Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = H-O-C isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5158 KiB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 311
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

21 pages, 2742 KiB  
Article
Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning
by Danhe Wang, Chunxia Yao, Yangyang Lu, Di Huang, Yameng Li, Xugan Wu, Weiguo Song and Qinxiong Rao
Foods 2025, 14(14), 2458; https://doi.org/10.3390/foods14142458 - 13 Jul 2025
Viewed by 347
Abstract
The Chinese mitten crab (Eriocheir sinensis) industry is currently facing the challenges of origin fraud, as well as a lack of precision and interpretability of existing traceability methods. Here, we propose a high-precision origin traceability method based on a combination of [...] Read more.
The Chinese mitten crab (Eriocheir sinensis) industry is currently facing the challenges of origin fraud, as well as a lack of precision and interpretability of existing traceability methods. Here, we propose a high-precision origin traceability method based on a combination of stable isotope analysis and interpretable machine learning. We sampled Chinese mitten crabs from six origins representing diverse aquatic environments and farming practices, and analyzed their δ13C, δ15N, δ2H, and δ18O stable isotope compositions in different sexes and tissues (hepatopancreas, muscle, and gonad). By comparing the classification performance of Random Forest, XGBoost, and Logistic Regression models, we found that the Random Forest model outperformed the others, achieving high accuracy (91.3%) in distinguishing samples from different origins. Interpretation of the optimal Random Forest model, using SHAP (SHapley Additive exPlanations) analysis, identified δ2H in male muscle, δ15N in female hepatopancreas, and δ13C in female hepatopancreas as the most influential features for discriminating geographic origin. This analysis highlighted the crucial role of environmental factors, such as water source, diet, and trophic level, in origin discrimination and demonstrated that isotopic characteristics of different tissues provide unique discriminatory information. This study offers a novel paradigm for stable isotope traceability based on explainable machine learning, significantly enhancing the identification capability and reliability of Chinese mitten crab origin traceability, and holds significant implications for food safety assurance. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Elemental and Isotopic Fingerprints of Potatoes
by Cezara Voica, Ioana Feher, Romulus Puscas, Andreea Maria Iordache and Gabriela Cristea
Foods 2025, 14(14), 2440; https://doi.org/10.3390/foods14142440 - 10 Jul 2025
Viewed by 410
Abstract
Nowadays, food traceability represents an important issue in the current context of trade agreements, which influence global food prices. Many consumers prefer to pay a higher price for a traditional cultivation regime of a certain food product that comes from a certain region, [...] Read more.
Nowadays, food traceability represents an important issue in the current context of trade agreements, which influence global food prices. Many consumers prefer to pay a higher price for a traditional cultivation regime of a certain food product that comes from a certain region, appreciating the taste of the respective foodstuff. The potato is now the world’s fourth most important food crop in terms of human consumption, after wheat, maize, and rice. In this context, 100 potato samples from the Romanian market were collected. While 68 samples came from Romania, the rest of the 32 were from abroad (Hungary, France, Greece, Italy, Germany, Egypt, and Poland). The countries selected for potato sample analysis are among the main exporters of potatoes to the Romanian market. The samples were investigated by their multi-elemental and isotopic (2H, 18O and 13C) fingerprints, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Isotope Ratio Mass Spectrometry (IRMS). Then, to distinguish the geographical origin, the experimental results were statistically processed using linear discriminant analysis (LDA). The best markers that emphasize Romanian potatoes were identified to be δ13Cbulk, δ2Hwater, and Sr. Full article
Show Figures

Graphical abstract

20 pages, 9353 KiB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 252
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

20 pages, 3264 KiB  
Article
The Crucial Role of Data Quality Control in Hydrochemical Studies: Reevaluating Groundwater Evolution in the Jiangsu Coastal Plain, China
by Claudio E. Moya, Konstantin W. Scheihing and Mauricio Taulis
Earth 2025, 6(3), 62; https://doi.org/10.3390/earth6030062 - 29 Jun 2025
Viewed by 308
Abstract
A vital step for any hydrochemical assessment is properly carrying out quality assurance and quality control (QA/QC) techniques to evaluate data confidence before performing the assessment. Understanding the processes governing groundwater evolution in coastal aquifers is critical for managing freshwater resources under increasing [...] Read more.
A vital step for any hydrochemical assessment is properly carrying out quality assurance and quality control (QA/QC) techniques to evaluate data confidence before performing the assessment. Understanding the processes governing groundwater evolution in coastal aquifers is critical for managing freshwater resources under increasing anthropogenic and climatic pressures. This study reassesses the hydrochemical and isotopic data from the Deep Confined Aquifer System (DCAS) in the Jiangsu Coastal Plain, China, by firstly applying QA/QC protocols. Anomalously high Fe and Mn concentrations in several samples were identified and excluded, yielding a refined dataset that enabled a more accurate interpretation of hydrogeochemical processes. Using hierarchical cluster analysis (HCA), principal component analysis (PCA), and stable and radioactive isotope data (δ2H, δ18O, 3H, and 14C), we identify three dominant drivers of groundwater evolution: water–rock interaction, evaporation, and seawater intrusion. In contrast to earlier interpretations, we present clear evidence of active seawater intrusion into the DCAS, supported by salinity patterns, isotopic signatures, and local hydrodynamics. Furthermore, inconsistencies between tritium- and radiocarbon-derived residence times—modern recharge indicated by 3H versus Pleistocene ages from 14C—highlight the unreliability of previous paleoclimatic reconstructions based on unvalidated datasets. These findings underscore the crucial role of robust QA/QC and integrated tracer analysis in groundwater studies. Full article
Show Figures

Figure 1

19 pages, 6150 KiB  
Article
Ore Genesis of the Jurassic Granite-Hosted Naizhigou Gold Deposit in the Jiapigou District of Northeast China: Constraints from Fluid Inclusions and H–O–S Isotopes
by Jilong Han, Zhicheng Lü, Chuntao Zhao, Xiaotian Zhang, Jinggui Sun, Shu Wang and Xinwen Zhang
Minerals 2025, 15(7), 696; https://doi.org/10.3390/min15070696 - 29 Jun 2025
Viewed by 266
Abstract
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic [...] Read more.
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic theories and mineral exploration. Here we present a comprehensive investigation including geology, fluid inclusions (FIs), and H–O–S isotopic data for the Naizhigou deposit in the Jiapigou district to elucidate the sources of orefluids and metals, as well as the metallogenic mechanism. The results show the following: (1) The Naizhigou deposit is characterized by quartz vein-type ores and is hosted in the Middle Jurassic granitic pluton. Native gold and sulfides were mainly deposited in the second stage (quartz–polymetallic sulfides) compared with the first (quartz–pyrite–molybdenite) and third (quartz–calcite) stages. (2) The FI studies indicated that the orefluids evolved from the early–main-stage CO2–H2O–NaCl system to the late-stage H2O–NaCl system and have homogenization temperatures of 289–363, 210–282, and 124–276 °C and salinities of 4.1–20.9, 5.8–16.4, and 6.1–12.7 wt% NaCl equivalent, respectively. Fluid boiling and fluid mixing collectively controlled the precipitation of gold and ore-forming elements. (3) The δD values of the FIs hosted in quartz from the three stags range from −81 to −75 ‰, from −99 to −86 ‰, and from −110 to −101 ‰, while δ18Owater values of these FIs range from 5.3 to 5.9 ‰, from 1.1 to 5.2 ‰, and from −2.1 to −0.7 ‰, respectively. Pyrite samples from the three stages in the Naizhigou deposit have δ34S values of 2.1 to 2.5 ‰, 3.1 to 4.3 ‰, and 3.8 to 3.9 ‰, respectively. The stable isotopes indicate that the orefluids and metals mainly originated from magma. A comparative study of regional observations reveals that the Naizhigou deposit is a magmatic-related mesothermal gold deposit, rather than a metamorphism-related orogenic gold deposit. The estimated ore-forming depths are 4.0–20.7 km, with exhumation depths of 4.1–5.5 km, which indicated that the deposit has been well preserved. Regionally, the new exploration strategies should place greater emphasis on work concerning ore-related plutons, ore-controlling faults, and hydrothermal alteration. Full article
Show Figures

Figure 1

13 pages, 2391 KiB  
Article
Stable Carbon Isotope Fractionation of Trichloroethylene Oxidized by Potassium Permanganate Under Different Environmental Conditions
by Yaqiong Dong, Yufeng Wang, Lantian Xing, Ghufran Uddin, Yuanxiao Guan, Zhengyang E, Jianjun Liang, Ping Li, Changjie Liu and Qiaohui Fan
Appl. Sci. 2025, 15(13), 7142; https://doi.org/10.3390/app15137142 - 25 Jun 2025
Viewed by 269
Abstract
Stable isotope analysis is a powerful tool for inferring and quantifying transformation processes, but its effectiveness relies on understanding the magnitude and variability of isotopic fractionation associated with specific reactions. Potassium permanganate (KMnO4) is widely used as an efficient oxidant for [...] Read more.
Stable isotope analysis is a powerful tool for inferring and quantifying transformation processes, but its effectiveness relies on understanding the magnitude and variability of isotopic fractionation associated with specific reactions. Potassium permanganate (KMnO4) is widely used as an efficient oxidant for the degradation of trichloroethylene (TCE); however, the influence of environmental factors on the isotope fractionation during this process remains unclear. In this study, compound-specific isotope analysis (CSIA) was conducted to investigate the variability in carbon isotope effects during the KMnO4-mediated degradation of TCE under varying conditions, including initial concentrations of KMnO4 and TCE, the presence of humic acid (HA), pH levels, and inorganic ions. The results showed that the overall carbon isotope enrichment factors (ε) of TCE ranged from −26.5 ± 0.5‰ to −22.8 ± 0.9‰, indicating relatively small variations across conditions. At low KMnO4/TCE molar ratio (n(KMnO4)/n(TCE)), incomplete oxidation and/or MnO2-mediated oxidation of TCE likely resulted in smaller ε. For dense, non-aqueous phase liquid (DNAPL) TCE, which represents extremely high concentrations, the ε value was −13.0 ± 1.7‰ during KMnO4 oxidation. This may be attributed to the slow dissolution of isotopically light TCE from the DNAPL phase, altering the δ13C signature of the reacted TCE and resulting in a significantly larger ε value than observed for dissolved-phase TCE oxidation. The ε values increased with rising pH, probably due to the decrease in oxidation potential (E0) of KMnO4 from pH ~2 to ~12, as well as the emergence of different degradation pathways and intermediates under varying pH conditions. Both SO42− and NO3 slightly influenced the ε values, potentially due to the formation of H2SO4 and HNO3 at lower pH, which may act as auxiliary oxidants and contribute to TCE degradation. A high concentration (50 mM) of HA led to a decrease in ε values, likely due to competitive interactions between HA and TCE for KMnO4, which reduced the effective oxidation of TCE. Overall, the carbon isotope enrichment factors for KMnO4-mediated TCE degradation are relatively stable, although certain environmental conditions can exert minor influences. These findings highlight the need for caution when applying quantitative assessment based on CSIA for KMnO4 oxidation of TCE. Full article
Show Figures

Figure 1

28 pages, 5040 KiB  
Article
Formation and Evolution Mechanisms of Geothermal Waters Influenced by Fault Zones and Ancient Lithology in the Yunkai Uplift, Southern China
by Xianxing Huang, Yongjun Zeng, Shan Lu, Guoping Lu, Hao Ou and Beibei Wang
Water 2025, 17(13), 1885; https://doi.org/10.3390/w17131885 - 25 Jun 2025
Viewed by 466
Abstract
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. [...] Read more.
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. Both geothermal and non-thermal water samples were collected along the Xinyi–Lianjiang (XL) Fault Zone and the Cenxi–Luchuan (CL) Fault Zone flanking the core of the Yunkai Mountains. Analytical techniques were applied to examine major ions, trace elements, and dissolved CO2 and H2, as well as isotopic characteristics of O, H, Sr, C, and He in water samples, allowing for an investigation of geothermal reservoir temperatures, circulation depths, and mixing processes. The findings indicate that most geothermal waters are influenced by water–rock interactions primarily dominated by granites. The region’s diverse lithologies, change from ancient Caledonian granites and medium–high-grade metamorphic rocks in the central hinterland (XL Fault Zone) to low-grade metamorphic rocks and sedimentary rocks in the western margin (CL Fault Zone). The chemical compositions of geothermal waters are influenced through mixing contacts between diverse rocks of varying ages, leading to distinct geochemical characteristics. Notably, δ13CCO2 values reveal that while some samples exhibit significant contributions from metamorphic CO2 sources, others are characterized by organic CO2 origins. Regional heat flow results from the upwelling of mantle magma, supplemented by radioactive heat generated from crustal granites. Isotopic evidence from δ2H and δ18O indicates that the geothermal waters originate from atmospheric sources, recharged by precipitation in the northern Yunkai Mountains. After infiltrating to specific depths, meteoric waters are heated to temperatures ranging from about 76.4 °C to 178.5 °C before ascending through the XL and CL Fault Zones under buoyancy forces. During their upward migration, geothermal waters undergo significant mixing with cold groundwater (54–92%) in shallow strata. As part of the western boundary of the Yunkai Uplift, the CL Fault Zone may extend deeper into the crust or even interact with the upper mantle but exhibits weaker hydrothermal activities than the XL Fault Zone. The XL Fault Zone, however, is enriched with highly heat-generating granites, is subjected more to both the thermal and mechanical influences of upwelling mantle magma, resulting in a higher heat flow and tension effect, and is more conducive to the formation of geothermal waters. Our findings underscore the role of geotectonic processes, lithological variation, and fault zone activity in shaping the genesis and evolution of geothermal waters in the Yunkai Uplift. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 306 KiB  
Review
Stable Isotope Analysis of Alcoholic Beverages: A Review
by Alberto Roncone and Luana Bontempo
Beverages 2025, 11(3), 89; https://doi.org/10.3390/beverages11030089 - 10 Jun 2025
Viewed by 674
Abstract
Alcoholic beverages represent a sector of significant economic and cultural importance but are also susceptible to fraud and adulteration, which can compromise their quality and authenticity. Isotopic analyses have become increasingly valuable tools for tracing the geographical origin and ensuring the quality control [...] Read more.
Alcoholic beverages represent a sector of significant economic and cultural importance but are also susceptible to fraud and adulteration, which can compromise their quality and authenticity. Isotopic analyses have become increasingly valuable tools for tracing the geographical origin and ensuring the quality control of products such as wine, beer, and distilled spirits. This literature review examines the main isotopic analysis techniques employed in this field, including Isotope Ratio Mass Spectrometry (IRMS) and Site-Specific Natural Isotope Fractionation by Nuclear Magnetic Resonance (SNIF-NMR), with a particular focus on the insights derived from the isotopic ratios of various elements, notably δ(2H), δ(13C), δ(18O), δ(15N) and δ(34S). Full article
26 pages, 2710 KiB  
Article
From Contamination to Conservation: A Hydrochemical and Isotopic Evaluation of Groundwater Quality in the Semi-Arid Guire Basin (Morocco)
by Hanane Marzouki, Nouayti Nordine, El Mustapha Azzirgue, Joaquim C. G. Esteves da Silva and El Khalil Cherif
Water 2025, 17(11), 1688; https://doi.org/10.3390/w17111688 - 3 Jun 2025
Cited by 2 | Viewed by 701
Abstract
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ [...] Read more.
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ2H, δ13C), multivariate statistical, and Geographic Information System (GIS) analyses alongside the Water Quality Index (WQI). Sixteen wells were monitored for physicochemical parameters (pH: 7–7.9; EC: 480–3004 μS/cm; BOD5: 1.03–30.5 mg/L; COD: 10.2–45.75 mg/L) and major ions, revealing widespread exceedances of Moroccan standards for Cl, HCO3, Mg2+, Ca2+, and NH4+. WQI classified 81% of samples as “Poor” to “Unsuitable for drinking” (WQI: 51–537), driven by elevated Cl, Na+, and SO42− from Triassic evaporite dissolution and NO3 (up to 45 mg/L) from agricultural runoff. Stable isotopes (δ18O: −7.73‰ to −5.08‰; δ2H: −66.14‰ to −44.20‰) indicate Atlantic-influenced recharge at 900–2200 m altitudes, with a δ18O-δ2H slope of 5.93 reflecting evaporation during infiltration. Strontium (Sr2+/Ca2+: 0.0024–0.0236) and bromide (Br/Cl: 8.47 × 10−5–9.88 × 10−4) ratios further confirm evaporitic dominance over anthropogenic contamination. This work provides actionable insights for policymakers, advocating for targeted restrictions on fertilizers, enhanced monitoring near evaporite zones, and artificial recharge initiatives. By linking geogenic/anthropogenic contamination to governance strategies, this study advances sustainable groundwater management in semi-arid regions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 7384 KiB  
Article
Hydrogeochemical and Isotopic Approach to Groundwater Management in a Mediterranean City Dependent on External Water Supply (Aix-en-Provence, SE France)
by Christelle Claude, Hélène Miche, Ghislain Gassier, Ferhat Cherigui and Yves Dutour
Water 2025, 17(11), 1634; https://doi.org/10.3390/w17111634 - 28 May 2025
Viewed by 645
Abstract
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study [...] Read more.
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study provides a comprehensive hydrogeological characterisation of the groundwater system in Aix-en-Provence (southeastern France), with a specific focus on hypothermal springs and the cold springs of the Vallon des Pinchinats, which historically supplied the town before the creation of the Canal de Provence by the company of the same name (Société du Canal de Provence (SCP)). By combining chemical and isotopic analyses (δ18O, δ2H, and chloride concentrations) with a statistical clustering (DACMAD method), we characterise the origin and dynamics of distinct water sources and evaluate their influence with surface water and external supply systems. Four key hydrological entities influencing the study area were identified. (1) regional precipitation (RRW) contributing significantly to groundwater recharge in the region. The isotope composition of the RRW was calculated (δ18O: −6.68‰, δ2H: −41.80‰, Cl: 2.2 mg/L) (2) Groundwater from the Oligocene aquifer (OG) characterised by an enrichment in chloride and sulphate. (3) Groundwater from the Cretaceous–Jurassic aquifer (CJG), a karstified aquifer from the Sainte-Victoire-Concors massif, which supplies the cold and hypothermal springs in Aix-en-Provence and multiple springs in the region. (4) Canal de Provence water (CPW) as an external water source, used for domestic supply, which has left a traceable signal in the local hydrosystem. The study reveals that cold springs of the Vallon des Pinchinats result from the mixing of Oligocene and Cretaceous–Jurassic groundwaters. Hypothermal springs (20–30 °C) circulate at moderate depths (165–500 m), unlike previous models suggesting deeper infiltration and mixing processes. This study contributes a novel hydrogeochemical and isotopic framework applicable to other Mediterranean urban areas facing similar pressures and highlights the strategic role that local groundwater can play in building long-term water resilience. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 6580 KiB  
Article
Probing Acidic and Defective Sites in Sulfated UiO-66 and ZrO2 via Adsorptive FTIR Spectroscopy
by Vera V. Butova, Olga A. Burachevskaia, Nikola L. Drenchev, Andrei A. Tereshchenko and Konstantin I. Hadjiivanov
Nanomaterials 2025, 15(11), 779; https://doi.org/10.3390/nano15110779 - 22 May 2025
Viewed by 642
Abstract
Sulfation is a common strategy to enhance the acidity and modify the adsorption properties of metal–organic frameworks (MOFs), yet its impact on the coordination and accessibility of active sites remains unclear. In this study, we investigate two structurally related systems—sulfated UiO-66 (UiO-66-SO4 [...] Read more.
Sulfation is a common strategy to enhance the acidity and modify the adsorption properties of metal–organic frameworks (MOFs), yet its impact on the coordination and accessibility of active sites remains unclear. In this study, we investigate two structurally related systems—sulfated UiO-66 (UiO-66-SO4) and sulfated tetragonal zirconia (S-ZrO2)—by FTIR spectroscopy with probe molecules. Isotope exchange experiments on S-ZrO2 reveal that dehydration above 250 °C induces tridentate SO4 coordination, while hydration leads to a reversible transition to a bidentate coordination mode. In UiO-66-SO4, sulfates are coordinated in a bidentate fashion to Zr6O6 clusters, significantly affecting the accessibility of Zr sites in defective pores. This coordination prevents CO adsorption but allows acetonitrile adsorption even after room temperature activation. Unlike S-ZrO2, due to its lower thermal stability, UiO-66-SO4 cannot be evacuated at high temperatures and dehydration at 250 °C does not induce tridentate coordination. The presence of H-bonded hydroxyls in UiO-66-SO4 after activation at 250 °C supports this coordination model, indicating the formation of OH-coordinated Zr sites that are inaccessible to CO but interact with stronger bases like acetonitrile. Overall, this study provides new insights into the coordination chemistry of sulfated UiO-66 and highlights that sulfation can tune acidity and adsorption in MOFs for potential catalytic and adsorption applications. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

31 pages, 54013 KiB  
Article
Ore-Forming Fluid Evolution and Ore Genesis of the Cuyu Gold Deposit in Central Jilin Province, NE China: Constraints from Geology, Fluid Inclusions, and H–O–S–Pb Isotope Studies
by Haozhe Li, Qun Yang, Leigang Zhang, Yunsheng Ren, Mingtao Li, Chan Li, Bin Wang, Sitong Chen and Xiaolei Peng
Minerals 2025, 15(5), 535; https://doi.org/10.3390/min15050535 - 17 May 2025
Cited by 1 | Viewed by 599
Abstract
The Cuyu gold deposit in central Jilin Province in Northeast China is located in the eastern segment of the northern margin of the North China Craton (NCC), as well as the eastern segment of the Xing’an–Mongolian Orogenic Belt (XMOB). Gold ore-bodies are controlled [...] Read more.
The Cuyu gold deposit in central Jilin Province in Northeast China is located in the eastern segment of the northern margin of the North China Craton (NCC), as well as the eastern segment of the Xing’an–Mongolian Orogenic Belt (XMOB). Gold ore-bodies are controlled by NW-trending faults and mainly occur in late Hercynian granodiorite. The mineralization process in the Cuyu deposit can be divided into three stages: quartz + coarse grained arsenopyrite + pyrite (stage I), quartz + sericite + pyrite + arsenopyrite + electrum + chalcopyrite + sphalerite (stage II), and quartz + calcite ± pyrite (stage III). Stage II is the most important for gold mineralization. We conducted analyses including petrography, microthermometry, laser Raman spectroscopy of fluid inclusions, and H–O–S–Pb isotopic analysis to elucidate the mineralization processes in the Cuyu deposit. Five types of primary fluid inclusions (FIs) are present in the hydrothermal quartz and calcite grains of the ore: liquid-rich two-phase aqueous fluid inclusions (L-type), vapor-rich two-phase aqueous fluid inclusions (V-type), CO2-bearing two- or three-phase inclusions (C1-type), CO2-rich two- or three-phase inclusions (C2-type), and pure CO2 mono-phase inclusions (C3-type). From stages I to III, the fluid inclusion assemblages changed from L-, C2-, and C3-types to L-, V-, C1-, C2-, and C3-types and, finally, to L-types only. The corresponding homogenization temperatures for stages I to III were 242–326 °C, 202–298 °C, and 106–188 °C, and the salinities were 4.69–9.73, 1.63–7.30, and 1.39–3.53 wt.% NaCl equiv., respectively. The ore-forming fluid system evolved from a NaCl-H2O-CO2 ± CH4 ± H2S fluid system in stage I and II with immiscible characteristics to a homogeneous NaC-H2O fluid system in stage III. Microthermometric data for stages I to III show a decreasing trend in homogenization temperatures and salinities. The mineral assemblages, fluid inclusions, and H–O–S–Pb isotopes indicate that the initial ore-forming fluids of stage I were exsolved from diorite porphyrite and characterized by a high temperature and low salinity. The addition of meteoric water in large quantities led to decreases in temperature and pressure, resulting in a NaCl-H2O-CO2 ± CH4 ± H2S fluid system with significant immiscibility in stage II, facilitating the deposition of gold and associated polymetallic sulfides. The Cuyu gold deposit has a similar ore genesis to those of gold deposits in the Jiapigou–Haigou gold belt (JHGB) of southeastern Jilin Province indicating potential for gold prospecting in the northwest-trending seam of the JHGB. Full article
Show Figures

Figure 1

36 pages, 16597 KiB  
Article
Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye)
by Erkan Yılmazer and Mustafa Haydar Terzi
Minerals 2025, 15(5), 528; https://doi.org/10.3390/min15050528 - 15 May 2025
Viewed by 595
Abstract
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to [...] Read more.
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to partially peraluminous properties. Sr-Nd isotope data and the geochemical characteristics of the Kesikköprü granitoid indicate a metasomatized mantle origin, with its ultimate composition arising from crustal contamination and magma mixing along with fractional crystallization in a post-collisional setting. The 40Ar/39Ar geochronology reveals a total fusion age of 73.41 ± 0.32 Ma for the biotite of the Kesikköprü granitoid. The alteration pattern in the deposit is characterized by an endoskarn zone comprising garnet–pyroxene (±phlogopite ± epidote) and an exoskarn zone displaying a zoning of garnet (±pyroxene ± phlogopite), pyroxene (±garnet ± phlogopite ± epidote), epidote–garnet, and epidote-rich subzones. Magnetite is extracted from massive lenses within the exoskarn zones and shows vein, disseminated, banded, massive, and brecciated textures. The low potassium content of phlogopites which are associated with magnetite mineralization prevents the determination of a reliable alteration age. δ18O thermometry reveals a temperature range between 462 and 528 °C for the magnetite mineralization. According to geochemical (trace and rare earth elements), stable (δ18O, δ2H, δ34S, and δ13C), and radiogenic (87Sr/86Sr and 143Nd/144Nd) isotope data, the hydrothermal fluid responsible for the alteration and mineralization is related to the Kesikköprü granitoid, from which a significant magmatic component originates initially, followed by meteoric fluids at lower temperatures (123 °C) during the late-stage formation of calcite–quartz veins. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 8942 KiB  
Article
Biogeochemical Mechanisms of HCO3–Ca Water and NO3 Pollution in a Typical Piedmont Agricultural Area: Insights from Nitrification and Carbonate Weathering
by Li Xu, Bo Xin, Wei Liu, Haoyang Liu, Guoli Yang and Guizhen Hao
Toxics 2025, 13(5), 394; https://doi.org/10.3390/toxics13050394 - 15 May 2025
Viewed by 678
Abstract
Water hardening and NO3 pollution have affected water quality globally. These environmental problems threaten social sustainability and human health, especially in piedmont agricultural areas. The aim of this study is to determine the biogeochemical mechanisms of HCO3–Ca water and [...] Read more.
Water hardening and NO3 pollution have affected water quality globally. These environmental problems threaten social sustainability and human health, especially in piedmont agricultural areas. The aim of this study is to determine the biogeochemical mechanisms of HCO3–Ca water and NO3 pollution in a typical piedmont agricultural area (Qingshui River, Zhangjiakou, China). Here, an extensive biogeochemical investigation was conducted in a typical piedmont agricultural area (Qingshui River, China) using multiple hydrochemical, isotopic (δ2H-H2O, δ18O-H2O and δ13C-DIC) and molecular-biological proxies in combination with a forward model. In the region upstream of the Qingshui River, riverine hydrochemistry was dominated by HCO3–Ca water, with only NO3 concentrations (3.08–52.8 mg/L) exceeding the acceptable limit (10 mg/L as N) for drinking water quality. The riverine hydrochemistry responsible for the formation of HCO3–Ca water was mainly driven by carbonate dissolution, with a contribution rate of 49.8 ± 3.96%. Riverine NO3 was mainly derived from agricultural NH4+ emissions rather than NO3 emissions, originating from sources such as manure, domestic sewage, soil nitrogen and NH4+-synthetic fertilizer. Under the rapid hydrodynamic conditions and aerobic water environment of the piedmont area, NH4+-containing pollutants were converted to HNO3 by nitrifying bacteria (e.g., Flavobacterium and Fluviimonas). Carbonate (especially calcite) was preferentially and rapidly dissolved by the produced HNO3, which was attributed to the strong acidity of HNO3. Therefore, higher levels of Ca2+, Mg2+, HCO3 and NO3 were simultaneously released into river water, causing riverine HCO3–Ca water and NO3 pollution in the A-RW. In contrast, these biogeochemical mechanisms did not occur significantly in the downstream region of the river due to the cement-hardened river channels and strict discharge management. These findings highlight the influence of agricultural HNO3 on HCO3–Ca water and NO3 pollution in the Qingshui River and further improve the understanding of riverine hydrochemical evolution and water pollution in piedmont agricultural areas. Full article
Show Figures

Graphical abstract

Back to TopTop