Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (289)

Search Parameters:
Keywords = HH signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10798 KiB  
Article
Integrative Analysis of Transcriptomics and Metabolomics Provides Insights into Meat Quality Differences in Hu Sheep with Different Carcass Performance
by Xiaoxue Zhang, Liming Zhao, Huibin Tian, Zongwu Ma, Qi Zhang, Mengru Pu, Peiliang Cao, Deyin Zhang, Yukun Zhang, Yuan Zhao, Jiangbo Cheng, Quanzhong Xu, Dan Xu, Xiaobin Yang, Xiaolong Li, Weiwei Wu, Fadi Li and Weimin Wang
Foods 2025, 14(14), 2477; https://doi.org/10.3390/foods14142477 - 15 Jul 2025
Viewed by 316
Abstract
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the [...] Read more.
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the molecular mechanisms underlying meat quality differences in Hu sheep with high (HHS, n = 10) and low (LHS, n = 10) carcass performance. Phenotypic analysis revealed that the HHS group exhibited superior meat quality traits, including higher intramuscular fat (IMF) content (reflected in elevated marbling scores), along with lower shear force, drip loss, and cooking loss, compared to the LHS group. Transcriptomic analysis identified 376 differentially expressed genes (DEGs) enriched in pathways linked to lipid metabolism, such as the PPAR signaling pathway and long-chain fatty acid metabolic process. Weighted gene co-expression network analysis (WGCNA) revealed important modules and key genes (e.g., ELOVL6, PLIN1, and ARHGEF2) associated with meat quality traits. Metabolomic profiling identified 132 differentially accumulated metabolites (DAMs), with significant enrichment in amino acid metabolism pathways, including D-amino acid metabolism, arginine biosynthesis, and glycine, serine, and threonine metabolism. Integrative analysis of transcriptomic and metabolomic data highlighted six co-enriched pathways, such as the mTOR signaling pathway and amino acid metabolism, underscoring their role in regulating meat quality. These findings provide valuable insights into the genetic and metabolic networks driving meat quality variation and offer potential biomarkers for genetic selection and nutritional strategies to enhance both carcass yield and eating quality in Hu sheep. This research enhances knowledge of the molecular basis of meat quality and supports precision breeding in livestock production. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

19 pages, 2985 KiB  
Article
Genome-Wide Transcriptome Analysis Reveals GRF Transcription Factors Involved in Methyl Jasmonate-Induced Flavonoid Biosynthesis in Hedera helix
by Feixiong Zheng, Zhangting Xu, Xiaoji Deng, Xiaoyuan Wang, Yiming Sun, Xiaoxia Shen and Zhenming Yu
Plants 2025, 14(14), 2094; https://doi.org/10.3390/plants14142094 - 8 Jul 2025
Viewed by 399
Abstract
Flavonoids are key bioactive compounds in plants that play important defense roles against abiotic stress and are involved in plant growth and development. Methyl jasmonate (MeJA) is a significant growth regulator that promotes the accumulation of flavonoids in a variety of plants, but [...] Read more.
Flavonoids are key bioactive compounds in plants that play important defense roles against abiotic stress and are involved in plant growth and development. Methyl jasmonate (MeJA) is a significant growth regulator that promotes the accumulation of flavonoids in a variety of plants, but the effect of MeJA in Hedera helix remains poorly understood. In the present study, the flavonoid content was significantly increased after MeJA treatment and peaked at 6 h post-treatment. A total of 31,931 genes were identified using transcriptome, and 6484 DEGs were identified at 6 h post-treatment. Through GO and KEGG enrichment analysis, it was shown that DEGs were primarily enriched in phenylpropanoid biosynthesis pathways. Based on the putative transcription factors derived from DEGs, growth-regulating factor (GRF), a transcription factor potentially linking MeJA signaling to flavonoid accumulation and participating in plant growth and stress responses, was further identified. A total of 20 Hh-GRFd genes were identified on the whole genome level and clustered into five phylogenetic groups with conserved subfamily characteristics. Abundant MeJA-responsive cis-elements were presented in the promoter regions of HhGRF1-HhGRF20. They exhibited a tissue-specific expression variation, and HhGRF10 was dominantly expressed in leaves of H. helix. Notably, HhGRF10 exhibited MeJA-induced expression that correlated temporally with flavonoid accumulation, suggesting that HhGRF10 might play a potential role in promoting flavonoid biosynthesis, and overexpression and knockout assay substantiated this conclusion. The finding provides the first transcriptome-wide resource for flavonoid biosynthesis in H. helix and identifies the candidate GRF-mediated regulator for flavonoid accumulation. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

19 pages, 5669 KiB  
Article
Hedgehog Signaling Functions in Spermatogenesis and Keeping Hemolymph–Testis Barrier Stability in Eriocheir sinensis
by Jun-Jie Yu, Hong-Yu Qi, Zhan Zhao, Yu Yang, Shuang-Yi Zhang, Fu-Qing Tan and Wan-Xi Yang
Int. J. Mol. Sci. 2025, 26(11), 5378; https://doi.org/10.3390/ijms26115378 - 4 Jun 2025
Viewed by 609
Abstract
Hedgehog (HH) signaling plays important roles in the development of the nervous system (Sonic hedgehog), bone, cartilage (Indian Hedgehog) and testis (Desert Hedgehog). Research on HH and testes has mostly been conducted in HH-knockout mice and rats, etc. The relationship between HH [...] Read more.
Hedgehog (HH) signaling plays important roles in the development of the nervous system (Sonic hedgehog), bone, cartilage (Indian Hedgehog) and testis (Desert Hedgehog). Research on HH and testes has mostly been conducted in HH-knockout mice and rats, etc. The relationship between HH and cellular junctions has mostly been found in the nervous system and intestine. However, few research studies concerning the link between HH signaling and cell junctions in testis function have been reported. We identified the members of HH signaling that are involved in Eriocheir sinensis testes: HH, Smoothen, Patched, Kif27 and Ci. HH has only one homolog in E. sinensis and is expressed in several types of germ cells in the testes. We found that Kif27 colocalized with Ci in the testes. The knockdown of HH induced enlarged interstitial spaces of the seminiferous tubules. A biotin–streptavidin immunofluorescence experiment indicated that the hemolymph–testis barrier (HTB) was disrupted. Western blot results showed that pinin, HH signaling and cell proliferation- and apoptosis-related protein levels were downregulated. Further immunofluorescent results showed the dislocation of several junction proteins, the abnormality of F-actin and the slowdown of germ cell proliferation and apoptosis. While β-catenin entered the spermatocyte nucleus, it did not activate Wnt-β-catenin signaling, which indicated that the disturbance of the cell cycle in germ cells was not caused by Wnt-β-catenin signaling. In summary, HH signaling plays some roles beyond our understanding in the regulation of the HTB and the germ cell cycle in E. sinensis testes. Full article
(This article belongs to the Special Issue New Insights into Male Infertility and Sperm Biology)
Show Figures

Graphical abstract

16 pages, 1623 KiB  
Article
Stromal Hedgehog Signaling Is Associated with Favorable Outcomes in Pancreatic Cancer
by Paul Manoukian, Helene Damhofer, Lan Zhao, Hanneke W. M. van Laarhoven and Maarten F. Bijlsma
Int. J. Mol. Sci. 2025, 26(11), 5200; https://doi.org/10.3390/ijms26115200 - 28 May 2025
Viewed by 554
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway can be observed in various malignancies, particularly in stroma-rich tumors like pancreatic ductal adenocarcinoma (PDAC). In PDAC, Hh signaling is thought to foster an abundant stroma, making it an appealing target for stoma-targeted therapy. However, [...] Read more.
Aberrant activation of the Hedgehog (Hh) signaling pathway can be observed in various malignancies, particularly in stroma-rich tumors like pancreatic ductal adenocarcinoma (PDAC). In PDAC, Hh signaling is thought to foster an abundant stroma, making it an appealing target for stoma-targeted therapy. However, the use of Hh antagonists in the clinic has thus far not been successful. To reassess the clinical merit of Hh-targeted therapy in PDAC, we sought to better characterize the role of Hh signaling in tumor-stroma crosstalk. Here, we show that Hh ligands are not prognostic per se in PDAC, despite being associated with the favorable classical molecular subtype. Perturbing Hh ligand expression in PDAC cells can effectively alter their trans-signaling capacity but does not impact tumor growth in vivo. However, co-injecting PDAC cells with Smo-proficient MEFs resulted in a significant reduction in xenograft growth, suggesting that Hh-related effects on tumor growth are largely mediated through the stroma. By analyzing transcriptomic sequencing data from co-cultures, comprising human PDAC cells and mouse fibroblasts treated with a Hh-blocking antibody, we could identify stromal hits that are responsive to Hh ligands. We then leveraged the obtained set of genes to allow patient stratification based on stromal response to Hh ligands. We believe that a subset of PDAC patients may benefit from the use of Hh-targeted therapies and thereby encourage the use of our stratification tool to guide their use in PDAC clinical care. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

31 pages, 5167 KiB  
Article
Targeting Neuronal Nitric Oxide Synthase (nNOS) as a Novel Approach to Enhancing the Anti-Melanoma Activity of Immune Checkpoint Inhibitors
by Anika Patel, Shirley Tong, Kate Lozada, Amardeep Awasthi, Richard B. Silverman, Jennifer Totonchy and Sun Yang
Pharmaceutics 2025, 17(6), 691; https://doi.org/10.3390/pharmaceutics17060691 - 24 May 2025
Viewed by 633
Abstract
Background and Objectives: Neuronal nitric oxide synthase (nNOS) overexpressed in melanoma plays a critical role in disease progression. Our previous studies demonstrated that nNOS inhibitors exhibited potent anti-melanoma activity and regulated PD-L1 expressions in the presence of interferon-gamma (IFN-γ). However, the role [...] Read more.
Background and Objectives: Neuronal nitric oxide synthase (nNOS) overexpressed in melanoma plays a critical role in disease progression. Our previous studies demonstrated that nNOS inhibitors exhibited potent anti-melanoma activity and regulated PD-L1 expressions in the presence of interferon-gamma (IFN-γ). However, the role of nNOS in the melanoma immune response has not been well defined. Methods: Changes in gene expression profiles after nNOS inhibitor treatment were determined by transcriptomic analysis. A melanoma mouse model was used to determine the effects of nNOS inhibition on peripheral T cells and the in vivo anti-tumor activity of combining nNOS inhibitors with immune checkpoint blockade. Changes in human T cell activation through interleukin-2 (IL-2) production were investigated using an ex vivo co-culture system with human melanoma cells. Results: Cellular RNA analysis revealed significant changes in the genes involved in key signaling pathways after nNOS inhibitor HH044 treatment. Immunophenotyping of mouse peripheral blood mononuclear cells (PBMCs) after prolonged HH044 treatment showed marked increases in CD4+ and CD8+PD-1+ T cells. Ex vivo studies demonstrated that co-culturing human PBMCs with melanoma cells inhibited T cell activation, decreasing IL-2-secreting T cells both in the presence and absence of IFN-γ. PBMCs from a significant portion of donors (7/11, 64%), however, were reactivated by nNOS inhibitor pretreatment, displaying a significant increase in IL-2+ T cells. Distinctive T cell characteristics were noted at baseline among the responders with increased CD4+RORγt+ and reduced CD4 naïve T cells. In vivo mouse studies demonstrated that nNOS inhibitors, when combined with PD-1 blockade, significantly reduced tumor growth more effectively than monotherapy. Additionally, the median survival was extended from 43 days in the control mice to 176.5 days in mice co-treated with HH044 and anti-PD-1. Conclusions: Targeting nNOS is a promising approach to enhancing the anti-melanoma activity of immune checkpoint inhibitors, not only interfering with melanoma biological activities but also regulating the tumor microenvironment, which subsequently affects T cell activation and tumor immune response. Full article
Show Figures

Figure 1

16 pages, 3139 KiB  
Article
Adaptive Threshold Wavelet Denoising Method and Hardware Implementation for HD Real-Time Processing
by Xuhui Wang and Jizhong Zhao
Electronics 2025, 14(11), 2130; https://doi.org/10.3390/electronics14112130 - 23 May 2025
Viewed by 564
Abstract
To meet the demands of real-time and high-definition (HD) image processing applications, denoising methods must be both computationally efficient and hardware friendly. Traditional image denoising techniques are typically simple, fast, and resource-efficient but often fall short in terms of denoising performance and adaptability. [...] Read more.
To meet the demands of real-time and high-definition (HD) image processing applications, denoising methods must be both computationally efficient and hardware friendly. Traditional image denoising techniques are typically simple, fast, and resource-efficient but often fall short in terms of denoising performance and adaptability. This paper proposes an adjustable-threshold denoising method along with a corresponding hardware implementation designed to support the real-time processing of large-array images commonly used in image signal processors (ISPs). The proposed technique employs a LeGall 5/3 wavelet with a row-transform structure and multilevel decomposition. A 2D Pyramid VisuShrink thresholding algorithm is introduced, where the threshold is derived from the median value of the HH sub-band using a multi-stage segmentation approach. To further optimize performance, a quantization strategy with fixed-point parameter design is applied to minimize storage requirements and computational errors. A specialized hardware architecture is developed to enable the real-time denoising of 4K images while adhering to constraints on speed and resource utilization. The architecture incorporates a finite state machine (FSM) and a reusable median calculation unit to efficiently share threshold-related storage and computational resources. The system is implemented and verified on an FPGA, achieving real-time performance at a maximum frequency of 230 MHz. It supports flexible input data formats with resolutions up to 4096×4096 pixels and 16-bit depth. Comprehensive comparisons with other real-time denoising methods demonstrate that the proposed approach consistently achieves better PSNR and SSIM across various noise levels and image sizes. In addition to delivering improved denoising accuracy, the hardware implementation offers advantages in processing speed and resource efficiency while supporting a wide range of large-array images. Full article
Show Figures

Figure 1

10 pages, 1280 KiB  
Article
Analysis of GmERF5 Response to the Rhizobial Type III Effector NopAA Underlying the Nodule in Soybeans
by Lianheng Xia, Yunshan Song, Tong Yu, Ying Pei, Hongwei Jiang, Qingshan Chen and Dawei Xin
Nitrogen 2025, 6(2), 38; https://doi.org/10.3390/nitrogen6020038 - 21 May 2025
Viewed by 477
Abstract
Soybean, an important leguminous crop valued for its high protein and oil content, obtains most of its nitrogen through symbiotic fixation processes. The symbiosis between soybeans and rhizobium can provide sufficient nitrogen for soybean growth. However, the signaling pathways underlying the establishment of [...] Read more.
Soybean, an important leguminous crop valued for its high protein and oil content, obtains most of its nitrogen through symbiotic fixation processes. The symbiosis between soybeans and rhizobium can provide sufficient nitrogen for soybean growth. However, the signaling pathways underlying the establishment of the symbiosis are not so clear, especially the rhizobial type III effector-induced host response. In this study, we found that the single mutant HH103 nopAA::kan significantly affected the nodule number in soybeans. To further demonstrate the NopAA-triggered response in soybeans. Initial quantitative real-time PCR (qRT-PCR) tests showed that NopAA affects the expression of the soybean gene GmERF5, which was significantly upregulated upon inoculation with HH103 nopAA::kan, acting as a positive regulator of nodulation. The direct interaction between NopAA and GmERF5 was confirmed through yeast-two hybrid analysis. Furthermore, overexpression of GmERF5 in hairy roots indicated that GmERF5 may underlie the nodule phenotype of soybeans in response to NopAA. These findings provide new insights into the mechanisms by which soybean genes respond to rhizobial type III effectors to regulate symbiosis. Full article
Show Figures

Figure 1

17 pages, 13939 KiB  
Article
FAM20B-Catalyzed Glycosylation Regulates the Chondrogenic and Osteogenic Differentiation of the Embryonic Condyle by Controlling IHH Diffusion and Release
by Xiaoyan Chen, Han Liu, Yuhong Huang, Leilei Li, Xuxi Jiang, Bo Liu, Nan Li, Lei Zhu, Chao Liu and Jing Xiao
Int. J. Mol. Sci. 2025, 26(9), 4033; https://doi.org/10.3390/ijms26094033 - 24 Apr 2025
Viewed by 552
Abstract
Although the roles of proteoglycans (PGs) have been well documented in the development and homeostasis of the temporomandibular joint (TMJ), how the glycosaminoglycan (GAG) chains of PGs contribute to TMJ chondrogenesis and osteogenesis still requires explication. In this study, we found that FAM20B, [...] Read more.
Although the roles of proteoglycans (PGs) have been well documented in the development and homeostasis of the temporomandibular joint (TMJ), how the glycosaminoglycan (GAG) chains of PGs contribute to TMJ chondrogenesis and osteogenesis still requires explication. In this study, we found that FAM20B, a hexokinase essential for attaching GAG chains to the core proteins of PGs, was robustly activated in the condylar mesenchyme during TMJ development. The inactivation of Fam20b in craniofacial neural crest cells (CNCCs) dramatically reduced the synthesis and accumulation of GAG chains rather than core proteins in the condylar cartilage, which resulted in a hypoplastic condylar cartilage by severely promoting chondrocyte hypertrophy and perichondral ossification. In the condyles of Wnt1-Cre;Fam20bf/f mouse embryos, enlarged Ihh- and COL10-expressing domains indicated premature hypertrophy resulting from an attenuated IHH-PTHRP negative feedback in condylar chondrocytes, while increased osteogenic markers, canonical Wnt activity, and type-H angiogenesis verified the enhanced osteogenesis in the perichondrium. Further ex vivo investigations revealed that the loss of Fam20b decreased the domain area but increased the activity of HH signaling in the embryonic condylar mesenchyme. Moreover, the abrogation of GAG chains in heparan sulfate and chondroitin sulfate proteoglycans led to a rapid up- and then downregulation of HH signaling in condylar chondrocytes, implicating a “slow-release” manner of growth factors controlled by GAG chains. Overall, this study revealed a comprehensive role of the FAM20B-catalyzed GAG chain synthesis in the chondrogenic and osteogenic differentiation of the embryonic TMJ condyle. Full article
(This article belongs to the Special Issue Glycobiology in Human Health and Disease)
Show Figures

Figure 1

19 pages, 13367 KiB  
Article
Transcriptome–Metabolome Analysis Reveals That Crossbreeding Improves Meat Quality in Hu Sheep and Their F1-Generation Sheep
by Liwa Zhang, Xuejiao An, Zhenfei Xu, Chune Niu, Zhiguang Geng, Jinxia Zhang, Haina Shi, Zhenghan Chen, Rui Zhang and Yaojing Yue
Foods 2025, 14(8), 1384; https://doi.org/10.3390/foods14081384 - 17 Apr 2025
Cited by 1 | Viewed by 573
Abstract
Consumers are increasingly demanding higher-quality mutton. Crossbreeding has been recognized as an effective means to improve meat quality. However, the phenomenon underlying these molecular system mechanisms remains largely unidentified. In this study, 48 male lambs aged 3 months were selected, including ♂ Hu [...] Read more.
Consumers are increasingly demanding higher-quality mutton. Crossbreeding has been recognized as an effective means to improve meat quality. However, the phenomenon underlying these molecular system mechanisms remains largely unidentified. In this study, 48 male lambs aged 3 months were selected, including ♂ Hu sheep × ♀ Hu (HH, n = 16), ♂ Polled Dorset × ♀ Hu sheep F1 hybrid lambs (DH, n = 16), and ♂ Southdown × ♀ Hu sheep (SH, n = 16) F1 hybrid lambs, and raised in a single pen under the same nutritional and management conditions for 95 days. Then, seven sheep close to the average weight of the group were selected and fasted for 12 h prior to slaughter. By comparing the muscle fiber characteristics of the Longissimus dorsi of the three groups of sheep, and through transcriptomic and metabolomic analyses, we revealed molecular differences in the meat quality of Hu sheep crossbred with different parent breeds. The results of this study showed that muscle fiber diameter and cross-sectional area were significantly greater in the DH group than in the HH group, and collagen fiber content in the DH group was also significantly higher than in the HH group (p < 0.05). A total of 163 differential genes and 823 differential metabolites were identified in the three groups, most of which were related to muscle development and lipid metabolism. These included the AMPK signaling pathway, the PI3K-Akt signaling pathway, glycerophospholipid metabolism, and the related genes EFHB, PER3, and PPARGC1A. The results of this study offer valuable insights into the molecular mechanisms underlying the impact of crossbreeding on meat quality and provide a theoretical foundation for sheep crossbreed production. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

16 pages, 7432 KiB  
Article
Crosstalk Between Wnt/β-Catenin and Hedgehog Supports Gli1+ Lineage Osteogenesis in Cranial Sutures
by Lin Sun, Jie Wang, Shuo Chen and Yang He
Int. J. Mol. Sci. 2025, 26(8), 3508; https://doi.org/10.3390/ijms26083508 - 9 Apr 2025
Viewed by 520
Abstract
Sutures such as fibrous joints in craniofacial bones provide a niche for Gli1+ mesenchymal stem cells (MSCs) in promoting calvarial bone development and growth. However, the underlying molecular mechanism behind the fate of the Wnt/β-catenin regulation of Gli1+ MSCs during calvarial bone formation [...] Read more.
Sutures such as fibrous joints in craniofacial bones provide a niche for Gli1+ mesenchymal stem cells (MSCs) in promoting calvarial bone development and growth. However, the underlying molecular mechanism behind the fate of the Wnt/β-catenin regulation of Gli1+ MSCs during calvarial bone formation remains unclear. Here, we showed that β-catenin was colocalized with Gli1+ lineage cells near the osteogenic front within a suture, and postnatal skull development was delayed via a conditional knockout of Ctnnb1 in Gli1+ MSCs. Calcein–Alizarin Red dual staining revealed that Wnt/β-catenin signal inhibition impaired the rate of bone formation. Furthermore, immunofluorescent staining indicated that Wnt/β-catenin signaling was crucial in facilitating the proliferative capacity of Gli1+ MSCs and their commitment to the osteogenic lineage. Notably, activating hedgehog (Hh) signaling partially restored the suture morphology in Ctnnb1 knockout mice. Collectively, our findings revealed the crosstalk between Wnt and Hh signaling modulates the fate of Gli1+ MSCs during calvarial bone formation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

14 pages, 2258 KiB  
Article
Plasma Protein Binding, Biostability, Metabolite Profiling, and CYP450 Phenotype of TPB15 Across Different Species: A Novel Smoothened Inhibitor for TNBC Therapy
by Dingsheng Wen, Boyu Chen, Mingtong Deng, Shaoyu Wu and Shuilin Xie
Pharmaceutics 2025, 17(4), 423; https://doi.org/10.3390/pharmaceutics17040423 - 26 Mar 2025
Viewed by 531
Abstract
Background/Objectives: Triple-negative breast cancer (TNBC) is a major cause of cancer-related deaths among women. The Hedgehog (Hh) signaling pathway plays a critical role in tumor development, and targeting this pathway may provide new therapeutic opportunities for TNBC. TPB15 is a novel smoothened [...] Read more.
Background/Objectives: Triple-negative breast cancer (TNBC) is a major cause of cancer-related deaths among women. The Hedgehog (Hh) signaling pathway plays a critical role in tumor development, and targeting this pathway may provide new therapeutic opportunities for TNBC. TPB15 is a novel smoothened inhibitor of the Hh pathway, showing promising tumor reduction and low-toxicity properties in vivo/vitro. This study aims to evaluate TPB15’s protein binding rates, metabolic stability, and metabolism across different species, including mice, rats, dogs, monkeys, and humans. Methods: TPB15 was synthesized, and its pharmacokinetic profile was assessed. Plasma protein binding was determined using ultrafiltration across multiple species. Stability studies were conducted in plasma and liver microsomes from each species. Additionally, metabolic enzymes in human liver microsomes were characterized with selective CYP450 inhibitors, and high-resolution mass spectrometry was employed to identify metabolites. Results: Plasma protein binding of TPB15 was consistent across species, ranging from 81.5% to 82.4% in humans and rats. After 120 min, TPB15 remained stable in plasma, with retention rates of 97.2–98.3%. The elimination half-life (t1/2) varied from 88 min in monkeys to 630 min in dogs. In human liver microsomes, metabolism was significantly inhibited by sulfaphenazole and ketoconazole, indicating the involvement of CYP3A4 and CYP2C9 enzymes. TPB15 underwent phase I metabolism, producing a major metabolite with a molecular weight of 468.9. Conclusions: TPB15 demonstrates stable pharmacokinetic properties across species, with consistent protein binding and significant variability in half-life. The observed differences in metabolism are primarily attributed to CYP2C9 and CYP3A4, offering valuable insights into its drug development potential. Full article
(This article belongs to the Special Issue Role of Pharmacokinetics in Drug Development and Evaluation)
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Sonidegib Inhibits the Adhesion of Acute Myeloid Leukemia to the Bone Marrow in Hypoxia: An Optical Tweezer Study
by Katarzyna Gdesz-Birula, Sławomir Drobczyński, Krystian Sarat and Kamila Duś-Szachniewicz
Biomedicines 2025, 13(3), 578; https://doi.org/10.3390/biomedicines13030578 - 25 Feb 2025
Cited by 2 | Viewed by 780
Abstract
Background: Acute myeloid leukemia (AML) is a heterogeneous disease highly resistant to chemotherapeutic agents. Leukemia stem cells (LSCs) can enter a dormant state and avoid apoptosis in the protective niche of the bone marrow (BM) microenvironment. Moreover, bone marrow stromal cells protect leukemia [...] Read more.
Background: Acute myeloid leukemia (AML) is a heterogeneous disease highly resistant to chemotherapeutic agents. Leukemia stem cells (LSCs) can enter a dormant state and avoid apoptosis in the protective niche of the bone marrow (BM) microenvironment. Moreover, bone marrow stromal cells protect leukemia cells by promoting pro-survival signaling pathways and drug resistance. Therefore, attenuating interactions between leukemia cells and BM cells may have a positive therapeutic effect. Objectives: In this work, we hypothesized that sondages may inhibit the adhesion of leukemia cells to the bone marrow by inhibiting the Hedgehog (Hh) signaling pathway. The Hedgehog pathway is a key therapeutic target in AML due to its role in leukemic cell growth and survival. Methods: We investigated the effects of sonidegib on the adhesion of individual OCI-AML3 cells to a bone marrow stromal spheroid derived from the HS-5 cell line. For this purpose, we precisely determined the minimum cell-to-cell adhesion time using optical tweezers under normoxic (21% of O2) and hypoxic (1% of O2) conditions. Results: Our results demonstrated that sonidegib significantly increased the minimum cell-to-cell adhesion time necessary for leukemic cells to establish adhesive bonds with bone marrow stromal cells, thereby indicating a reduction in their adhesive properties. Additionally, we showed that sonidegib is particularly effective at hypoxic oxygen concentrations. Conclusions: The results obtained in this study suggest that sonidegib, through its modulation of the Hedgehog signaling pathway, holds promise as a potential therapeutic approach to target leukemic cell adhesion within the bone marrow microenvironment. Full article
(This article belongs to the Special Issue 3D Cell Culture Systems for Biomedical Research)
Show Figures

Figure 1

14 pages, 1484 KiB  
Article
Synthesis and Evaluation of Aromatic A-Ring 23-Oxavitamin D3 Analogues as Hedgehog Pathway Inhibitors
by Wang Chen, Feifan Lai and Jianghe Xu
Int. J. Mol. Sci. 2025, 26(4), 1631; https://doi.org/10.3390/ijms26041631 - 14 Feb 2025
Cited by 1 | Viewed by 580
Abstract
The Hedgehog (Hh) signaling pathway plays a crucial role in the initiation and progression of tumors, and Hh inhibitors have been used as potential chemotherapeutic agents for the treatment of basal cell carcinomas (BCCs). Vitamin D3 (VD3) and its derivatives [...] Read more.
The Hedgehog (Hh) signaling pathway plays a crucial role in the initiation and progression of tumors, and Hh inhibitors have been used as potential chemotherapeutic agents for the treatment of basal cell carcinomas (BCCs). Vitamin D3 (VD3) and its derivatives have been identified as potent Hh inhibitors. However, the selectivity of VD3 derivatives to vitamin D receptor (VDR) and the Hh signaling pathway still needs optimization. In this study, a series of aromatic A-ring mimics VD3 analogues that contain a C-23 oxygen atom or incorporate C-25 hydroxyl on side chains were designed and synthesized. These compounds were tested in various cell lines for anti-Hh activity, with analogues 3j and 4i identified as potent inhibitors. Mechanism studies showed their anti-Hh effects are mainly due to targeting Smoothened (Smo) without binding to the cyclopamine site. Structure-activity relationship (SAR) studies revealed that VD3-based inhibitors enhance anti-Hh activity by adding a hydroxyl group at C25 while reducing VDR activity by incorporating an oxygen atom into the side chain. Full article
(This article belongs to the Special Issue The Role of Vitamin D in Human Health and Diseases 4.0)
Show Figures

Figure 1

22 pages, 1936 KiB  
Review
Hedgehog and PI3K/Akt/mTOR Signaling Pathways Involvement in Leukemic Malignancies: Crosstalk and Role in Cell Death
by Mariaconcetta Sicurella, Marica De Chiara and Luca Maria Neri
Cells 2025, 14(4), 269; https://doi.org/10.3390/cells14040269 - 13 Feb 2025
Cited by 3 | Viewed by 1483
Abstract
The Hedgehog (Hh) and PI3K/Akt/mTOR signaling pathways play a pivotal role in driving the initiation and progression of various cancers, including hematologic malignancies such as acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). These [...] Read more.
The Hedgehog (Hh) and PI3K/Akt/mTOR signaling pathways play a pivotal role in driving the initiation and progression of various cancers, including hematologic malignancies such as acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). These pathways are often dysregulated in leukemia cells, leading to increased cell growth, survival, and drug resistance while also impairing mechanisms of cell death. In leukemia, the Hh pathway can be abnormally activated by genetic mutations. Additionally, the PI3K/Akt/mTOR pathway is frequently overactive due to genetic changes. A key aspect of these pathways is their interaction: activation of the PI3K/Akt pathway can trigger a non-canonical activation of the Hh pathway, which further promotes leukemia cell growth and survival. Targeted inhibitors of these pathways, such as Gli inhibitors and PI3K/mTOR inhibitors, have shown promise in preclinical and clinical studies. Full article
Show Figures

Figure 1

15 pages, 6558 KiB  
Article
Evaluation of the Potential for Estimating Backscattering Coefficients over Bare Agricultural Soils at the Intra-Plot Scale
by Remy Fieuzal and Frédéric Baup
Appl. Sci. 2025, 15(4), 1827; https://doi.org/10.3390/app15041827 - 11 Feb 2025
Viewed by 546
Abstract
The objective of this study is to model backscattering coefficients over bare soils at intra-plot spatial scales (from almost 80 to 2800 m2), in a context where the plot is the reference spatial scale in most past studies. A statistical modeling [...] Read more.
The objective of this study is to model backscattering coefficients over bare soils at intra-plot spatial scales (from almost 80 to 2800 m2), in a context where the plot is the reference spatial scale in most past studies. A statistical modeling approach, based on a random forest algorithm, is proposed to overcome the limits of semi-empirical or physical models pointed out in the literature and to reduce discrepancies observed between the satellite-derived backscattering coefficients and the predicted values. The experimental device was set up on a network of agricultural plots located in southwestern France during the Multispectral Crop Monitoring (MCM) experiment. The dataset combines high spatial resolution satellite images (acquired by TerraSAR-X and Radarsat-2) together with synchronous geo-located measurements of key soil parameters (i.e., top soil moisture, surface roughness, and soil texture) on consistent spatial areas. Backscattering coefficients are estimated at six intra-plot spatial scales (from ~80 to ~2800 m2), showing an exponential increase in modeling performance, and reaching higher levels of accuracy than previous work performed at the plot spatial scale (i.e., 50% of variance explained in the literature, in the best cases). The increase in signal quality with the spatial scale mainly explains the higher performance observed in the 2800 m2 area, with a correlation of 0.91 and RMSE of 0.83 dB in the X-band (for backscattering coefficients acquired with the HH polarization state). In the C-band, the values of correlation range from 0.74 to 0.80, and the RMSE from 1.65 to 1.85 dB (depending on the considered polarization state). The results also showed that the developed statistical algorithm is mainly influenced by the surface roughness and the top soil moisture, as semi-empirical or physical-based models. Soil texture does not significantly affect the algorithm. Full article
Show Figures

Figure 1

Back to TopTop