Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (35,327)

Search Parameters:
Keywords = HA gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2559 KiB  
Article
Anticancer Activity of Vitex agnus-castus Seed Extract on Gastric Cancer Cells
by Özlem Türksoy-Terzioğlu, Feyza Tosya, Ayşe Büşranur Çelik, Sibel Bölek, Levent Gülüm, Gökhan Terzioğlu and Yusuf Tutar
Nutrients 2025, 17(15), 2564; https://doi.org/10.3390/nu17152564 - 6 Aug 2025
Abstract
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus [...] Read more.
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus seed extract in gastric cancer cells. Antioxidant capacity (DPPH, ABTS) and total phenolic and flavonoid contents were analyzed. Cytotoxicity was assessed using the MTT assay in HGC27, MKN45, and AGS gastric cancer cell lines and CCD-1072Sk fibroblasts. Apoptosis, mitochondrial membrane potential (MMP), and cell cycle changes were evaluated via Annexin V-FITC/PI, Rhodamine 123, and PI staining, respectively. RT-qPCR and gene enrichment analyses were conducted to investigate the molecular mechanisms. Apoptosis-related protein expression was analyzed through enzyme-linked immunosorbent assay (ELISA). Results: The extract exhibited high antioxidant activity and a significant phenolic content. It reduced cell viability in a dose-dependent manner in gastric cancer cells, while exerting low toxicity in fibroblasts. It significantly increased apoptosis, induced G0/G1-phase cell cycle arrest, upregulated pro-apoptotic genes (CASP3, CASP7, TP53, BCL2L11), and downregulated anti-apoptotic genes (XIAP, NOL3). Gene enrichment analysis highlighted pathways like apoptosis, necrosis, and cysteine endopeptidase activity. The extract also disrupted MMP, inhibited migration and spheroid formation, suppressed EMT markers (SNAIL, SLUG, TWIST1, N-CADHERIN), and upregulated E-CADHERIN. The expression of Caspase 3 and Bax proteins increased and Bcl2 protein decreased. Conclusions: These findings suggest that Vitex agnus-castus seed extract exerts strong anticancer effects in gastric cancer cells by promoting apoptosis, reducing proliferation, and inhibiting migration. Further studies are warranted to explore its clinical relevance. Full article
(This article belongs to the Section Phytochemicals and Human Health)
15 pages, 3316 KiB  
Article
Evaluation of Collagenic Porcine Bone Blended with a Collagen Gel for Bone Regeneration: An In Vitro Study
by Tania Vanessa Pierfelice, Chiara Cinquini, Morena Petrini, Emira D’Amico, Camillo D’Arcangelo, Antonio Barone and Giovanna Iezzi
Int. J. Mol. Sci. 2025, 26(15), 7621; https://doi.org/10.3390/ijms26157621 - 6 Aug 2025
Abstract
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response [...] Read more.
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response of human oral osteoblasts to four bone substitutes: OsteoBiol® GTO® (larger granules with 20% TSV gel), Gen-OS® (smaller granules), Gen-OS® combined with 50% TSV gel (Gen-OS®+TSV), and TSV gel alone. Cell proliferation, adhesion, morphology, collagen and calcium deposition, alkaline phosphatase (ALP) activity, gene expression of osteogenic markers and integrins, and changes in pH and extracellular calcium and phosphate levels were investigated. All materials supported osteoblast activity, but Gen-OS+TSV and GTO showed the most pronounced effects. These two groups promoted better cell adhesion and proliferation, higher ALP activity, and greater matrix mineralization. GTO improved cell adhesion, while the addition of TSV gel to Gen-OS enhanced biological responses compared with Gen-OS alone. Integrins α2, α5, β1, and β3, important for cell attachment to collagen, were notably upregulated in Gen-OS+TSV and GTO. Both groups also showed increased expression of osteogenic markers such as BMP-2, ALP, and osteocalcin (OCN). Higher extracellular ion concentrations and a more alkaline pH were observed, particularly in conditions without cells, suggesting active ion uptake by osteoblasts. In conclusion, combining TSV gel with collagen-based granules improves the cellular environment for osteoblast activity and may support bone regeneration more effectively than using either component alone. Full article
(This article belongs to the Special Issue Molecular Studies of Bone Biology and Bone Tissue: 2nd Edition)
Show Figures

Figure 1

23 pages, 8563 KiB  
Article
Evidential K-Nearest Neighbors with Cognitive-Inspired Feature Selection for High-Dimensional Data
by Yawen Liu, Yang Zhang, Xudong Wang and Xinyuan Qu
Big Data Cogn. Comput. 2025, 9(8), 202; https://doi.org/10.3390/bdcc9080202 - 6 Aug 2025
Abstract
The Evidential K-Nearest Neighbor (EK-NN) classifier has demonstrated robustness in handling incomplete and uncertain data; however, its application in high-dimensional big data for feature selection, such as genomic datasets with tens of thousands of gene features, remains underexplored. Our proposed Granular--Elastic Evidential K-Nearest [...] Read more.
The Evidential K-Nearest Neighbor (EK-NN) classifier has demonstrated robustness in handling incomplete and uncertain data; however, its application in high-dimensional big data for feature selection, such as genomic datasets with tens of thousands of gene features, remains underexplored. Our proposed Granular--Elastic Evidential K-Nearest Neighbor (GEK-NN) approach addresses this gap. In the context of big data, GEK-NN integrates an Elastic Net within the Genetic Algorithm’s fitness function to efficiently sift through vast amounts of data, identifying relevant feature subsets. This process mimics human cognitive behavior of filtering and refining information, similar to concepts in cognitive computing. A granularity metric is further employed to optimize subset size, maximizing its impact. GEK-NN consists of two crucial phases. Initially, an Elastic Net-based feature evaluation is conducted to pinpoint relevant features from the high-dimensional data. Subsequently, granularity-based optimization refines the subset size, adapting to the complexity of big data. Before applying to genomic big data, experiments on UCI datasets demonstrated the feasibility and effectiveness of GEK-NN. By using an Evidence Theory framework, GEK-NN overcomes feature-selection challenges in both low-dimensional UCI datasets and high-dimensional genomic big data, significantly enhancing pattern recognition and classification accuracy. Comparative analyses with existing EK-NN feature-selection methods, using both UCI and high-dimensional gene datasets, underscore GEK-NN’s superiority in handling big data for feature selection and classification. These results indicate that GEK-NN not only enriches EK-NN applications but also offers a cognitive-inspired solution for complex gene data analysis, effectively tackling high-dimensional feature-selection challenges in the realm of big data. Full article
17 pages, 4939 KiB  
Article
Distinct Effects of PFOS and OBS on Neurotoxicity via PMK-1 Mediated Pathway in Caenorhabditis elegans
by Jiahong Jiang, Qi Liu, Boxiang Zhang, Lei Zhao and Dan Xu
Toxics 2025, 13(8), 662; https://doi.org/10.3390/toxics13080662 - 6 Aug 2025
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) has been proposed as a substitute for perfluorooctanesulfonic acid (PFOS), yet it has garnered increasing attention due to its environmental persistence and potential toxicity. Despite these concerns, the neurotoxic mechanisms of OBS remain unclear. This study investigates and compares [...] Read more.
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) has been proposed as a substitute for perfluorooctanesulfonic acid (PFOS), yet it has garnered increasing attention due to its environmental persistence and potential toxicity. Despite these concerns, the neurotoxic mechanisms of OBS remain unclear. This study investigates and compares the neurotoxic effects and mechanisms of OBS and PFOS in Caenorhabditis elegans. L4-stage worms were exposed to OBS (0.1–100 μM) or PFOS (100 μM) for 24 h. Neurobehavioral analysis showed that OBS exposure induced concentration-dependent neurobehavioral deficits, with 100 μM OBS significantly reducing pharyngeal pumping rate (29.8%), head swing frequency (23.4%), and body bending frequency (46.6%), surpassing the effects of PFOS. Both compounds decreased the fluorescence intensity of dopaminergic, glutamatergic, and γ-aminobutyric acid neurons and downregulated neurotransmitter-associated genes. They also increased ROS generation and inhibited antioxidant gene expression. Molecular docking revealed that OBS had a stronger binding affinity to p38 MAPK key protein (PMK-1) than PFOS. OBS and PFOS upregulated pmk-1 and skn-1, modulating oxidative stress and neuronal function. pmk-1 mutation differentially affected OBS-induced neurobehavioral changes and gene expression alterations. Our findings indicate that OBS exhibits stronger neurotoxicity than PFOS in Caenorhabditis elegans, mediated through the PMK-1 pathway. These results highlight the need for further investigation into the safety of OBS as a PFOS alternative. Full article
(This article belongs to the Special Issue Molecular Mechanisms of PFAS-Induced Toxicity and Carcinogenicity)
Show Figures

Figure 1

14 pages, 1897 KiB  
Article
Type I Interferon-Enhancing Effect of Cardamom Seed Extract via Intracellular Nucleic Acid Sensor Regulation
by Abdullah Al Sufian Shuvo, Masahiro Kassai and Takeshi Kawahara
Foods 2025, 14(15), 2744; https://doi.org/10.3390/foods14152744 - 6 Aug 2025
Abstract
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) [...] Read more.
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) seed extract (CSWE) enhanced type I IFN expression and prevented influenza virus infection. In this study, we investigated the effect of CSWE on type I IFN responses using intracellular nucleic acid sensor molecules. Human lung epithelial A549 cells were treated with CSWE and transfected with poly(dA:dT) or poly(I:C) using lipofection. CSWE and 1,8-cineole, the major CSWE components, dose-dependently induced type I IFNs and IFN-stimulated genes in both poly(dA:dT)- and poly(I:C)-transfected A549 cells. The type I IFN-enhancing effect of CSWE was dependent on the stimulator of interferon genes (STING), whereas the effect of 1,8-cineole was independent of STING and mediated by the down-regulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase expression. Our study suggests that CSWE has the potential to act as a beneficial antiviral agent by enhancing homeostatic type I IFN production. Full article
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Vitamin E Enhances Immune Function and the Intestinal Histological Structure by Regulating the Nodal-Mediated Signaling Pathway: A Case Study on the Sea Cucumber Apostichopus japonicus
by Zitong Wang, Yan Wang, Xianyu Wang, Guangyao Zhao, Haiqing Zeng, Haoran Xiao, Lingshu Han, Jun Ding, Yaqing Chang and Rantao Zuo
Biology 2025, 14(8), 1008; https://doi.org/10.3390/biology14081008 - 6 Aug 2025
Abstract
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections [...] Read more.
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections between adjacent cells but also serves as an anchoring platform for cell adhesion and regeneration processes. Therefore, a 21-day feeding trial was conducted using RNA interference to investigate the role of the Nodal gene in regulating intestinal collagen synthesis and histological structure integrity in juvenile A. japonicus fed diets containing graded levels of vitamin E (VE) (0, 200, and 400 mg/kg). The results showed that the addition of 200 mg/kg VE significantly improved the growth rate, immune enzyme activities and related gene expression, as well as intestinal villus morphology. Additionally, the addition of 200 mg/kg VE upregulated the expression of Nodal, which activated the expression of collagen synthesis-related genes and promoted collagen deposition in the intestines of A. japonicus. After Nodal gene knockdown, A. japonicus presented a decreased growth rate, damage to the intestinal histological structure, and impaired collagen synthesis, with the most notable findings observed in A. japonicus fed diets without VE addition. However, these detrimental effects were eliminated to some extent by the addition of 200 mg/kg VE. These findings indicate that VE improves immune function and intestinal histological structure in A. japonicus through a Nodal-dependent pathway. Full article
(This article belongs to the Special Issue Current Advances in Echinoderm Research (2nd Edition))
Show Figures

Figure 1

19 pages, 2475 KiB  
Article
Phage Host Range Expansion Through Directed Evolution on Highly Phage-Resistant Strains of Klebsiella pneumoniae
by Kevin A. Burke, Tracey L. Peters, Olga A. Kirillina, Caitlin D. Urick, Bertran D. Walton, Jordan T. Bird, Nino Mzhavia, Martin O. Georges, Paphavee Lertsethtakarn, Lillian A. Musila, Mikeljon P. Nikolich and Andrey A. Filippov
Int. J. Mol. Sci. 2025, 26(15), 7597; https://doi.org/10.3390/ijms26157597 - 6 Aug 2025
Abstract
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The [...] Read more.
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The goal of this effort was to use in vitro directed evolution (the “Appelmans protocol”) to isolate K. pneumoniae phages with broader host ranges for improved therapeutic cocktails. Five myophages in the genus Jiaodavirus (family Straboviridae) with complementary activity were mixed and passaged against a panel of 11 bacterial strains including a permissive host and phage-resistant clinical isolates. Following multiple rounds of training, we collected phage variants displaying altered specificity or expanded host ranges compared with parental phages when tested against a 100 strain diversity panel of K. pneumoniae. Some phage variants gained the ability to lyse previously phage-resistant strains but lost activity towards previously phage-susceptible strains, while several variants had expanded activity. Whole-genome sequencing identified mutations and recombination events impacting genes associated with host tropism including tail fiber genes that most likely underlie the observed changes in host ranges. Evolved phages with broader activity are promising candidates for improved K. pneumoniae therapeutic phage cocktails. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

10 pages, 1283 KiB  
Communication
Optimized Ribonucleoprotein Complexes Enhance Prime Editing Efficiency in Zebrafish
by Lang Qin and Qiupeng Lin
Animals 2025, 15(15), 2295; https://doi.org/10.3390/ani15152295 - 6 Aug 2025
Abstract
Prime editing (PE) has emerged as a transformative genome editing technology, enabling precise base substitutions, insertions, and deletions without inducing double-strand DNA breaks (DSBs). However, its application in zebrafish remains limited by low efficiency. Here, we leveraged PE7, a state-of-the-art PE system, combined [...] Read more.
Prime editing (PE) has emerged as a transformative genome editing technology, enabling precise base substitutions, insertions, and deletions without inducing double-strand DNA breaks (DSBs). However, its application in zebrafish remains limited by low efficiency. Here, we leveraged PE7, a state-of-the-art PE system, combined with La-accessible prime editing guide RNAs (pegRNAs), to enhance editing efficiency in zebrafish. By co-incubating PE7 protein with La-accessible pegRNAs to form ribonucleoprotein (RNP) complexes and microinjecting these complexes into zebrafish embryos, we achieved up to 15.99% editing efficiency at target loci—an improvement of 6.81- to 11.46-fold over PE2. Additionally, we observed 16.60% 6 bp insertions and 13.18% 10 bp deletions at the adgrf3b locus, representing a 3.13-fold increase over PE2. Finally, we used PE to introduce desired edits at the tyr locus, successfully generating zebrafish with the tyr P302L mutation that exhibited melanin reduction. These findings demonstrate that PE7 significantly enhances prime editing efficiency in fish, providing novel tools for functional gene studies and genetic breeding in aquatic species. Full article
Show Figures

Figure 1

15 pages, 329 KiB  
Article
Genetic Risk Profiles for Atherosclerosis and Venous Thromboembolism in Azorean and Mainland Portuguese Populations: A Comparative Analysis
by Luisa Mota-Vieira, Joana Duarte, Xavier Catena, Jaime Gonzalez, Andrea Capocci and Cláudia C. Branco
Curr. Issues Mol. Biol. 2025, 47(8), 625; https://doi.org/10.3390/cimb47080625 - 6 Aug 2025
Abstract
The frequency of specific variants associated with the risk of developing cardiovascular diseases has been extensively studied through genome-wide association studies (GWASs). Differences between populations may be caused by the interaction of several factors, such as environmental and genetic backgrounds. Here, we studied [...] Read more.
The frequency of specific variants associated with the risk of developing cardiovascular diseases has been extensively studied through genome-wide association studies (GWASs). Differences between populations may be caused by the interaction of several factors, such as environmental and genetic backgrounds. Here, we studied 19 SNPs involved in atherosclerosis (AT) and venous thromboembolism (VTE) risk in the Azorean and mainland Portuguese populations and compared their frequencies with other European, Asian, and African populations. Results revealed that, although there was no difference between Azorean and mainland populations, eight SNPs in ADAMTS7, PCSK9, APOE, and LDLR genes showed significant statistical differences (χ2, p < 0.05) when compared with the European population. The multilocus genetic profile (MGP) analysis demonstrated that 7.4% of mainlanders and 11.2% of Azoreans have a high-risk of developing atherosclerosis. The opposite tendency was observed for venous thromboembolism risk, where the mainland population presented a higher risk (6.5%) than the Azorean population (4.1%). Significant differences in VTE-MGP distribution were found among the Azorean geographic groups (p < 0.05), with the Eastern group showing the highest VTE risk. Conversely, for the risk AT-MGP, the Central group shows the highest risk (12.9%). Taken together, the data suggest a risk of developing a cardiovascular disease consistent with the European population. However, the Azorean-specific genetic background and socio-cultural habits (dietary and sedentary) may explain the differences observed, validating the need to assess the allelic and genotypic frequencies between different populations, especially in small geographical locations, such as the Azores archipelago. In conclusion, these findings can improve the prevention, diagnosis, and treatment of high-risk individuals, and contribute to reducing the lifelong burden of cardiovascular diseases in the Azorean population. Full article
(This article belongs to the Section Molecular Medicine)
16 pages, 3142 KiB  
Review
Mechanisms of Resistance of Oryza sativa to Phytophagous Insects and Modulators Secreted by Nilaparvata lugens (Hemiptera, Delphacidae) When Feeding on Rice Plants
by Xiaohong Zheng, Weiling Wu, Yuting Huang, Kedong Xu and Xinxin Shangguan
Agronomy 2025, 15(8), 1891; https://doi.org/10.3390/agronomy15081891 - 6 Aug 2025
Abstract
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes [...] Read more.
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes and elucidation of their underlying resistance mechanisms are critical for developing elite rice cultivars with enhanced and durable resistance. Research has shown that in the long-term evolutionary arms race, rice has developed complex defense systems against N. lugens, while N. lugens has developed diverse and sophisticated strategies to overcome the plant’s defenses. This review emphasizes recent advances in the molecular interactions between rice and the N. lugens, particularly focusing on the resistance mechanisms of 17 cloned major N. lugens resistance genes, which have significantly improved our understanding of the molecular basis of rice–N. lugens interactions. We also highlight the roles of several N. lugens salivary components in activating or suppressing rice defense responses. These insights provide a foundation for developing sustainable and effective strategies to manage this devastating pest of rice. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

15 pages, 5628 KiB  
Article
Improving the Efficiency of CRISPR/Cas9-Mediated Non-Homologous End Joining Gene Knockout Using Small Molecules in Porcine Cells
by Shihao Lv, Xiaokang Xu, Sijia Yang, Mingjie Feng, Zhongyu Yuan, Xueqing Liu, Chaoqian Jiang, Jun Song and Yanshuang Mu
Biomolecules 2025, 15(8), 1132; https://doi.org/10.3390/biom15081132 - 6 Aug 2025
Abstract
The CRISPR/Cas9 genome editing system has emerged as an effective platform to generate loss-of-function gene edits through non-homologous end joining (NHEJ) without a repair template. To verify whether small molecules can enhance the efficiency of CRISPR/ Cas9-mediated NHEJ gene editing in porcine cells, [...] Read more.
The CRISPR/Cas9 genome editing system has emerged as an effective platform to generate loss-of-function gene edits through non-homologous end joining (NHEJ) without a repair template. To verify whether small molecules can enhance the efficiency of CRISPR/ Cas9-mediated NHEJ gene editing in porcine cells, this experiment investigated the effects of six small-molecule compounds, namely Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, on the efficiency of CRISPR/Cas9-mediated NHEJ gene editing. The results showed the optimal concentrations of the small molecules, including Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, for in vitro-cultured PK15 viability. Compared with the control group, the single small molecules Repsox, Zidovudine, GSK-J4, and IOX1 increased the efficiency of NHEJ-mediated gene editing 3.16-fold, 1.17-fold, 1.16-fold, and 1.120-fold, respectively, in the Cas9-sgRNA RNP delivery system. There were no benefits when using YU238259 and GW843682X compared with the control group. In the CRISPR/Cas9 plasmid delivery system, the Repsox, Zidovudine, IOX1, and GSK-J4 treatments increased the efficiency of NHEJ-mediated gene editing 1.47-fold, 1.15-fold, 1.21-fold, and 1.23-fold, respectively, compared with the control group. Repsox can also improve the efficiency of NHEJ-mediated multi-gene editing based on a CRISPR sgRNA-tRNA array. We also explored the mechanism of Repsox’s effect on the efficiency of NHEJ-mediated gene editing. The results showed that Repsox reduces the expression levels of SMAD2, SMAD3, and SMAD4 in the TGF-β pathway, indicating that Repsox can increase the efficiency of CRISPR NHEJ-mediated gene editing in porcine cells through the TGF-β pathway. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 332 KiB  
Review
Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
by Nicolò Ciarmatori, Flavia Quaranta Leoni and Francesco M. Quaranta Leoni
J. Clin. Med. 2025, 14(15), 5528; https://doi.org/10.3390/jcm14155528 - 6 Aug 2025
Abstract
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural [...] Read more.
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural changes such as proptosis and diplopia, and are associated with substantial adverse effects. This review aims to synthesize recent developments in understandings of TED pathogenesis and to critically evaluate emerging therapeutic strategies. Methods: A systematic literature review was conducted using MEDLINE, Embase, and international clinical trial registries focusing on pivotal clinical trials and investigational therapies targeting core molecular pathways involved in TED. Results: Current evidence suggests that TED pathogenesis is primarily driven by the autoimmune activation of orbital fibroblasts (OFs) through thyrotropin receptor (TSH-R) and insulin-like growth factor-1 receptor (IGF-1R) signaling. Teprotumumab, a monoclonal IGF-1R inhibitor and the first therapy approved by the U.S. Food and Drug Administration for TED, has demonstrated substantial clinical benefit, including improvements in proptosis, diplopia, and quality of life. However, concerns remain regarding relapse rates and treatment-associated adverse events, particularly hearing impairment. Investigational therapies, including next-generation IGF-1R inhibitors, small-molecule antagonists, TSH-R inhibitors, neonatal Fc receptor (FcRn) blockers, cytokine-targeting agents, and gene-based interventions, are under development. These novel approaches aim to address both inflammatory and fibrotic components of TED. Conclusions: Teprotumumab has changed TED management but sustained control and toxicity reduction remain challenges. Future therapies should focus on targeted, mechanism-based, personalized approaches to improve long-term outcomes and patient quality of life. Full article
(This article belongs to the Section Ophthalmology)
15 pages, 3830 KiB  
Article
ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant
by Francesco Calì, Miriam Virgillito, Simone Treccarichi, Antonino Musumeci, Pinella Failla, Carla Papa, Rosanna Galati Rando, Concetta Federico, Salvatore Saccone and Mirella Vinci
Int. J. Mol. Sci. 2025, 26(15), 7586; https://doi.org/10.3390/ijms26157586 - 5 Aug 2025
Abstract
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome [...] Read more.
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome sequencing (WES) identified a de novo variant (c.1530dup, p.Glu511ArgfsTer16) in the ZNF496 gene of the proband. According to ACMG guidelines, this novel variant is classified as pathogenic. It creates a frameshift that introduces a premature stop codon, resulting in a truncated protein of 525 amino acids (compared to the wild-type 587 residues). Notably, NMDEscPredictor analysis predicted that the transcript escapes nonsense-mediated decay (NMD) despite the frameshift. Computational analyses suggest the potential pathogenetic effects of the identified variant. As documented, ZNF496 interacts with JARID2, a gene associated with NDDs, ID and facial dysmorphism (MIM: #620098). In silico analyses suggest that the identified mutation disrupts this interaction by deleting ZNF496’s C2H2 domain, potentially dysregulating JARID2 target genes. To our knowledge, this is the first reported association between ZNF496 and NDDs, and the variant has been submitted to the ClinVar database (SCV006100880). Functional studies are imperative to validate ZNF496’s role in NDDs and confirm the mutation’s impact on ZNF496-JARID2 interactions. Full article
Show Figures

Figure 1

21 pages, 2202 KiB  
Article
Galactose Inhibits the Translation of Erg1 that Enhances the Antifungal Activities of Azoles Against Candida albicans
by Sijin Hang, Li Wang, Zhe Ji, Xuqing Shen, Xinyu Fang, Wanqian Li, Yuanying Jiang and Hui Lu
Antibiotics 2025, 14(8), 799; https://doi.org/10.3390/antibiotics14080799 - 5 Aug 2025
Abstract
Background/Objectives: The diminished efficacy of azoles in treating fungal infections is attributed to the emergence of resistance among pathogenic fungi. Employing a synergistic approach with other compounds to enhance the antifungal activity of azoles has shown promise, yet the availability of clinically valuable [...] Read more.
Background/Objectives: The diminished efficacy of azoles in treating fungal infections is attributed to the emergence of resistance among pathogenic fungi. Employing a synergistic approach with other compounds to enhance the antifungal activity of azoles has shown promise, yet the availability of clinically valuable adjuvants for azoles and allylamines remains limited. Studies have demonstrated that the human host environment provides multiple carbon sources, which can influence the susceptibility of C. albicans to antifungal agents. Therefore, a comprehensive investigation into the mechanisms by which carbon sources modulate the susceptibility of C. albicans to azoles may uncover a novel pathway for enhancing the antifungal efficacy of azoles. Methods: This study explored the impact of various carbon sources on the antifungal efficacy of azoles through methodologies including minimum inhibitory concentration (MIC) assessments, super-MIC growth (SMG) assays, disk diffusion tests, and spot assays. Additionally, the mechanism by which galactose augments the antifungal activity of azoles was investigated using a range of experimental approaches, such as gene knockout and overexpression techniques, quantitative real-time PCR (qRT-PCR), Western blot analysis, and cycloheximide (CHX) chase experiments. Results: This study observed that galactose enhances the efficacy of azoles against C. albicans by inhibiting the translation of Erg1. This results in the suppression of Erg1 protein levels and subsequent inhibition of ergosterol biosynthesis in C. albicans. Conclusions: In C. albicans, the translation of Erg1 is inhibited when galactose is utilized as a carbon source instead of glucose. This novel discovery of galactose’s inhibitory effect on Erg1 translation is expected to enhance the antifungal efficacy of azoles. Full article
Show Figures

Figure 1

17 pages, 1416 KiB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

Back to TopTop