Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = Glycemic Index (GI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3410 KiB  
Article
Gut Hormones and Postprandial Metabolic Effects of Isomaltulose vs. Saccharose Consumption in People with Metabolic Syndrome
by Jiudan Zhang, Dominik Sonnenburg, Stefan Kabisch, Stephan Theis, Margrit Kemper, Olga Pivovarova-Ramich, Domenico Tricò, Sascha Rohn and Andreas F. H. Pfeiffer
Nutrients 2025, 17(15), 2539; https://doi.org/10.3390/nu17152539 - 1 Aug 2025
Viewed by 184
Abstract
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). [...] Read more.
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). This study aimed to assess the most effective preprandial interval of ISO- or saccharose (SUC) snacks (1 h vs. 3 h preload) to enhance prandial incretin responses to a subsequent meal. Methods: In a randomized crossover design, 15 participants with MetS completed four experimental conditions on four non-consecutive days, combining two preload types (ISO or SUC) and two preload timings (Intervention A: 3 h preload; Intervention B: 1 h preload). Specifically, the four conditions were (1) ISO + Intervention A, (2) SUC + Intervention A, (3) ISO + Intervention B, and (4) SUC + Intervention B. The order of conditions was randomized and separated by a 3–7-day washout period to minimize carryover effects. On each study day, participants consumed two mixed meal tests (MMT-1 and MMT-2) with a standardized preload (50 g ISO or SUC) administered either 3 h or 1 h prior to MMT-2. Blood samples were collected over 9 h at 15 predefined time points for analysis of glucose, insulin, C-peptide, and incretin hormones (GLP-1, GIP, and PYY). Results: The unique digestion profile of ISO resulted in a blunted glucose ascent rate (ΔG/Δt: 0.28 vs. 0.53 mmol/L/min for SUC, p < 0.01), paralleled by synonyms PYY elevation over 540 min monitoring, compared with SUC. ISO also led to higher and more sustained GLP-1 and PYY levels, while SUC induced a stronger GIP response. Notably, the timing of ISO consumption significantly influenced PYY secretion, with the 3 h preload showing enhanced PYY responses and a more favorable SME compared to the 1 h preload. Conclusions: ISO, particularly when consumed 3 h before a meal (vs. 1 h), offers significant advantages over SUC by elevating PYY levels, blunting the glucose ascent rate, and sustaining GLP-1 release. This synergy enhances the second meal effect, suggesting ISO’s potential for managing postprandial glycemic excursions in MetS. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

13 pages, 716 KiB  
Article
The Effects of Soy Flour and Resistant Starch on the Quality of Low Glycemic Index Cookie Bars
by Hong-Ting Victor Lin, Guei-Ling Yeh, Jenn-Shou Tsai and Wen-Chieh Sung
Processes 2025, 13(8), 2420; https://doi.org/10.3390/pr13082420 - 30 Jul 2025
Viewed by 301
Abstract
Low glycemic index (GI) cookie bars were prepared with soft wheat flour substituted with 10–50% soybean flour and 10–50% resistant starch. The effects of increased levels of soybean flour and resistant starch on the quality of low glycemic index cookie bars were investigated [...] Read more.
Low glycemic index (GI) cookie bars were prepared with soft wheat flour substituted with 10–50% soybean flour and 10–50% resistant starch. The effects of increased levels of soybean flour and resistant starch on the quality of low glycemic index cookie bars were investigated (i.e., moisture, cookie spread, texture (breaking force), surface color, and in vitro starch digestibility). It was found that increasing soybean flour substitution increased the breaking force, moisture, protein content, and yellowish color of the low GI cookie bars but decreased the cookie bar spread and the lightness of the cookie bars (p < 0.05). The addition of soybean flour and resistant starch by up to 50% did not significantly change the in vitro starch digestibility of the cookie bars. The overall acceptability of the cookie bars was lower when the soybean flour blend went beyond 10%. When soft wheat flour in the cookie bar formulation was replaced at the following levels (10%, 30%, and 50%) by resistant starch, the cookie spread and lightness of the cookie bars increased but the breaking force was decreased along with the yellowish color (p < 0.05). When resistant starch was combined with soft wheat flour at levels of up to 50%, this significantly increased the content of total dietary fiber and spread ratio of cookie bars. Sensorial analysis showed that resistant starch presence had an acceptable impact on overall acceptability of the low GI cookie bars. Resistant starch represents a viable dietary fiber source when substituted for 50% of soft wheat flour in formulations. While this substitution may result in increased spread ratio and decreased crispness in cookie bars, the addition of 10% soybean flour can mitigate these textural changes. Full article
Show Figures

Figure 1

16 pages, 2895 KiB  
Article
Comparing a Whole Grain Blend with Polished White Rice for Starch Digestibility and Gut Microbiota Fermentation in Diabetic Patients: An In Vitro Study
by Qian Du, Ruisheng Fu, Ming Zhao and Meihong Xu
Foods 2025, 14(15), 2557; https://doi.org/10.3390/foods14152557 - 22 Jul 2025
Viewed by 356
Abstract
The high glycemic index (GI) of polished white rice (WR) presents challenges for blood glucose control in diabetes. This study investigated the in vitro digestibility of a whole grain blend (WGB, composed of black, red, and brown rice) and its effects on the [...] Read more.
The high glycemic index (GI) of polished white rice (WR) presents challenges for blood glucose control in diabetes. This study investigated the in vitro digestibility of a whole grain blend (WGB, composed of black, red, and brown rice) and its effects on the gut microbiota in elderly diabetic individuals. WGB exhibited lower starch digestibility (69.76 ± 5.71% vs. 73.02 ± 6.16%) and a reduced estimated glycemic index (eGI, 73.43 ± 4.49 vs. 77.55 ± 2.64) than WR, likely due to its higher amylose content. WGB fermentation increased Bifidobacterium and Lactobacillaceae, reduced pro-inflammatory Bacteroides fragilis and Enterocloster bolteae, and released more arabinose and xylose. Additionally, WGB yielded higher isobutyrate, while WR contained more glucose and fructose in its structure, leading to increased acetate production and a more acidic environment. Functional analysis revealed that WGB upregulated pathways related to fatty acid elongation and fiber fermentation. These findings suggest WGB as a viable staple food alternative for diabetic patients, offering dual benefits in glycemic control and gut microbiota. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

19 pages, 2458 KiB  
Article
Enzymolysis-Driven Development of a Gut-Targeted Aronia melanocarpa Meal Replacement Powder with Glycemic Control and Microbial Homeostasis Benefits
by Yongxing Li, Zhihui Hu, Haiyu Ji, Shuang Yang, Ruihan Guo, Jinfang Zhang, Hongjun He, Bo Xu and Mei Li
Foods 2025, 14(14), 2456; https://doi.org/10.3390/foods14142456 - 12 Jul 2025
Viewed by 332
Abstract
In this study, the effects of enzymolysis on physicochemical properties, digestive characteristics, and flora regulation of the meal replacement powder (MRP) were investigated on the basis of the previously obtained compound MRP. The results showed that the color, water absorption index, and water [...] Read more.
In this study, the effects of enzymolysis on physicochemical properties, digestive characteristics, and flora regulation of the meal replacement powder (MRP) were investigated on the basis of the previously obtained compound MRP. The results showed that the color, water absorption index, and water solubility index of the MRP were obviously improved after enzymatic hydrolysis. The swelling power (1.43 ± 0.11 g/g, 25 °C) and water-holding capacity (4.66 ± 0.09 g/g) of the MRP (CE_1) were decreased, while the oil holding capacity (2.14 ± 0.13 g/g) was increased. In the microcosmic aspect, the samples treated by enzymolysis had different degree of degradation, the particle size decreased (D50 = 57.71 μm), and the specific surface area (679.2 cm2/g) increased. The MRP samples treated by enzymolysis had better antioxidant capacity and cholate adsorption capacity. All MRP samples belong to low glycemic index (GI) foods, and can improve gut microbiota (Megamonas, Bacteroides, Rocheella, Parasatre, Koalabacterium, and Prasus) and promote the production of short chain fatty acids such as acetic acid, propionic acid and butyric acid. Therefore, this study not only further expands the comprehensive utilization of Aronia melanocarpa, but also provides a reference for the diversification of low GI related products. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

24 pages, 3140 KiB  
Article
Physicochemical and Sensory Evaluation of Romanian Monofloral Honeys from Different Supply Chains
by Elena Daniela Bratosin, Delia Mirela Tit, Manuela Bianca Pasca, Anamaria Lavinia Purza, Gabriela Bungau, Ruxandra Cristina Marin, Andrei Flavius Radu and Daniela Gitea
Foods 2025, 14(13), 2372; https://doi.org/10.3390/foods14132372 - 4 Jul 2025
Viewed by 407
Abstract
Honey quality and authenticity are influenced by floral origin, processing, and storage, with implications for composition and sensory appeal. This study offers a comparative assessment of eight monofloral honey samples, representing five botanical varieties: acacia, linden, rapeseed, lavender, and thyme. For acacia, linden, [...] Read more.
Honey quality and authenticity are influenced by floral origin, processing, and storage, with implications for composition and sensory appeal. This study offers a comparative assessment of eight monofloral honey samples, representing five botanical varieties: acacia, linden, rapeseed, lavender, and thyme. For acacia, linden, and rapeseed, both producer-sourced and commercial honeys were analyzed, while lavender and thyme samples were available only from local beekeepers. The botanical origin of each sample was confirmed using morphological markers of pollen grains. Physicochemical characterization included acidity, pH, moisture content, refractive index, hydroxymethyl furfural (HMF), proline concentration, and carbohydrate profiling by HPLC-RID. Acacia honey exhibited the lowest acidity and HMF levels, alongside the highest fructose/glucose (F/G) ratios, indicating superior freshness, lower crystallization risk, and a sweeter flavor profile. In contrast, rapeseed honey showed elevated glucose levels and the lowest F/G ratio, confirming its tendency to crystallize rapidly. All samples recorded proline concentrations well above the quality threshold (180 mg/kg), supporting their authenticity and proper maturation. The estimated glycemic index (eGI) varied between 43.91 and 62.68 and was strongly inversely correlated with the F/G ratio (r = −0.98, p < 0.001). Sensory evaluation highlighted acacia honey from producers as the most appreciated across visual, tactile, and flavor attributes. Correlation analyses further revealed consistent links between sugar composition and both physical and sensory properties. Overall, the findings reinforce the value of integrated analytical and sensory profiling in assessing honey quality and authenticity. Full article
Show Figures

Graphical abstract

19 pages, 1289 KiB  
Article
Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles
by Guiyun Wu, Lili Wang, Xueqing Wang, Bin Dang, Wengang Zhang, Jingjing Yang, Lang Jia, Jinbian Wei, Zhihui Han, Xiaopei Chen, Jingfeng Li, Xijuan Yang and Fengzhong Wang
Foods 2025, 14(13), 2163; https://doi.org/10.3390/foods14132163 - 20 Jun 2025
Viewed by 409
Abstract
This study comprehensively assessed the effects of ten highland barley varieties on the quality and digestibility of noodles. The characteristics of highland barley flour, including proximate composition, pasting properties, and dough mixing behavior, were analyzed. The quality of the resulting noodles was evaluated [...] Read more.
This study comprehensively assessed the effects of ten highland barley varieties on the quality and digestibility of noodles. The characteristics of highland barley flour, including proximate composition, pasting properties, and dough mixing behavior, were analyzed. The quality of the resulting noodles was evaluated through cooking and textural property analysis. The digestion characteristics of the noodles were determined to evaluate the starch hydrolysis rate and glycemic index (GI). Additionally, a correlation analysis was conducted among the proximate composition of highland barley flour, the characteristics of flour, and the quality of noodles. The results demonstrate that Chaiqing 1 exhibited superior performance in terms of flour quality and noodle texture compared to other varieties. The noodles produced from this variety possessed an outstanding texture, with moderate hardness and excellent elasticity. Additionally, its noodles also exhibited superior cooking resistance and low cooking loss. Nutritionally, the moderate estimated glycemic index (eGI) and high resistant starch (RS) content of Chaiqing 1 were beneficial for intestinal health. Ximalaya 22 showed good processing performance but slightly inferior texture, whereas Kunlun 14 had a high dietary fiber content, which resulted in noodles prone to breaking. Through a comprehensive variety comparison and screening, Chaiqing 1 emerged as the preferred choice for producing high-quality highland barley noodles. Furthermore, correlation analysis revealed that dietary fiber was significantly and positively correlated with water absorption, stability time (ST), and hardness (p < 0.01). Amylose content was associated with peak temperature and breakdown viscosity. This study provides valuable insights into the selection of highland barley varieties for noodle production. Full article
(This article belongs to the Special Issue Research on the Structure and Physicochemical Properties of Starch)
Show Figures

Figure 1

14 pages, 290 KiB  
Article
Adherence to Personalised Nutrition Education Based on Glycemic and Food Insulin Index Principles and Their Association with Blood Glucose Control in Individuals with Type 2 Diabetes Mellitus
by Hildegard Strydom, Jane Muchiri, Elizabeth Delport and Zelda White
Int. J. Environ. Res. Public Health 2025, 22(6), 925; https://doi.org/10.3390/ijerph22060925 - 11 Jun 2025
Viewed by 666
Abstract
Personalised nutrition education (PNE) can enhance blood glucose control (BGC). We determined whether patients with type 2 diabetes (T2DM) adhered to PNE based on glycemic index (GI), glycemic load (GL), and food insulin index (FII) principles and whether adherence was associated with improved [...] Read more.
Personalised nutrition education (PNE) can enhance blood glucose control (BGC). We determined whether patients with type 2 diabetes (T2DM) adhered to PNE based on glycemic index (GI), glycemic load (GL), and food insulin index (FII) principles and whether adherence was associated with improved BGC. This retrospective cohort included 67 files for patients who received PNE. The patients completed 3-day food and blood glucose records at three points over 90 days. HbA1c values were compared between time points. An adherence score sheet (ASS) was used to determine their adherence to PNE and the main meal adherence classification (MMAC). A one-way repeated measures ANOVA was used to assess the changes over time. A chi-square test determined the association between the MMAC and blood glucose levels falling within the targeted ranges. Correlations between dietary adherence and BGC indicators were examined using Pearson’s product–moment correlation. Adherence ranged from 88 to 95%. MMAC score was significantly associated with blood glucose being within the targeted ranges (p = 0.028). Mean blood glucose decreased over time, but the correlations with adherence were only significant at time point 1 (p = 0.029). HbA1c levels decreased significantly over time (p = 0.003), but their correlation with adherence was not significant (p > 0.05). In patients with T2DM, high adherence to PNE based on GI, GL, and FII principles was associated with improved BGC. Full article
(This article belongs to the Special Issue Nutrition and Diabetes: Advances in Prevention and Management)
30 pages, 1772 KiB  
Review
Starches in Rice: Effects of Rice Variety and Processing/Cooking Methods on Their Glycemic Index
by Muhammad Adil Farooq and Jianmei Yu
Foods 2025, 14(12), 2022; https://doi.org/10.3390/foods14122022 - 7 Jun 2025
Cited by 1 | Viewed by 2457
Abstract
Rice is a fundamental food source for more than fifty percent of the world’s population, significantly contributing to human nutrition and food security. Like other cereal grains, rice is rich in starch, although it also contains protein, vitamins, and minerals. Regular consumption of [...] Read more.
Rice is a fundamental food source for more than fifty percent of the world’s population, significantly contributing to human nutrition and food security. Like other cereal grains, rice is rich in starch, although it also contains protein, vitamins, and minerals. Regular consumption of white rice has been reported to be positively associated with the increased risk of type 2 diabetes in rice-consuming countries due to the high glycemic index (GI) of white rice. However, the nutritional value and health effects of rice differ markedly depending on the variety and are influenced by processing methods, cooking styles employed, and the presence of other food components/ingredients. Therefore, this review examines the chemical compositions, starch structures, and glycemic indices of different rice types and the impact of processing techniques and genetic mutation on starch’s structure, amylose content, and GI. The interactions between rice starch and other food components, such as proteins, lipids, dietary fibers, and polyphenols, and their impact on the digestibility and GI of rice starch are also discussed. The purpose of this comprehensive review is to elucidate the strategies that can improve the nutritional advantages of rice and mitigate health issues, such as obesity, diabetes, and inflammation, linked to the long-term consumption of rice. Full article
(This article belongs to the Special Issue Advance in Starch Chemistry and Technology)
Show Figures

Figure 1

15 pages, 342 KiB  
Article
Association of Food-Specific Glycemic Load and Distinct Dietary Components with Gestational Diabetes Mellitus Within a Mediterranean Dietary Pattern: A Prospective Cohort Study
by Antigoni Tranidou, Antonios Siargkas, Emmanouela Magriplis, Ioannis Tsakiridis, Panagiota Kripouri, Aikaterini Apostolopoulou, Michail Chourdakis and Themistoklis Dagklis
Nutrients 2025, 17(11), 1917; https://doi.org/10.3390/nu17111917 - 3 Jun 2025
Viewed by 687
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) is a major pregnancy complication with rising global prevalence. The Mediterranean Diet (MD) has shown metabolic benefits, but total adherence scores may obscure meaningful variation in dietary quality. This study aimed to investigate whether specific dietary patterns, [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) is a major pregnancy complication with rising global prevalence. The Mediterranean Diet (MD) has shown metabolic benefits, but total adherence scores may obscure meaningful variation in dietary quality. This study aimed to investigate whether specific dietary patterns, identified within the MD framework, and their glycemic load (GL) are associated with GDM risk. Methods: This prospective cohort is part of the BORN2020 longitudinal study on pregnant women in Greece; dietary intake was assessed using a validated food frequency questionnaire (FFQ) at two time points (pre-pregnancy and during pregnancy). MD adherence was categorized by Trichopoulou score tertiles. GL was calculated for food groups using glycemic index (GI) reference values and carbohydrate content. Dietary patterns were identified using factor analysis. Logistic regression models estimated adjusted odds ratios (aORs) for GDM risk, stratified by MD adherence and time period, controlling for maternal, lifestyle, and clinical confounders. Results: In total, 797 pregnant women were included. Total MD adherence was not significantly associated with GDM risk. However, both food-specific GLs and dietary patterns with distinct dominant foods were predictive. GL from boiled greens/salads was consistently protective (aOR range: 0.09–0.19, p < 0.05). Patterns high in tea, coffee, and herbal infusions before pregnancy were linked to increased GDM risk (aOR = 1.96, 95% CI: 1.31–3.02, p = 0.001), as were patterns rich in fresh juice, vegetables, fruits, legumes, and olive oil during pregnancy (aOR = 2.91, 95% CI: 1.50–6.24, p = 0.003). A pattern dominated by sugary sweets, cold cuts, animal fats, and refined products was inversely associated with GDM (aOR = 0.34, 95% CI: 0.17–0.64, p = 0.001). A pattern characterized by sugar alternatives was associated with higher risk for GDM (aOR = 4.94, 95% CI: 1.48–19.36, p = 0.014). These associations were supported by high statistical power (power = 1). Conclusions: Within the context of the MD, evaluating both the glycemic impact of specific food groups and identifying risk-associated dietary patterns provides greater insight into GDM risk than overall MD adherence scores alone. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

13 pages, 532 KiB  
Article
Do the Types of Dietary Carbohydrate and Protein Affect Postprandial Glycemia in Type 1 Diabetes?
by Xinyi Li, Alice Wainwright, Chantelle Z. Fio, Shannon Brodie, Kylie Alexander, Margaret McGill, Sally-Anne Duke, Gregory Fulcher, Stephen Twigg, Jencia Wong, Jennie Brand-Miller, Garry M. Steil and Kirstine J. Bell
Nutrients 2025, 17(11), 1868; https://doi.org/10.3390/nu17111868 - 29 May 2025
Viewed by 1109
Abstract
Background/Objectives: Dietary protein and carbohydrate affect postprandial glycemia in individuals with type 1 diabetes (T1D). This paper aimed to determine the relationship between the types of dietary protein (Study 1) and carbohydrate (glycemic index; GI, Study 2) and postprandial glycemia. Methods: [...] Read more.
Background/Objectives: Dietary protein and carbohydrate affect postprandial glycemia in individuals with type 1 diabetes (T1D). This paper aimed to determine the relationship between the types of dietary protein (Study 1) and carbohydrate (glycemic index; GI, Study 2) and postprandial glycemia. Methods: Two acute randomized crossover trials were conducted in adults with T1D comparing postprandial glycemia for test meals varying by protein type (n = 16 adults; 5 meals: egg, beef, chicken, salmon or whey (all 30 g protein), each served with fried rice (45 g carbohydrate) or GI (n = 8 adults, high or low GI bread, GI 52% vs. 76%) with peanut butter (19 g protein, 30 g fat). Insulin was dosed based on usual individualized insulin: carbohydrate ratio and capillary blood glucose levels (BGL) measured from 30 min pre- to 5 h postprandially in 15–30 min intervals. Results: Study 1: Postprandial glycemia varied over an almost 2-fold range, however responses were highly variable and there were no significant differences between sources (iAUCglucose Chicken: 203 ± 66 mmol·min/L, Egg: 263 ± 100 mmol·min/L, Beef: 309 ± 89 mmol·min/L, Salmon: 338 ± 83 mmol·min/L and Whey: 397 ± 115 mmol·min/L respectively, p > 0.05). Hypoglycemia (≤3.5 mmol/L) occurred at least once per protein type (chicken: 6/16 participants, egg 2/16, beef 3/16, salmon 1/16, whey 2/16). However, there were no statistically significant differences in the risk of hypoglycemia between protein sources (p > 0.05). Study 2: Postprandial glucose response curves were virtually identical for high GI and low GI, and the incremental area under the curve (iAUC) for glucose was not statistically significant after 1 h (p = 0.185), 3 h (p = 0.538) or 5 h (p = 0.694) following the meal. Conclusions: Clinical practice guidelines and insulin dosing algorithms likely do not need to consider differences in protein sources or in GI in the context of a high fat, high protein meals, for individuals with T1D. Full article
(This article belongs to the Special Issue Nutritional and Dietary Approaches in Type 1 Diabetes)
Show Figures

Figure 1

23 pages, 2566 KiB  
Article
Nutritional Value Improvement of Oats by Solid-State Fermentation with Monascus purpureus
by Yonghui Yu, Yingying Li, Jingjie Zhang and Jing Wang
Foods 2025, 14(10), 1703; https://doi.org/10.3390/foods14101703 - 11 May 2025
Viewed by 865
Abstract
With increasing research, the nutritional value of oats is gaining recognition. Fermentation is an emerging biotransformation pattern that changes the nutritional structure of whole grains. Currently, research on whole-grain fermentation is relatively focused on phenolic compounds and their antioxidants, but less attention has [...] Read more.
With increasing research, the nutritional value of oats is gaining recognition. Fermentation is an emerging biotransformation pattern that changes the nutritional structure of whole grains. Currently, research on whole-grain fermentation is relatively focused on phenolic compounds and their antioxidants, but less attention has been given to avenanthramides (Avns) and the glycemic index (GI) in fermented oats. In this study, oats were subjected to solid-state fermentation (SSF) by Monascus purpureus for 21 days, and samples were taken at different time points. Changes in the contents of nutrients, phytochemicals, and antinutritional factors were analyzed using one-way ANOVA. Additionally, a simulated in vitro digestion experiment was conducted to assess the estimated glycemic index (eGI) of SSF oats. The results revealed that the nutritional structure of oats was changed by SSF, and the Avns content significantly increased, with 3.2 times more Avns in SSF oats than in unfermented oats, including 3.05, 3.09, 3.09, and 3.7 times more Avn A, Avn B, Avn C, and Avn D, respectively, and the eGI was reduced from 40.22 to 39.97 with increasing fermentation time. In general, SSF with Monascus purpureus has improved nutritional value, significantly increased the content of active ingredients, and reduced the level of eGI and two antinutritional factors (phytate and oxalate), which provides an effective way to improve the nutritional and digestive characteristics of oats. Full article
Show Figures

Figure 1

19 pages, 1497 KiB  
Article
Valorization of Artichoke Bracts in Pasta Enrichment: Impact on Nutritional, Technological, Antioxidant, and Sensorial Properties
by Anna Rita Bavaro, Palmira De Bellis, Vito Linsalata, Serena Rucci, Stefano Predieri, Marta Cianciabella, Rachele Tamburino and Angela Cardinali
Antioxidants 2025, 14(4), 475; https://doi.org/10.3390/antiox14040475 - 16 Apr 2025
Viewed by 717
Abstract
The incorporation of artichoke bracts, a by-product of artichoke processing, into pasta formulations represents an innovative approach to enhancing the nutritional and functional properties of this staple food while promoting environmental sustainability. This study aimed to evaluate the impact of artichoke powder (AP) [...] Read more.
The incorporation of artichoke bracts, a by-product of artichoke processing, into pasta formulations represents an innovative approach to enhancing the nutritional and functional properties of this staple food while promoting environmental sustainability. This study aimed to evaluate the impact of artichoke powder (AP) enrichment (10% w/w replacement of semolina) on the technological, nutritional, antioxidant, and sensory properties of pasta. The enriched pasta (P-AP) was compared to control pasta (P-CTR) through comprehensive physicochemical analyses, including cooking performance, polyphenol characterization, and in vitro digestion. Polyphenol analysis revealed that chlorogenic acid, dicaffeoylquinic acids, and flavonoids accounted for 87% of total identified phenolic compounds in P-AP. Despite a 42% reduction in free polyphenols due to cooking, in vitro digestion revealed a 47% increase in total identified polyphenols, attributed to the release of bound polyphenols. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed a significantly higher antioxidant capacity in P-AP compared to P-CTR. Additionally, P-AP exhibited a lower predicted glycemic index (pGI = 56.67) than the control (pGI = 58.41), a beneficial feature for blood glucose regulation. Sensory analysis highlighted distinct differences between samples, with P-AP showing stronger vegetal, artichoke, and legume-like notes, as well as higher intensity in bitterness and astringency. While panelists rated P-CTR higher in overall liking, enriched pasta maintained acceptable sensory characteristics. These findings support the valorization of artichoke by-products in pasta production, demonstrating their potential to enhance nutritional quality and functional properties while contributing to a circular economy. Full article
(This article belongs to the Special Issue Antioxidant Properties and Applications of Food By-Products)
Show Figures

Figure 1

19 pages, 4293 KiB  
Article
Changes in Physicochemical Properties and In Vitro Digestibility of Broken Rice Starch by Ultrasound and Quercetin Dual Treatment
by Ping Yang, Chenhao Qiu and Na Zhang
Appl. Sci. 2025, 15(8), 4203; https://doi.org/10.3390/app15084203 - 11 Apr 2025
Viewed by 639
Abstract
Applying physical modification methods to raise the resistant starch content is a feasible strategy for developing foods with a low glycemic index (GI) and regulating postprandial hyperglycemia. Here, broken rice starch (C) was modified via ultrasound and quercetin complexation (US-Q). The structure, physicochemical [...] Read more.
Applying physical modification methods to raise the resistant starch content is a feasible strategy for developing foods with a low glycemic index (GI) and regulating postprandial hyperglycemia. Here, broken rice starch (C) was modified via ultrasound and quercetin complexation (US-Q). The structure, physicochemical properties, and in vitro digestibility of the US-Q product were subsequently determined. Scanning electron microscopy (SEM) images showed that the modification changed the starch granules’ morphology, forming a more compact and stable structure. Fourier transform infrared (FTIR) spectroscopy images revealed the interaction between the starch and quercetin. An X-ray diffraction (XRD) analysis demonstrated that the crystallinity of the US-Q was lower than that of the C, indicating that the combined modification with ultrasound and quercetin disrupted the long-range ordered structure of the starch and facilitated the formation of a short-range ordered structure from amylose. Size exclusion chromatography (SEC) images showed that both the molecular weight (from 72,080.96 kDa to 85,141.95 kDa) and amylose content (from 15.94% to 26.76%) increased significantly, while the branching degree and average degree of polymerization of amylopectin decreased, suggesting that the ultrasonic treatment processing method had a significant impact on the formation of the quercetin–starch complexes. In terms of in vitro digestion, the resistant starch content of the US-Q was significantly increased from 6.57% to 20.23%, whereas the hydrolysis rate was decreased from 92.6% to 78.35%, indicating that the presence of quercetin reduced the digestibility of the starch complexes by inhibiting the starch-hydrolyzing enzyme activity. Overall, this study improves the understanding of ultrasound and quercetin dual treatment of broken rice starch, providing a theoretical basis for the development of low-GI starch foods for industrial applications. Full article
Show Figures

Figure 1

20 pages, 1377 KiB  
Article
Low Glycemic Index Biscuits Enriched with Beetroot Powder as a Source of Betaine and Mineral Nutrients
by Jasmina Mitrevski, Nebojša Đ. Pantelić, Jovanka Laličić-Petronijević, Jovana S. Kojić, Snežana Zlatanović, Stanislava Gorjanović, Stevan Avramov, Margarita S. Dodevska and Vesna V. Antić
Foods 2025, 14(5), 814; https://doi.org/10.3390/foods14050814 - 27 Feb 2025
Cited by 1 | Viewed by 1401
Abstract
This study aimed to evaluate the potential of beetroot powder (BP) as a functional ingredient in biscuits by investigating its effects on nutritional composition, sensory properties, and glycemic response. The primary goal was to determine whether BP could serve as a natural alternative [...] Read more.
This study aimed to evaluate the potential of beetroot powder (BP) as a functional ingredient in biscuits by investigating its effects on nutritional composition, sensory properties, and glycemic response. The primary goal was to determine whether BP could serve as a natural alternative to synthetic additives while maintaining product stability and consumer acceptability. Biscuits were formulated by replacing spelt flour with 15, 20, and 25% BP. The functional impact of the BP was assessed based on betaine content, macro- and microelements, glycemic index (GI), and acrylamide concentration. Thermal analysis (DSC and TGA) and water activity measurements confirmed the BP’s stability during six months of storage. Increased BP content led to higher betaine levels and mineral enrichment, particularly with potassium and phosphorus among the macroelements and zinc among the microelements. Sensory analysis identified biscuits with 20% BP as the most preferred, maintaining acceptable ratings even after six months. Hardness initially increased with BP incorporation but decreased over time (p < 0.05). The acrylamide content in the BP-enriched biscuits was significantly lower than in control samples and well below the reference safety threshold. Notably, consuming beetroot biscuits did not trigger a sharp postprandial glucose spike, with the GI of the most acceptable sample (20% BP) measured at 49 ± 11. These findings confirm that BP improves the nutritional and sensory characteristics of biscuits while ensuring product safety and stability, supporting its application as a natural functional ingredient in confectionery products. Full article
Show Figures

Figure 1

22 pages, 1713 KiB  
Article
Fruit Carbohydrates and Their Impact on the Glycemic Index: A Study of Key Determinants
by Manish Kumar Singh, Sunhee Han, Songhyun Ju, Jyotsna Suresh Ranbhise, Salima Akter, Sung Soo Kim and Insug Kang
Foods 2025, 14(4), 646; https://doi.org/10.3390/foods14040646 - 14 Feb 2025
Cited by 1 | Viewed by 2769
Abstract
Background: Fruits are a convenient and natural source of carbohydrates that can rapidly affect blood sugar levels and the glycemic index (GI). The GI plays a crucial role in the management of chronic diseases, including diabetes, obesity, hyperglycemia, and diet-related illnesses. Despite [...] Read more.
Background: Fruits are a convenient and natural source of carbohydrates that can rapidly affect blood sugar levels and the glycemic index (GI). The GI plays a crucial role in the management of chronic diseases, including diabetes, obesity, hyperglycemia, and diet-related illnesses. Despite there being several health benefits linked with consuming fruits, it remains unclear which specific components of fruits are the key determinants that significantly influence the GI. Methods: This study retrospectively examined the relationship between different types of carbohydrates and the GI of various fruits to determine their correlation. The fruits’ sugar and fiber contents were identified from available public databases, the U.S. Department of Agriculture (USDA), FooDB, PubMed, and published sources. Results: Previously, the GI was determined by the available carbohydrates, which include different types of sugar. In this study, individual hexose sugars, along with the total carbohydrates and dietary fiber, were examined. The results indicated a strong correlation between fructose and the GI, whereas glucose and total glucose did not exhibit such a correlation. The total carbohydrate-to-fiber ratio displayed a stronger correlation (R = 0.57 and p > 0.0001) with the GI compared to glucose alone (R = 0.37; p = 0.01) or the total glucose (R = 0.45; p = 0.0009) with the consideration of fiber, while the scattering of data points around the regression line suggested that factors beyond the total carbohydrate and fiber also contribute to determining the GI. Conclusions: This study demonstrated that individual hexose sugars, especially fructose, significantly influence the GI. These findings suggest that the carbohydrate-to-fiber ratio may offer a more accurate and reliable metric for determining the GI than traditional methods. Further research is warranted to investigate the specific contribution of dietary fiber components, fruit texture, micronutrients, vitamins, genetic predispositions, gut microbiota, and the body’s physiological status to gain a deeper understanding of GI regulation. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

Back to TopTop