Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,602)

Search Parameters:
Keywords = H2O2 oxidative stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6805 KB  
Article
Danthron Attenuates Intestinal Inflammation by Modulating Oxidative Stress via the EGFR-PI3K-AKT and Nrf2-HO-1 Pathways
by Chujun Ni, Haiqing Liu, Haiyang Jiang, Zexing Lin, Kangjian Wu, Runnan Wang, Huan Yang, Weijie Li, Chaogang Fan and Yun Zhao
Antioxidants 2026, 15(2), 157; https://doi.org/10.3390/antiox15020157 - 23 Jan 2026
Abstract
Inflammatory bowel disease (IBD) is characterized by excessive oxidative stress, mitochondrial dysfunction, and persistent activation of pro-inflammatory signaling pathways. Danthron, a natural anthraquinone derivative from rhubarb, has been reported to possess anti-inflammatory and antioxidant properties, yet its regulatory mechanisms in intestinal inflammation remain [...] Read more.
Inflammatory bowel disease (IBD) is characterized by excessive oxidative stress, mitochondrial dysfunction, and persistent activation of pro-inflammatory signaling pathways. Danthron, a natural anthraquinone derivative from rhubarb, has been reported to possess anti-inflammatory and antioxidant properties, yet its regulatory mechanisms in intestinal inflammation remain unclear. In this study, we combined network pharmacology, transcriptomic profiling, cell-based assays, intestinal organoids, and a dextran sulfate sodium (DSS)-induced colitis model to determine the protective effects of Danthron against oxidative injury. Integrated target prediction and RNA-seq analysis identified EGFR–PI3K–AKT and Nrf2–HO-1 as key signaling axes modulated by Danthron. In macrophages and intestinal epithelial cells, Danthron markedly suppressed LPS- or H2O2-induced ROS accumulation, lipid peroxidation, and mitochondrial membrane potential collapse, while restoring superoxide dismutase activity and reducing malondialdehyde levels. Danthron also inhibited M1 macrophage polarization, preserved epithelial tight-junction proteins, and maintained transepithelial electrical resistance. CETSA, DARTS, and molecular docking confirmed direct engagement of Danthron with components of both the EGFR–PI3K–AKT and Nrf2–HO-1 pathways. In vivo, Danthron significantly ameliorated DSS-induced colitis, reducing inflammatory cytokines, epithelial apoptosis, oxidative stress, and myeloid cell infiltration while improving mucosal architecture and enhancing organoid regenerative capacity. These findings demonstrate that Danthron exerts potent antioxidant and anti-inflammatory effects through coordinated inhibition of EGFR–PI3K–AKT signaling and activation of the Nrf2–HO-1 axis, suggesting its promise as a multi-target therapeutic candidate for IBD. Full article
Show Figures

Figure 1

25 pages, 7476 KB  
Article
Aucubin from Eucommiae Cortex Alleviates Tendinopathy via an Estrogen Receptor β-Mediated Mechanism
by Guorong Zhang, Shuang Wang, Keyi Wu, Meiqi Sun, Qiang Chen, Jialin Wei, Yue Luan, Ye Qiu and Zhidong Qiu
Pharmaceuticals 2026, 19(2), 194; https://doi.org/10.3390/ph19020194 - 23 Jan 2026
Abstract
Background: Tendinopathy remains a prevalent musculoskeletal disorder with limited disease-modifying pharmacotherapy. This study aimed to identify a reparative agent from the traditional medicinal herb Eucommiae Cortex and elucidate its mechanism of action. Methods: A bioactive fraction was first identified through a [...] Read more.
Background: Tendinopathy remains a prevalent musculoskeletal disorder with limited disease-modifying pharmacotherapy. This study aimed to identify a reparative agent from the traditional medicinal herb Eucommiae Cortex and elucidate its mechanism of action. Methods: A bioactive fraction was first identified through a bioactivity-guided strategy using tenocyte cytoprotection and migration assays, then characterized by UHPLC-HRMS/MS. Its major constituent, aucubin (AU), which mirrors the fraction’s key pharmacological activities, was evaluated both in vitro and in vivo. In H2O2-injured tenocytes, AU’s effects on viability, apoptosis, oxidative stress (ROS, MDA, SOD) and inflammation (IL-1β, TNF-α) were assessed, with specific focus on estrogen receptor (ER) pathway involvement using pharmacological tools (17β-estradiol and (R, R)-THC). In a collagenase-induced Achilles tendinopathy model using male SD rats, AU’s therapeutic efficacy was evaluated via multimodal assessment: ultrasonography, histopathology (H&E, Masson’s trichrome, Sirius red), TEM, immunohistochemistry, and biochemical analysis of tissue markers. Results: AU effectively attenuated H2O2-induced tenocyte injury by enhancing viability, reducing apoptosis, and mitigating oxidative/inflammatory stress. These effects were mimicked by 17β-estradiol and reversed by the selective ERβ antagonist (R, R)-THC, indicating ERβ dependence. In vivo, AU treatment promoted structural and functional recovery, improved collagen maturity (increased Col I/Col III ratio and fibril diameter), suppressed matrix degradation (MMP-3, MMP-13) and apoptosis, and reduced oxidative stress and inflammation in tendon tissue. Conclusions: This study identifies aucubin as a novel phytoestrogenic compound from Eucommiae Cortex that promotes tendon repair through an ERβ-mediated mechanism. These findings position ERβ activation as a promising therapeutic strategy for tendinopathy and highlight AU as a promising lead compound for further development. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

21 pages, 4926 KB  
Article
Redox Priming Ameliorates Salinity Tolerance of Seeds and Seedlings of the Coastal Halophyte Grass Urochondra setulosa
by Sadiq Hussain, Farah Nisar, Sahar Abbas, Abdul Hameed and Brent L. Nielsen
Plants 2026, 15(3), 350; https://doi.org/10.3390/plants15030350 - 23 Jan 2026
Abstract
Low salinity tolerance during germination and early seedling establishment limits large-scale cultivation of halophytes for forage, food, restoration, and conservation purposes. This study evaluates the potential of redox priming to enhance salt tolerance in the perennial C4 halophyte grass Urochondra setulosa, [...] Read more.
Low salinity tolerance during germination and early seedling establishment limits large-scale cultivation of halophytes for forage, food, restoration, and conservation purposes. This study evaluates the potential of redox priming to enhance salt tolerance in the perennial C4 halophyte grass Urochondra setulosa, which could be used as a revegetation and phytoremediation crop for coastal saline lands. Fresh seeds were found to be non-dormant with ~90% mean final germination (MFG) in distilled water. Redox priming, including hydrogen peroxide (H2O2), melatonin (MT), sodium nitroprusside (SNP; a nitric oxide donor), and ascorbic acid (AsA), significantly accelerated the germination rate index (GRI) and reduced mean germination time (MGT) without altering MFG under non-saline conditions. Salinity severely suppressed germination, as unprimed seeds reached only ~1% MFG with ~99% germination reduction (GR) and near-zero germination stress tolerance index (GSTI) at 200 mM NaCl. All priming treatments significantly improved MFG, GRI, and GSTI and decreased GR, with H2O2 priming showing the highest amelioration. Ungerminated seeds from all treatments recovered ~90% germination capacity in water, indicating enforced dormancy owing to osmotic constraints. Salinity did not impair growth in unprimed seedlings. However, MT priming uniquely enhanced total length, leaf area, and seedling vigor index (SVI) at 200 mM NaCl, while MT and SNP priming resulted in the highest chlorophyll and carotenoid contents. Multivariate analyses confirmed MT’s consistent superiority across traits under stress. Thus, H2O2 priming optimizes germination, while MT priming improves seedling vigor and offers a practical, targeted strategy to improve early-stage salinity tolerance in U. setulosa for coastal revegetation and sustainable saline agriculture. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
16 pages, 5371 KB  
Article
2-Arylbenzofurans as Selective Cholinesterase Inhibitors: Design, Synthesis, and Evaluation as Alzheimer’s Disease Agents
by Giovanna Lucia Delogu, Michela Begala, Manuel Novás, Maria João Matos, Franca Piras, Sonia Floris, Francesca Pintus, Michele Mancinelli, Benedetta Era and Antonella Fais
Biomolecules 2026, 16(1), 178; https://doi.org/10.3390/biom16010178 - 22 Jan 2026
Abstract
New arylbenzofuran derivatives were designed, synthesized, and evaluated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Five hybrid compounds (3135) feature a 2-phenylbenzofuran core linked via a heptyloxy spacer to an N-methylbenzylamine moiety, to enhance interactions within [...] Read more.
New arylbenzofuran derivatives were designed, synthesized, and evaluated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Five hybrid compounds (3135) feature a 2-phenylbenzofuran core linked via a heptyloxy spacer to an N-methylbenzylamine moiety, to enhance interactions within the active site of BChE. Biological evaluation revealed that brominated derivatives 34 and 35 showed the highest cholinesterases (ChE) inhibition compared to their chlorinated analogs, with compound 34 showing the highest activity for both AChE (IC50 = 27.7 μM) and BChE (IC50 = 0.7 μM). These compounds proved to be non-cytotoxic and demonstrated significant antioxidant activity in SH-SY5Y cells exposed to hydrogen peroxide (H2O2), highlighting their potential to mitigate oxidative stress: a key pathological factor in Alzheimer’s disease. Structural activity analysis suggests that bromine substitution at position 7 and the presence of a seven-carbon linker are critical for dual ChE inhibition and selectivity towards BChE. ADMET prediction indicates favorable pharmacokinetic properties, including drug-likeness and oral bioavailability. Overall, these findings highlight the potential of the 2-arylbenzofuran as a promising scaffold for multitarget-directed ligands in Alzheimer’s disease therapy. Full article
(This article belongs to the Special Issue New Discoveries in the Field of Neuropharmacology)
Show Figures

Figure 1

18 pages, 2082 KB  
Article
Proline Accumulation in Barley Under Salinity Is ABA-Independent, but Relies on the Level of Oxidative Stress When Modulated by Mo and W Ions
by Moldir Beisekova, Beata Michniewska, Weronika Kusek, Alua Zh. Akbassova, Rustem Omarov, Sławomir Orzechowski and Edyta Zdunek-Zastocka
Int. J. Mol. Sci. 2026, 27(2), 1104; https://doi.org/10.3390/ijms27021104 - 22 Jan 2026
Abstract
The accumulation of proline, an important osmoprotective and antioxidant compound, is a key defense mechanism induced in plants in response to stress factors, including salinity, and is likely dependent on abscisic acid (ABA). However, in barley grown for 8 days under salinity conditions [...] Read more.
The accumulation of proline, an important osmoprotective and antioxidant compound, is a key defense mechanism induced in plants in response to stress factors, including salinity, and is likely dependent on abscisic acid (ABA). However, in barley grown for 8 days under salinity conditions (125 mM NaCl), proline accumulation was not accompanied by changes in ABA content. Co-application of 0.5 mM molybdenum (Mo) significantly reduced NaCl-induced oxidative stress, as measured by H2O2, O2, MDA, and chlorophyll content, and increased the activity of Mo-containing aldehyde oxidase (AO), an enzyme involved in de novo ABA synthesis. As a result, elevated ABA levels were observed, but proline content under salinity conditions was similar in Mo-treated and non-Mo-treated plants. In contrast, exposing plants to 0.5 mM tungsten (W), an antagonist of Mo, inhibited AO activity without significantly altering ABA content, while proline and oxidative stress marker levels increased dramatically under both non-saline and saline conditions. The observed changes in proline content are mainly due to modulation of the rate of synthesis and, to a lesser extent, the rate of degradation, as revealed by transcript abundance of P5CS1 and PDH, which encode D1-pyrroline-5-carboxylate synthetase and proline dehydrogenase, respectively. The results indicate that in barley grown under salinity conditions, proline accumulation is ABA-independent but depends on the level of oxidative stress modulated by Mo and W ions. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Physiological and Molecular Responses)
Show Figures

Figure 1

16 pages, 1310 KB  
Article
Effects of Caffeic Acid Supplementation on Human Sperm Against In Vitro-Induced Oxidative Stress: Nrf2 Molecular Pathway
by Laura Liguori, Cinzia Signorini, Giulia Collodel, Caterina Marcucci and Elena Moretti
Antioxidants 2026, 15(1), 133; https://doi.org/10.3390/antiox15010133 - 20 Jan 2026
Abstract
Oxidative stress (OS) is a major cause of defective sperm function. During laboratory handling, gametes are exposed to OS, potentially mitigated by in vitro antioxidant supplementation. This study evaluates the protective role of caffeic acid (CAF) on basal human semen and under induced [...] Read more.
Oxidative stress (OS) is a major cause of defective sperm function. During laboratory handling, gametes are exposed to OS, potentially mitigated by in vitro antioxidant supplementation. This study evaluates the protective role of caffeic acid (CAF) on basal human semen and under induced OS. First, six semen samples from normozoospermic donors were incubated with CAF concentrations ranging from 50 to 500 µM at 37 °C for 2 h. Sperm motility and DNA integrity (acridine orange) were evaluated. Then, ten semen samples were divided into four aliquots and incubated, respectively, with CAF at 100 µM, H2O2 at 2 mM, or H2O2 at 2 mM + CAF at 100 µM, or untreated. Motility, DNA integrity, acrosome status (Pisum sativum agglutinin), OS quantified by F2-isoprostanes (ELISA), and expression of Nrf2, Keap1, and HO-1 (qRT-PCR) were assessed. CAF at 100 µM improved progressive motility without damaging DNA and was selected for subsequent experiments. CAF showed protective effects on sperm damage induced by H2O2 treatment, restoring motility, DNA integrity, and acrosome status and reducing F2-isoprostane levels. Nrf2 and HO-1 expression were upregulated by CAF, downregulated by H2O2, and restored by the co-treatment. CAF supplementation may protect human spermatozoa during in vitro handling by reducing OS, improving several sperm parameters, with a possible mechanism of action involving the Nrf2 pathway. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Figure 1

14 pages, 5529 KB  
Article
BAM 15 Exerts Molluscicidal Effects on Pomacea canaliculata Through the Induction of Oxidative Stress, Impaired Energy Metabolism, and Tissue Damage
by Liping Wang, Haonan Yu, Guoli Qu, Jiankun Jin, Jie Wang and Yuntian Xing
Molecules 2026, 31(2), 361; https://doi.org/10.3390/molecules31020361 - 20 Jan 2026
Abstract
Background: The golden apple snail (Pomacea canaliculata), an invasive species originating from South America, has inflicted considerable agricultural and ecological harm in non-native habitats. While the molluscicide niclosamide is currently effective against P. canaliculata, its prolonged use raises environmental concerns [...] Read more.
Background: The golden apple snail (Pomacea canaliculata), an invasive species originating from South America, has inflicted considerable agricultural and ecological harm in non-native habitats. While the molluscicide niclosamide is currently effective against P. canaliculata, its prolonged use raises environmental concerns and the risk of resistance development. Results: BAM 15 possesses strong molluscicidal activity against P. canaliculata, with 72 h LC50 values of 0.4564 mg/L for adults (shell height: 20–25 mm), 0.3352 mg/L for subadults (10–15 mm), and 0.1142 mg/L for juveniles (2–3 mm). Metabolomic and proteomic profiling revealed that the altered metabolites and proteins both converged on energy metabolism and oxidative stress. Experimental validation revealed that BAM15 collapsed the mitochondrial membrane potential, drove MDA and H2O2 upward while depleting NADPH, boosted CAT, SOD and GPX activities, yet suppressed GR, and ultimately inflicted overt damage in the head-foot tissue of P. canaliculata. Conclusions: Our findings reveal that BAM 15 operates via a three-stage mechanism: (1) it disrupts membrane potential (ΔΨm) and impairs ATP production, severely disturbing energy metabolism; (2) energy deficits stimulate excessive electron transport chain activity, generating reactive oxygen species (ROS) and initiating oxidative stress; (3) persistent metabolic imbalance and oxidative damage culminate in extensive tissue injury. These results identify BAM 15 as a promising candidate for molluscicide development. Full article
Show Figures

Graphical abstract

41 pages, 13009 KB  
Article
Comparative Profiling of Mouse and Human Microglial Small Extracellular Vesicles Reveals Conserved Core Functions with Distinct miRNA Signatures
by Amir-Hossein Bayat, Damien D. Pearse, Praveen Kumar Singh and Mousumi Ghosh
Cells 2026, 15(2), 184; https://doi.org/10.3390/cells15020184 - 19 Jan 2026
Viewed by 33
Abstract
Microglia-derived small extracellular vesicles (MGEVs) are key mediators of neuroimmune communication, yet their cross-species comparability and translational relevance remain poorly defined. Here, we establish a harmonized framework to compare the molecular and biochemical signatures of sEVs derived from immortalized mouse (BV2) and human [...] Read more.
Microglia-derived small extracellular vesicles (MGEVs) are key mediators of neuroimmune communication, yet their cross-species comparability and translational relevance remain poorly defined. Here, we establish a harmonized framework to compare the molecular and biochemical signatures of sEVs derived from immortalized mouse (BV2) and human (HMC3) microglial cells as well as assess their bioactivity on a human Schwann cell (HuSC) line. MGEVs were isolated via MISEV-aligned size-exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and immunoblotting for canonical EV markers CD9, CD63, CD81, TSG101. Human and mouse MGEVs exhibited similar morphology but displayed distinct membrane tetraspanin protein enrichment patterns. Functionally, mouse and human MGEVs attenuated HuSC migration while enhancing HuSC proliferation and their resistance to H2O2-induced oxidative stress, with human MGEVs providing stronger protective effects, suggesting they retain similar core functional properties. Short, non-coding-miRNA sequencing analysis identified 196 shared miRNAs (Spearman ρ = 0.72) with species-specific enrichment: human MGEVs-derived miRNAs favored regenerative and metabolic pathways, whereas mouse MGEVs-derived miRNAs aligned more so with inflammatory signaling. This study delivers the first integrated cross-species blueprint of MGEVs, revealing conserved neuroprotective actions alongside species-biased miRNA cargo that define translational boundaries and highlight human-relevant MGEV signatures for therapeutic innovation, therefore contributing to the importance of considering these differences in translational research. Full article
Show Figures

Graphical abstract

20 pages, 4416 KB  
Article
Cadmium Stress Disrupts Auxin Signaling and Growth in Ilex verticillata: Insights from Physiological and Transcriptomic Analyses
by Qinyuan Shen, Liangye Huang, Piyu Ji, Muhammad Junaid Rao, Wanchun Li, Jianfang Zuo, Huwei Yuan, Daoliang Yan, Xiaofei Wang and Bingsong Zheng
Plants 2026, 15(2), 277; https://doi.org/10.3390/plants15020277 - 16 Jan 2026
Viewed by 254
Abstract
Cadmium (Cd) pollution poses significant threats to ecosystems and human health, with agricultural soils in China particularly affected. Ilex verticillata, a popular ornamental plant, has not been extensively studied for its response to Cd stress. This study investigated the physiological and molecular [...] Read more.
Cadmium (Cd) pollution poses significant threats to ecosystems and human health, with agricultural soils in China particularly affected. Ilex verticillata, a popular ornamental plant, has not been extensively studied for its response to Cd stress. This study investigated the physiological and molecular mechanisms underlying Cd stress tolerance in I. verticillata, focusing on auxin signaling pathways. Under Cd stress (500 mmol/kg soil), I. verticillata exhibited inhibited stem growth, reduced photosynthetic capacity, and elevated oxidative stress markers such as malondialdehyde, H2O2, ·O2, and antioxidant enzyme activities. Transcriptomic analysis revealed 3750 differentially expressed genes (DEGs) with significant enrichment in auxin signaling pathways. Six nucleus-localized IvIAA genes were identified and shown to interact with the transcription factor IvMYB77, suggesting a regulatory module in Cd stress responses. These findings highlight the role of auxin signaling in mediating Cd stress tolerance and provide insights into the molecular adaptation of I. verticillata to heavy metal pollution. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Responses to Heavy Metal Stress)
Show Figures

Figure 1

16 pages, 11505 KB  
Article
High-Temperature Oxidation Behavior of Ti-Doped SiOC Ceramics
by Xiumei Wu, Xiaojuan Gong, Yunping Li, Xiangming Chen and Shu Yu
Materials 2026, 19(2), 355; https://doi.org/10.3390/ma19020355 - 16 Jan 2026
Viewed by 172
Abstract
Silicon oxycarbide (SiOC) ceramics are prone to failure prematurely in high-temperature applications for thermal stress-induced cracks. Doping Ti into SiOC can improve the oxidation resistance by forming a SiO2-TiO2 composite oxide layer. In this study, the oxidation behavior of Ti-doped [...] Read more.
Silicon oxycarbide (SiOC) ceramics are prone to failure prematurely in high-temperature applications for thermal stress-induced cracks. Doping Ti into SiOC can improve the oxidation resistance by forming a SiO2-TiO2 composite oxide layer. In this study, the oxidation behavior of Ti-doped SiOC ceramics in air at 1500 °C for 32 h was examined comprehensively. SiTiOC ceramics with a titanium-to-silicon molar ratio of 0.05 demonstrated the best oxidation resistance. The oxide layer was enhanced by the distribution of TiO2 and TiSiO4 at the grain boundaries of SiO2, which reduced the interfacial energy and inhibited crack propagation. Furthermore, the oxide layer composed primarily of SiO2 and minor TiO2 exhibited low oxygen diffusion coefficients and strong self-healing capability. However, increasing the titanium-to-silicon molar ratio to 0.2 generated many pores and cracks in the oxide layer, and the outward diffusion of Ti and active oxidation of TiC were been exacerbated during oxidation. Full article
Show Figures

Figure 1

19 pages, 3718 KB  
Article
Unlocking the Functional Potential of Pecan Nut Cake: A Study on Bioactive Peptide Production
by Tianjing Long, Yingjie Xu, Ziang Li, Weimei Kong, Yibo Zhu, Mingxuan Tao, Haibo Luo, Li Cui, Mingjun Sun, Zhen Wu, Xiaoqun Zeng, Daodong Pan and Yuxing Guo
Foods 2026, 15(2), 323; https://doi.org/10.3390/foods15020323 - 15 Jan 2026
Viewed by 131
Abstract
This study examined whether co-fermentation with Lactobacillus casei CGMCC 15956 and Lactobacillus delbrueckii CGMCC 21287 could enhance the bioactivity of peptides derived from pecan nut cake (PNC) and clarify the underlying mechanisms. The fermented hydrolysate (PNCH) was compared with an unfermented control. PNCH [...] Read more.
This study examined whether co-fermentation with Lactobacillus casei CGMCC 15956 and Lactobacillus delbrueckii CGMCC 21287 could enhance the bioactivity of peptides derived from pecan nut cake (PNC) and clarify the underlying mechanisms. The fermented hydrolysate (PNCH) was compared with an unfermented control. PNCH showed higher antioxidant and α-glucosidase inhibitory activities. Total antioxidant capacity increased from 3.17 to 4.81 mM Trolox, and DPPH radical scavenging activity increased from 62.69% to 84.12%. In addition, the IC50 value for α-glucosidase inhibition decreased from 7.549 to 4.509 mg/mL. In a mouse model of acute alcohol-induced liver injury, PNCH significantly alleviated liver damage through the synergistic enhancement of antioxidant and α-glucosidase inhibitory activities. Peptidomic analysis identified two representative bioactive peptides, FAGDDAPR (from actin) and LAGNPDDEFRPQ (from cupin domain–containing protein 1), both of which exhibited antioxidant and α-glucosidase inhibitory activities. Additionally, these peptides alleviated H2O2-induced oxidative stress in Caco-2 cells, significantly improving GSH and MDA levels, as well as SOD activity. Molecular docking suggested potential interactions of these peptides with superoxide dismutase, Keap1, and α-glucosidase. These findings support the high-value utilization of PNC and the development of functional peptide-based ingredients. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

26 pages, 7456 KB  
Article
Multicellular Model Reveals the Mechanism of AEE Alleviating Vascular Endothelial Cell Injury via Anti-Inflammatory and Antioxidant Effects
by Ji Feng, Qi Tao, Meng-Zhen Li, Zhi-Jie Zhang, Qin-Fang Yu and Jian-Yong Li
Int. J. Mol. Sci. 2026, 27(2), 877; https://doi.org/10.3390/ijms27020877 - 15 Jan 2026
Viewed by 254
Abstract
Vascular endothelial injury is a key pathological characteristic of multiple diseases, such as atherosclerosis, stroke, and mastitis. Aspirin eugenol ester (AEE) has been confirmed to exert a significant protective effect on vascular endothelial injury. However, the universal action patterns and underlying mechanisms of [...] Read more.
Vascular endothelial injury is a key pathological characteristic of multiple diseases, such as atherosclerosis, stroke, and mastitis. Aspirin eugenol ester (AEE) has been confirmed to exert a significant protective effect on vascular endothelial injury. However, the universal action patterns and underlying mechanisms of AEE across different pathological scenarios have not been systematically elucidated. This study aimed to investigate the effect and mechanism of AEE in alleviating multiple vascular endothelial injury models. Nine vascular endothelial injury models were established by treating bovine aortic endothelial cells (BAECs), mouse aortic endothelial cells (MAECs), and human umbilical vein endothelial cells (Huvecs) with ethanol (EtOH), hydrogen peroxide (H2O2), and copper sulfate (CuSO4), respectively. The protective effects of AEE were systematically evaluated via morphological observation, detection of inflammatory responses, and oxidative stress markers. Furthermore, metabolomics was employed to identify and analyze differentially expressed metabolites between the nine model groups and AEE groups. AEE exerted protective effects on all nine vascular endothelial injury models, inhibiting inflammation and oxidative stress induced by all inducers. Metabolomic analysis revealed that the differentially expressed metabolites modulated by AEE in most models were primarily enriched in lipid metabolism, amino acid metabolism, coenzyme biosynthesis, and other related pathways. AEE could improve vascular endothelial injury by upregulating antioxidant substance which included eicosapentaenoic acid (EPA), choline, coenzyme A (CoA), glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), as well as downregulating substances that cause endothelial oxidative damage, including phytosphingosine (PS), palmitic acid (PA), and arachidonic acid (AA). Full article
Show Figures

Figure 1

24 pages, 5047 KB  
Article
Gibberellic Acid-Induced Regulation of Antioxidant–Flavonoid Channels Provides Protection Against Oxidative Damage in Safflower Under Salinity Stress
by Zhiling Li, Xiaoyu Liu, Weijie Meng, Julong Shangguan, Jian Zhang, Imran Ali, Na Yao, Min Zhang, Naveed Ahmad and Xiuming Liu
Plants 2026, 15(2), 267; https://doi.org/10.3390/plants15020267 - 15 Jan 2026
Viewed by 138
Abstract
Salinity is a major constraint that compromises safflower performance by disrupting redox balance and metabolic homeostasis. Although hormonal mechanisms for improving plant resilience to abiotic stresses have been reported, the mechanistic role of gibberellic acid (GA3)-induced regulation of safflower tolerance to [...] Read more.
Salinity is a major constraint that compromises safflower performance by disrupting redox balance and metabolic homeostasis. Although hormonal mechanisms for improving plant resilience to abiotic stresses have been reported, the mechanistic role of gibberellic acid (GA3)-induced regulation of safflower tolerance to salinity remains unclear. This study aimed to investigate the impact of exogenous GA3 application under normal and saline conditions to evaluate its effects on growth, physiology, redox regulation, and flavonoid biosynthesis in safflower. Using phenotypic, physiological, biochemical, and gene expression analysis, it is suggested that GA3 significantly alleviates salt stress by integrating antioxidant defense and flavonoid biosynthesis. The results of phenotypic and physiological assessments showed that GA3 at 400 mg/L GA3 in safflower seedlings suggests enhanced vegetative growth and photosynthetic performance. Under salt stress, GA3 significantly alleviated oxidative damage by reducing H2O2, O2, and malondialdehyde (MDA) levels, while enhancing osmoprotective compounds such as proline, soluble sugars, proteins, and chlorophyll. GA3 also significantly increased the activity of antioxidant enzymes (SOD, POD, CAT, APX, GST, DHAR, and Prx), accompanied by the transcriptional upregulation of their corresponding genes, indicating GA3-mediated regulation of redox homeostasis at both biochemical and molecular levels. In parallel, GA3 enhanced the accumulation of major flavonoids, particularly hydroxy safflor yellow A (HSYA), with strong induction of key HSYA biosynthetic genes (CtF6H, CtCGT, Ct2OGD1), whereas salinity alone suppressed their expression. In contrast, the quercetin branch displayed a regulatory bottleneck at CtF3H, which remained suppressed under all treatments, although upstream genes were GA3-responsive. Together, these findings demonstrate that GA3 enhances salinity tolerance in safflower by simultaneously activating antioxidant defenses and stimulating flavonoid biosynthesis, providing mechanistic insight with practical implications for developing salt-resilient safflower varieties. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 1471 KB  
Article
Antioxidant and Anti-Inflammatory Effect of Thai Shallot (Allium ascalonicum cv. chiangmai) and Cha-Miang (Camellia sinensis var. assamica) Extracts on Human Embryonic Kidney Cell Line (HEK293)
by Jiraporn Laoung-on, Chalermpong Saenjum, Kongsak Boonyapranai and Sakaewan Ounjaijean
Life 2026, 16(1), 141; https://doi.org/10.3390/life16010141 - 15 Jan 2026
Viewed by 161
Abstract
Oxidative stress and inflammation are key drivers in the pathogenesis of various chronic diseases, including cardiovascular disease, neurodegenerative disorders, chronic kidney disease, and diabetes. This study evaluated the antioxidant and anti-inflammatory activities of SHE, CME, and FCME, all cultivated in northern Thailand. Human [...] Read more.
Oxidative stress and inflammation are key drivers in the pathogenesis of various chronic diseases, including cardiovascular disease, neurodegenerative disorders, chronic kidney disease, and diabetes. This study evaluated the antioxidant and anti-inflammatory activities of SHE, CME, and FCME, all cultivated in northern Thailand. Human embryonic kidney cells (HEK293) were exposed to FeSO4 to induce oxidative stress and to LPS to stimulate inflammation. Cell viability was assessed using the MTT assay, while intracellular ROS production was measured using the DCFH-DA. Lipid peroxidation was quantified using the thiobarbituric acid reactive substances assay, and the interleukin-6 (IL-6) release was determined by ELISAs. All extracts demonstrated low cytotoxicity; however, cell death increased at 48 h compared to 24 h. At 200 µg/mL, SHE, CME, and FCME significantly reduced the H2O2-induced ROS generation, with the combined treatment of SHE and FCME producing a more pronounced reduction than the individual treatments. Furthermore, the combination of SHE and FCME markedly decreased malondialdehyde (MDA) and IL-6 levels compared with other groups. These findings suggest that shallot and cha-miang extracts, particularly in combination, exhibit promising antioxidant and anti-inflammatory properties in kidney cell models. This combination could therefore be explored as a nutraceutical strategy for the prevention and management of chronic kidney disease, in which oxidative stress and inflammation play pivotal roles. Overall, our finding highlight the potential of the combined use of SHE and FCME as a functional ingredients in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

25 pages, 1914 KB  
Review
Mitochondria and Aging: Redox Balance Modulation as a New Approach to the Development of Innovative Geroprotectors (Fundamental and Applied Aspects)
by Ekaterina Mironova, Igor Kvetnoy, Sofya Balazovskaia, Viktor Antonov, Stanislav Poyarkov and Gianluigi Mazzoccoli
Int. J. Mol. Sci. 2026, 27(2), 842; https://doi.org/10.3390/ijms27020842 - 14 Jan 2026
Viewed by 104
Abstract
Redox (reduction–oxidation) processes underlie all forms of life and are a universal regulatory mechanism that maintains homeostasis and adapts the organism to changes in the internal and external environments. From capturing solar energy in photosynthesis and oxygen generation to fine-tuning cellular metabolism, redox [...] Read more.
Redox (reduction–oxidation) processes underlie all forms of life and are a universal regulatory mechanism that maintains homeostasis and adapts the organism to changes in the internal and external environments. From capturing solar energy in photosynthesis and oxygen generation to fine-tuning cellular metabolism, redox reactions are key determinants of life activity. Proteins containing sulfur- and selenium-containing amino acid residues play a crucial role in redox regulation. Their reversible oxidation by physiological oxidants, such as hydrogen peroxide (H2O2), plays the role of molecular switches that control enzymatic activity, protein structure, and signaling cascades. This enables rapid and flexible cellular responses to a wide range of stimuli—from growth factors and nutrient signals to toxins and stressors. Mitochondria, the main energy organelles and also the major sources of reactive oxygen species (ROS), play a special role in redox balance. On the one hand, mitochondrial ROS function as signaling molecules, regulating cellular processes, including proliferation, apoptosis, and immune response, while, on the other hand, their excessive accumulation leads to oxidative stress, damage to biomolecules, and the development of pathological processes. So, mitochondria act not only as a “generator” of redox signals but also as a central link in maintaining cellular and systemic redox homeostasis. Redox signaling forms a multi-layered cybernetic system, which includes signal perception, activation of signaling pathways, the initiation of physiological responses, and feedback regulatory mechanisms. At the molecular level, this is manifested by changes in the activity of redox-regulated proteins of which the redox proteome consists, thereby affecting the epigenetic landscape and gene expression. Physiological processes at all levels of biological organization—from subcellular to systemic—are controlled by redox mechanisms. Studying these processes opens a way to understanding the universal principles of life activity and identifying the biochemical mechanisms whose disruption causes the occurrence and development of pathological reactions. It is important to emphasize that new approaches to redox balance modulation are now actively developed, ranging from antioxidant therapy and targeted intervention on mitochondria to pharmacological and nutraceutical regulation of signaling pathways. This article analyzes the pivotal role of redox balance and its regulation at various levels of living organisms—from molecular and cellular to tissue, organ, and organismal levels—with a special emphasis on the role of mitochondria and modern strategies for influencing redox homeostasis. Full article
(This article belongs to the Special Issue ROS Signalling and Cell Turnover)
Show Figures

Figure 1

Back to TopTop