LLAPPE | 97 | 638.36 | 11.09 | −0.8 |
| PBA | YEKK | 96 | 566.30 | 0.69 | 0.1 |
| PBA | LVYPSV | 94 | 676.37 | 13.97 | −31.2 |
| PBA | VKLPKL | 94 | 696.48 | 11.25 | −0.6 |
| PBP | LEEEELKLF | 97 | 1148.59 | 13.44 | −0.4 |
| PBP | EYKK | 95 | 566.30 | 2.46 | −0.3 |
| PBP | VDLWFK | 95 | 806.43 | 13.17 | −0.9 |
| PBP | LKLFL | 94 | 632.42 | 13.64 | −0.4 |
| MFA | LDEVLKFF | 95 | 1009.54 | 14.37 | −0.4 |
| MFA | LEHEE | 95 | 655.28 | 8.51 | 3.2 |
| MFA | LNNLL | 93 | 585.34 | 11.73 | −37.8 |
| MFA | TKTPGLME | 93 | 875.44 | 10.50 | −1.2 |
| MFP | LEEEELKLF | 97 | 1148.59 | 13.44 | −0.3 |
| MFP | FLDLDQDKKFEE | 94 | 1525.73 | 12.66 | −0.7 |
| MFP | LVLHL | 93 | 593.39 | 12.64 | −1.2 |
| MFP | VLDQDKSGFLE | 93 | 1249.61 | 11.38 | −0.4 |
| HPA | LTKLL | 97 | 586.40 | 11.72 | −0.5 |
| HPA | LPTKF | 95 | 604.35 | 10.77 | 2.1 |
| HPA | VVAKKPQE | 95 | 897.52 | 10.02 | 19.8 |
| HPA | KLHWH | 94 | 719.38 | 8.76 | 0.1 |
| HPP | LKYPLE | 95 | 761.43 | 11.29 | 0.0 |
| HPP | VNVDPDGKF | 94 | 989.48 | 11.26 | −0.2 |
| HPP | LPDWHPMDR | 93 | 1165.53 | 10.20 | 1.9 |
| HPP | VHLKLPK | 93 | 833.54 | 10.11 | −0.2 |
| Origin | Peptide | Mass (Da) | Query Cover (%) | E-Value | Seq. ID | Protein Description | Species |
|---|---|---|---|---|---|---|---|
| PBA | LLDQDKSGFLE | 1263.63 | 100% | 0.52 | TSK14644.1 | Parvalbumin | Bagarius yarrelli |
| PBA | LDFDEFLMK | 1156.54 | 100% | 1.9 | XP_042563305.1 | Calcium-binding protein | Clupea harengus |
| PBA | LLVYPW | 789.44 | 100% | 33 | XP_028311025.1 | Hemoglobin beta-A-like | Gouania willdenowi |
| PBA | LKYPLE | 761.43 | 100% | 182 | RXN10808.1 | Myosin | Labeo rohita |
| PBA | LVYPSV | 676.37 | 100% | 367 | XP_043868191.1 | Zinc finger protein | Solea senegalensis |
| PBP | LLDKNRDGLLSQ | 1370.75 | 100% | 0.89 | XP_022539758.1 | Calcium-binding protein | Astyanax mexicanus |
| PBP | LEEEELKLF | 1148.59 | 100% | 1.4 | P86432.1 | Parvalbumin | Oncorhynchus mykiss |
| PBP | LEDDLVALK | 1014.55 | 100% | 5.6 | KAF6714773.1 | Serine beta-lactamase-like | Oryzias melastigma |
| PBP | VDLWFKA | 877.46 | 100% | 7.3 | XP_021169181.2 | Nucleoside diphosphate kinase B | Fundulus heteroclitus |
| PBP | TVDDKVELE | 1046.51 | 88% | 22 | XP_040927192.1 | Myosin heavy chain | Betta splendens |
| MFA | LDEVLKFF | 1009.54 | 100% | 1.6 | XP_034043238.1 | ATPase 2-like | Thalassophryne amazonica |
| MFA | TKTPGLME | 875.44 | 100% | 2.2 | TWW70116.1 | Myosin heavy chain | Takifugu rubripes |
| MFA | LLAPPEVGKY | 1085.61 | 100% | 56 | XP_013882412.1 | Tomoregulin-1 | Austrofundulus limnaeus |
| MFA | VVDGVKL | 728.44 | 100% | 116 | TSK22821.1 | Creatine kinase | Bagarius yarrelli |
| MFA | MKFLW | 723.37 | 100% | 141 | KAA0719128.1 | Zinc finger protein | Sinocyclocheilus rhinocerous |
| MFP | VLDQDKSGFLE | 1249.61 | 100% | 0.066 | TSK77154.1 | Parvalbumin Beta | Bagarius yarrelli |
| MFP | LEEEELKLF | 1148.59 | 100% | 2.0 | TWW69872.1 | Parvalbumin Beta 2 | Takifugu flavidus |
| MFP | FLDLDQDKKFEE | 1525.73 | 100% | 7.2 | XP_016411869.1 | Ubiquitin carboxyl-hydrolase | Sinocyclocheilus rhinocerous |
| MFP | VGDEAQSK | 832.39 | 100% | 8.7 | ABP97428.1 | Beta actin | Rhinichthys cataractae |
| MFP | LVEELPARW | 1111.60 | 100% | 16 | XP_035995563.1 | Titin | Fundulus heteroclitus |
| HPA | VHLKLPK | 833.54 | 100% | 0.047 | P86432.1 | Parvalbumin beta 2 | Oncorhynchus mykiss |
| HPA | LKYPLE | 761.43 | 100% | 1.5 | P86432.1 | Parvalbumin beta 2 | Oncorhynchus mykiss |
| HPA | VNVDPDGKF | 989.48 | 100% | 15 | XP_016411870.1 | Ubiquitin carboxyl-hydrolase | Sinocyclocheilus rhinocerous |
| HPA | LVLDAGDRTH | 1095.56 | 100% | 28 | XP_028972366.2 | Glycogenin-2 | Esox lucius |
| HPA | LDKFF | 668.35 | 100% | 366 | XP_041932362.1 | Nesprin-1 | Alosa sapidissima |
| HPP | LLDQDKSGFLE | 1263.63 | 100% | 0.049 | P86432.1 | Parvalbumin beta 2 | Oncorhynchus mykiss |
| HPP | LDFDEFLMK | 1156.54 | 100% | 2.0 | XP_042563305.1 | Calcium-binding protein | Clupea harengus |
| HPP | LKYPLE | 761.43 | 100% | 190 | XP_0411101389.1 | A-kinase anchoring protein | Polyodon spathula |
| HPP | LLVYPW | 789.44 | 100% | 191 | XP_014836463.1 | Neuronal tyrosine | Poecilia mexicana |
| HPP | LVYPSV | 676.37 | 100% | 384 | XP_043868191.1 | Zinc finger protein | Solea senegalensis |
| Origin | Main Peptide (OAC/ALC %) | Frequent Bioactive Motifs Identified | Predominant Associated Bioactivities |
|---|---|---|---|
| PBA | LLAPPE (97%) | AP, LA, LP, PP, PE | DPP-IV Inhibitor, ACE Inhibitor, α-Glucosidase Inhibitor |
| PBA | YEKK (96%) | EK, YE, KK | ACE Inhibitor, DPP-IV Inhibitor, Bacterial Permease Ligand |
| PBP | LEEEELKLF (97%) | KL, LF, EL, LK | ACE Inhibitor, Antioxidant |
| PBP | EYKK (95%) | YK, EY, KK | ACE Inhibitor, DPP-IV Inhibitor, Bacterial Permease Ligand |
| MFA | LDEVLKFF (95%) | KF, FF, LK, EV | ACE Inhibitor, DPP-IV Inhibitor, Renin Inhibitor |
| MFA | LEHEE (95%) | EH, HE | DPP-IV Inhibitor |
| MFP | LEEEELKLF (97%) | KL, LF, EL, LK, EE | ACE Inhibitor, Antioxidant, Vasoactive Substance Stimulator |
| MFP | FLDLDQDKKFEE (94%) | KF, FL, KK, EE | ACE Inhibitor, DPP-IV Inhibitor, Bacterial Permease Ligand |
| HPA | LTKLL (97%) | KY, LK | ACE Inhibitor, DPP-IV Inhibitor |
| HPA | LPTKF (95%) | LP, KF | ACE Inhibitor, DPP-IV Inhibitor |
| HPP | LKYPLE (95%) | YP, PL, KY, LK | ACE Inhibitor, DPP-IV Inhibitor, Antioxidant |
| HPP | VNVDPDGKF (94%) | KF, DG, DP, VD | ACE Inhibitor, DPP-IV Inhibitor, Renin Inhibitor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Galendi, V.B.S.B.; Coelho, G.R.; Murback, L.; Valenti, W.C.; Camargo, T.R.; Franzolin, M.R.; Pimenta, D.C.; Ferreira, R.S., Jr. Proteomic and Functional Characterization of Antimicrobial Peptides Derived from Fisheries Bycatch via Enzymatic Hydrolysis. Mar. Drugs 2026, 24, 36. https://doi.org/10.3390/md24010036
Galendi VBSB, Coelho GR, Murback L, Valenti WC, Camargo TR, Franzolin MR, Pimenta DC, Ferreira RS Jr. Proteomic and Functional Characterization of Antimicrobial Peptides Derived from Fisheries Bycatch via Enzymatic Hydrolysis. Marine Drugs. 2026; 24(1):36. https://doi.org/10.3390/md24010036
Chicago/Turabian StyleGalendi, Vicky Balesteros S. Blumen, Guilherme Rabelo Coelho, Letícia Murback, Wagner C. Valenti, Tavani Rocha Camargo, Marcia Regina Franzolin, Daniel Carvalho Pimenta, and Rui Seabra Ferreira, Jr. 2026. "Proteomic and Functional Characterization of Antimicrobial Peptides Derived from Fisheries Bycatch via Enzymatic Hydrolysis" Marine Drugs 24, no. 1: 36. https://doi.org/10.3390/md24010036
APA StyleGalendi, V. B. S. B., Coelho, G. R., Murback, L., Valenti, W. C., Camargo, T. R., Franzolin, M. R., Pimenta, D. C., & Ferreira, R. S., Jr. (2026). Proteomic and Functional Characterization of Antimicrobial Peptides Derived from Fisheries Bycatch via Enzymatic Hydrolysis. Marine Drugs, 24(1), 36. https://doi.org/10.3390/md24010036

