Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (808)

Search Parameters:
Keywords = Given’s rotations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7512 KiB  
Review
Archimedean Copulas: A Useful Approach in Biomedical Data—A Review with an Application in Pediatrics
by Giulia Risca, Stefania Galimberti, Paola Rebora, Alessandro Cattoni, Maria Grazia Valsecchi and Giulia Capitoli
Stats 2025, 8(3), 69; https://doi.org/10.3390/stats8030069 - 1 Aug 2025
Viewed by 141
Abstract
Many applications in health research involve the analysis of multivariate distributions of random variables. In this paper, we review the basic theory of copulas to illustrate their advantages in deriving a joint distribution from given marginal distributions, with a specific focus on bivariate [...] Read more.
Many applications in health research involve the analysis of multivariate distributions of random variables. In this paper, we review the basic theory of copulas to illustrate their advantages in deriving a joint distribution from given marginal distributions, with a specific focus on bivariate cases. Particular attention is given to the Archimedean family of copulas, which includes widely used functions such as Clayton and Gumbel–Hougaard, characterized by a single association parameter and a relatively simple structure. This work differs from previous reviews by providing a focused overview of applied studies in biomedical research that have employed Archimedean copulas, due to their flexibility in modeling a wide range of dependence structures. Their ease of use and ability to accommodate rotated forms make them suitable for various biomedical applications, including those involving survival data. We briefly present the most commonly used methods for estimation and model selection of copula’s functions, with the purpose of introducing these tools within the broader framework. Several recent examples in the health literature, and an original example of a pediatric study, demonstrate the applicability of Archimedean copulas and suggest that this approach, although still not widely adopted, can be useful in many biomedical research settings. Full article
(This article belongs to the Section Statistical Methods)
Show Figures

Figure 1

22 pages, 9592 KiB  
Article
A Rotational Order Vibration Reduction Method Using a Regular Non-Circular Pulley
by Shangbin Long, Yu Zhu, Zhihong Zhou, Fangrui Chen and Zisheng Li
Actuators 2025, 14(8), 371; https://doi.org/10.3390/act14080371 - 25 Jul 2025
Viewed by 209
Abstract
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which [...] Read more.
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which is used to counteract the regular order excitation and the regular load excitation. A toothed belt drive system with second-order excitation is taken as an example. According to the existing analytical model of the tooth belt drive system, the modeling process and analytical solution algorithm of the system are derived. Based on the coordinate transformation, the algorithms for any position of an elliptical pulley and the common tangent of the circular pulley are given. And the algorithm for the arc length of the elliptical pulley at any arc degree is proposed. The influence of the phase and eccentricity in the elliptical pulley on the dynamic performance of the system is analyzed. Then the experimental verification is carried out. This shows that this system can generate excitation opposite to the main order rotational vibration of the driving pulley and opposite to the load of the driven pulley. Under the combined effect of other load pulleys in the system, there will be an amplification phenomenon in its vibration response. Considering the decrease in the belt span tension and the decline in the performance of energy-absorbing components after long operation, the presented method can better maintain the stability of system performance. This method can provide new ideas for the vibration reduction optimization process of systems with first-order wave excitation. Full article
Show Figures

Figure 1

20 pages, 8312 KiB  
Article
Experimental Investigation of Magnetic Abrasive Finishing for Post-Processing Additive Manufactured Inconel 939 Parts
by Michał Marczak, Dorota A. Moszczyńska and Aleksander P. Wawrzyszcz
Appl. Sci. 2025, 15(15), 8233; https://doi.org/10.3390/app15158233 - 24 Jul 2025
Viewed by 254
Abstract
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a [...] Read more.
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a pressing need for advanced, adaptable finishing techniques that can operate effectively on complex geometries. This research focuses on optimizing the process parameters—eccentricity, rotational speed, and machining time—to enhance surface integrity following preliminary vibratory machining. Custom-designed samples underwent sequential machining, including heat treatment and 4 h vibratory machining, before MAF was applied under controlled conditions using ferromagnetic Fe-Si abrasives. Surface roughness measurements demonstrated a significant reduction, achieving Ra values from 1.21 µm to below 0.8 µm in optimal conditions, representing more than a fivefold improvement compared to the as-printed state (5.6 µm). Scanning Electron Microscopy (SEM) revealed progressive surface refinement, with MAF effectively removing adhered particles left by prior processing. Statistical analysis confirmed the dominant influence of eccentricity on the surface profile parameters, particularly Rz. The findings validate the viability of MAF as a precise, controllable, and complementary finishing method for LPBF-manufactured Inconel 939 components, especially for geometrically complex or hard-to-reach surfaces. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

20 pages, 2014 KiB  
Article
Stereochemical Characterization of Optically Active Indane and Phenylpropyl Derivatives Obtained Through Biotransformation by the Marine-Derived Fungi Emericellopsis maritima BC17 and Purpureocillium lilacinum BC17-2
by Jorge R. Virués-Segovia, Salvador Muñoz-Mira, Nuria Cabrera-Gómez, Marta Pacheco, María Gómez-Marín, Javier Moraga, Rosa Durán-Patrón and Josefina Aleu
J. Mar. Sci. Eng. 2025, 13(8), 1386; https://doi.org/10.3390/jmse13081386 - 22 Jul 2025
Viewed by 286
Abstract
Indane and phenylpropyl derivatives are interesting precursors for the synthesis of bioactive compounds, including those with antifungal or anti-inflammatory properties. In light of the increasing interest in the biocatalytic potential of marine-derived fungi, a study was conducted in which the substrates indene ( [...] Read more.
Indane and phenylpropyl derivatives are interesting precursors for the synthesis of bioactive compounds, including those with antifungal or anti-inflammatory properties. In light of the increasing interest in the biocatalytic potential of marine-derived fungi, a study was conducted in which the substrates indene (1), indanone (2), 5-chloroindanone (2a), 1-phenylpropyl acetate (3), and 1-(4′-chlorophenyl)propyl acetate (3a) were biotransformed by the marine sediment-derived fungal strains Purpureocillium lilacinum BC17-2 and Emericellopsis maritima BC17. Fermentations led to the isolation of sixteen derivatives, which exhibited noteworthy stereoselectivities. The absolute configurations of the optically active indane and phenylpropyl derivatives isolated were determined through electronic circular dichroism and optical rotation dispersion computational calculations. Furthermore, given the known biocatalytic potential of the phytopathogenic fungus Botrytis cinerea to modify the structures of certain antifungal phenylpropyl derivatives, substrates 3 and 3a were also subjected to biotransformation by the strain B. cinerea UCA992. The antifungal activities of the biotransformation products (R)-5, (S)-6, syn-(1S,2R)-7, anti-(1R,2R)-7, (R)-8, (R)-9, threo-(1R,2R)-11, and erythro-(1R,2S)-11 were evaluated against B. cinerea UCA992 using a resazurin-based microdilution method. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Graphical abstract

33 pages, 11180 KiB  
Article
New Permutation-Free Quantum Circuits for Implementing 3- and 4-Qubit Unitary Operations
by Artyom M. Grigoryan
Information 2025, 16(7), 621; https://doi.org/10.3390/info16070621 - 21 Jul 2025
Viewed by 314
Abstract
The article presents the quantum signal-induced heap transform (QsiHT) method of the QR-decomposition of multi-qubit operations. This transform can be generated by a given signal, by using different paths, or orders, of processing the data. We propose using the concept of the fast [...] Read more.
The article presents the quantum signal-induced heap transform (QsiHT) method of the QR-decomposition of multi-qubit operations. This transform can be generated by a given signal, by using different paths, or orders, of processing the data. We propose using the concept of the fast path of calculation of the QsiHT and applying such transforms on each stage of the matrix decomposition. This allows us to build quantum circuits for multi-qubit unitary operation without permutations. Unitary operations with real and complex matrices are considered. The cases of 3- and 4-qubit operations are described in detail with quantum circuits. These circuits use a maximum of 28 and 120 Givens rotation gates for 3- and 4-qubit real operations, respectively. All rotations are performing only on adjacent bit planes. For complex unitary operation, each of the Givens gates is used in pairs with two Z-rotation gates. These two types of rotations and the global phase gate are the universal gate set for multi-qubit operations. The presented approach can be used for implementing quantum circuits for n-qubits when n2, with a maximum of (4n/22n1) Givens rotations and no permutations. Full article
Show Figures

Graphical abstract

24 pages, 4937 KiB  
Article
Performance Improvement of Pure Pursuit Algorithm via Online Slip Estimation for Off-Road Tracked Vehicle
by Çağıl Çiloğlu and Emir Kutluay
Sensors 2025, 25(14), 4242; https://doi.org/10.3390/s25144242 - 8 Jul 2025
Viewed by 455
Abstract
The motion control of a tracked mobile robot remains an important capability for autonomous navigation. Kinematic path-tracking algorithms are commonly used in mobile robotics due to their ease of implementation and real-time computational cost advantage. This paper integrates an extended Kalman filter (EKF) [...] Read more.
The motion control of a tracked mobile robot remains an important capability for autonomous navigation. Kinematic path-tracking algorithms are commonly used in mobile robotics due to their ease of implementation and real-time computational cost advantage. This paper integrates an extended Kalman filter (EKF) into a common kinematic controller for path-tracking performance improvement. The extended Kalman filter estimates the instantaneous center of rotation (ICR) of tracks using the sensor readings of GPS and IMU. These ICR estimations are then given as input to the motion control algorithm to generate the track velocity demands. The platform to be controlled is a heavyweight off-road tracked vehicle, which necessitates the investigation of slip values. A high-fidelity simulation model, which is verified with field tests, is used as the plant in the path-tracking simulations. The performance of the filter and the algorithm is also demonstrated in field tests on a stabilized road. The field results show that the proposed estimation increases the path-tracking accuracy significantly (about 44%) compared to the classical pure pursuit. Full article
(This article belongs to the Special Issue INS/GNSS Integrated Navigation Systems)
Show Figures

Figure 1

33 pages, 12918 KiB  
Article
Time-Dependent Fragility Functions and Post-Earthquake Residual Seismic Performance for Existing Steel Frame Columns in Offshore Atmospheric Environment
by Xiaohui Zhang, Xuran Zhao, Shansuo Zheng and Qian Yang
Buildings 2025, 15(13), 2330; https://doi.org/10.3390/buildings15132330 - 2 Jul 2025
Viewed by 417
Abstract
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A [...] Read more.
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A finite element analysis (FEA) method for steel frame columns, which considers corrosion damage and ductile metal damage criteria, is developed and validated. A parametric analysis in terms of service age and design parameters is conducted. Considering the impact of environmental erosion and aging, a classification criterion for damage states for existing steel frame columns is proposed, and the theoretical characterization of each damage state is provided based on the moment-rotation skeleton curves. Based on the test and numerical analysis results, probability distributions of the fragility function parameters (median and logarithmic standard deviation) are constructed. The evolution laws of the fragility parameters with increasing service age under each damage state are determined, and a time-dependent fragility model for existing steel frame columns in offshore atmospheric environments is presented through regression analysis. At a drift ratio of 4%, the probability of complete damage to columns with 40, 50, 60, and 70-year service ages increased by 18.1%, 45.3%, 79.2%, and 124.5%, respectively, compared with columns within a 30-year service age. Based on the developed FEA models and the damage class of existing columns, the influence of characteristic variables (service age, design parameters, and damage level) on the residual seismic capacity of earthquake-damaged columns, namely the seismic resistance that can be maintained even after suffering earthquake damage, is revealed. Using the particle swarm optimization back-propagation neural network (PSO-BPNN) model, nonlinear mapping relationships between the characteristic variables and residual seismic capacity are constructed, thereby proposing a residual seismic performance evaluation model for existing multi-aged steel frame columns in an offshore atmospheric environment. Combined with the damage probability matrix of the time-dependent fragility, the expected values of the residual seismic capacity of existing multi-aged steel frame columns at a given drift ratio are obtained directly in a probabilistic sense. The results of this study lay the foundation for resistance to sequential earthquakes and post-earthquake functional recovery and reconstruction, and provide theoretical support for the full life-cycle seismic resilience assessment of existing steel structures in earthquake-prone areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 6036 KiB  
Article
Investigation of the Asymmetric Features of X-Rudder Underwater Vehicle Vertical Maneuvring and Novel Motion Prediction Technology
by Yinghua Li, Ziying Pan, Yongcheng Li, Changyou Song, Minghui Zhang and Mengchen Ren
J. Mar. Sci. Eng. 2025, 13(7), 1288; https://doi.org/10.3390/jmse13071288 - 30 Jun 2025
Viewed by 200
Abstract
An X-rudder underwater vehicle’s hydrodynamic force acting on its rudder will display asymmetrical characteristics during vertical movement that are absent from a cross-rudder vehicle. This paper presents a novel hydrodynamic expression method based on rotational hydrodynamic transformation through a detailed analysis of the [...] Read more.
An X-rudder underwater vehicle’s hydrodynamic force acting on its rudder will display asymmetrical characteristics during vertical movement that are absent from a cross-rudder vehicle. This paper presents a novel hydrodynamic expression method based on rotational hydrodynamic transformation through a detailed analysis of the local flow characteristics around the tail attachment during the vertical plane maneuvering of the X-rudder vehicle, given that the conventional Taylor expansion-based hydrodynamic expression method is unable to characterize this asymmetric characteristic. With the help of this technique, a novel expression that can precisely describe the asymmetric hydrodynamic properties during the X-rudder vehicle’s underwater vertical plane maneuvering is created. This paper next concentrates on common vertical plane maneuvering motion situations and performs simulation predictions using both new and conventional expressions based on Taylor expansion. The asymmetric characteristics of the X-rudder underwater vehicle in vertical plane maneuvering have been experimentally confirmed, and the asymmetric characteristics become more pronounced as the speed increases, according to the results, which are compared with those of tests using self-driving models. Overall, the new model accurately describes the asymmetric features of the X-rudder vehicle’s vertical maneuvering motion and correlates well with the experimental findings. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 15762 KiB  
Article
Frequency and Current Analysis for Aluminum Billet Lifting with a Longitudinal Electromagnetic Levitator Prototype
by Matteo Zorzetto, Giulio Poggiana and Fabrizio Dughiero
Energies 2025, 18(13), 3437; https://doi.org/10.3390/en18133437 - 30 Jun 2025
Viewed by 243
Abstract
Magnetic levitation enables the confinement and melting of conductive metals using alternating magnetic fields, eliminating the need for a crucible or other contact supports. This makes the technology particularly suitable for applications where container use is impractical, such as preventing contamination between the [...] Read more.
Magnetic levitation enables the confinement and melting of conductive metals using alternating magnetic fields, eliminating the need for a crucible or other contact supports. This makes the technology particularly suitable for applications where container use is impractical, such as preventing contamination between the melt and the crucible, handling high-purity materials, or facilitating in-orbit operations. For a given coil design and load, selecting the appropriate feeding parameters, such as the current and frequency, is crucial to ensure the correct operation of the device. This study investigates the optimal current and frequency values required to levitate an aluminum billet using a proposed longitudinal electromagnetic levitator, which represents an initial prototype of a more complex system for automated material manipulation. The analysis was conducted through 2D and 3D finite element method (FEM) simulations, assessing the equilibrium position and stability with respect to translations and rotations under various operating conditions. The study identifies an operating configuration that ensures vertical stability while minimizing excessive heating, in order to obtain a sufficiently long confinement time before the melting point is reached. A fully coupled 2D thermal simulation was then performed to assess the billet’s heating rate under the selected operating conditions. Finally, an experiment was conducted on a prototype to confirm billet levitation. Full article
(This article belongs to the Special Issue Progress in Electromagnetic Analysis and Modeling of Heating Systems)
Show Figures

Figure 1

29 pages, 375 KiB  
Article
Spherical Harmonics and Gravity Intensity Modeling Related to a Special Class of Triaxial Ellipsoids
by Gerassimos Manoussakis and Panayiotis Vafeas
Mathematics 2025, 13(13), 2115; https://doi.org/10.3390/math13132115 - 27 Jun 2025
Viewed by 311
Abstract
The G-modified Helmholtz equation is a partial differential equation that allows gravity intensity g to be expressed as a series of spherical harmonics, with the radial distance r raised to irrational powers. In this study, we consider a non-rotating triaxial ellipsoid parameterized by [...] Read more.
The G-modified Helmholtz equation is a partial differential equation that allows gravity intensity g to be expressed as a series of spherical harmonics, with the radial distance r raised to irrational powers. In this study, we consider a non-rotating triaxial ellipsoid parameterized by the geodetic latitude φ and geodetic longitude λ, and eccentricities ee, ex, ey. On its surface, the value of gravity potential has a constant value, defining a level triaxial ellipsoid. In addition, the gravity intensity is known on the surface, which allows us to formulate a Dirichlet boundary value problem for determining the gravity intensity as a series of spherical harmonics. This expression for gravity intensity is presented here for the first time, filling a gap in the study of triaxial ellipsoids and spheroids. Given that the triaxial ellipsoid has very small eccentricities, a first order approximation can be made by retaining only the terms containing ee2 and ex2. The resulting expression in spherical harmonics contains even degree and even order harmonic coefficients, along with the associated Legendre functions. The maximum degree and order that occurs is four. Finally, as a special case, we present the geometrical degeneration of an oblate spheroid. Full article
Show Figures

Figure 1

12 pages, 796 KiB  
Article
Enhancing Predictive Tools for Skeletal Growth and Craniofacial Morphology in Syndromic Craniosynostosis: A Focus on Cranial Base Variables
by Lantian Zheng, Norli Anida Abdullah, Norlisah Mohd Ramli, Nur Anisah Mohamed, Mohamad Norikmal Fazli Hisam and Firdaus Hariri
Diagnostics 2025, 15(13), 1640; https://doi.org/10.3390/diagnostics15131640 - 27 Jun 2025
Viewed by 361
Abstract
Background/Objectives: Patients with syndromic craniosynostosis (SC) pose a significant challenge for post-operational outcomes due to the variability in craniofacial deformities and gain-of-function characteristics. This study aims to develop validated predictive tools using stable cranial base variables to predict changes in the midfacial [...] Read more.
Background/Objectives: Patients with syndromic craniosynostosis (SC) pose a significant challenge for post-operational outcomes due to the variability in craniofacial deformities and gain-of-function characteristics. This study aims to develop validated predictive tools using stable cranial base variables to predict changes in the midfacial region and explore the craniofacial morphology among patients with SC. Methods: This study involved 17 SC patients under 12 years old, 17 age-matched controls for morphological analysis, and 21 normal children for developing craniofacial predictive models. A stable cranial base and changeable midfacial variables were analyzed using the Mann–Whitney U test. Pearson correlation identified linear relationships between the midface and cranial base variables. Multicollinearity was checked before fitting the data with multiple linear regression for growth prediction. Model adequacy was confirmed and the 3-fold cross-validation ensured results reliability. Results: Patients with SC exhibited a shortened cranial base, particularly in the middle cranial fossa (S-SO), and a sharper N-S-SO and N-SO-BA angle, indicating a downward rotation and kyphosis. The midface length (ANS-PNS) and zygomatic length (ZMs-ZTi) were significantly reduced, while the midface width (ZFL-ZFR) was increased. Regression models for the midface length, width, and zygomatic length were given as follows: ANS-PNS = 23.976 + 0.139 S-N + 0.545 SO-BA − 0.120 N-S-BA + 0.078 S-SO-BA + 0.051 age (R2 = 0.978, RMSE = 1.058); ZFL-ZFR = −15.618 + 0.666 S-N + 0.241 N-S-BA + 0.155 S-SO-BA + 0.121 age (R2 = 0.903, RMSE = 3.158); and ZMs-ZTi = −14.403 + 0.765 SO-BA + 0.266 N-S-BA + 0.111 age (R2 = 0.878, RMSE = 3.720), respectively. Conclusions: The proposed models have potential applications for midfacial growth estimation in children with SC. Full article
Show Figures

Figure 1

14 pages, 877 KiB  
Article
No Learner Left Behind: How Medical Students’ Background Characteristics and Psychomotor/Visual–Spatial Abilities Correspond to Aptitude in Learning How to Perform Clinical Ultrasounds
by Samuel Ayala, Eric R. Abrams, Lawrence A. Melniker, Laura D. Melville and Gerardo C. Chiricolo
Emerg. Care Med. 2025, 2(3), 31; https://doi.org/10.3390/ecm2030031 - 25 Jun 2025
Viewed by 244
Abstract
Background/Objectives: The goal of educators is to leave no learner behind. Ultrasounds require dexterity and 3D image interpretation. They are technologically complex, and current medical residency programs lack a reliable means of assessing this ability among their trainees. This prompts consideration as to [...] Read more.
Background/Objectives: The goal of educators is to leave no learner behind. Ultrasounds require dexterity and 3D image interpretation. They are technologically complex, and current medical residency programs lack a reliable means of assessing this ability among their trainees. This prompts consideration as to whether background characteristics or certain pre-existing skills can serve as indicators of learning aptitude for ultrasounds. The objective of this study was to determine whether these characteristics and skills are indicative of learning aptitude for ultrasounds. Methods: This prospective study was conducted with third-year medical students rotating in emergency medicine at the New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, USA. First, students were given a pre-test survey to assess their background characteristics. Subsequently, a psychomotor task (Purdue Pegboard) and visual–spatial task (Revised Purdue Spatial Visualization Tests) were administered to the students. Lastly, an ultrasound task was given to identify the subxiphoid cardiac view. A rubric assessed ability, and proficiency was determined as a 75% or higher score in the ultrasound task. Results: In total, 97 students were tested. An analysis of variance (ANOVA) was used to ascertain if any background characteristics from the pre-test survey was associated with the ultrasound task score. The student’s use of cadavers to learn anatomy had the most correlation (p-value of 0.02). Assessing the psychomotor and visual–spatial tasks, linear regressions were used against the ultrasound task scores. Correspondingly, the p-values were 0.007 and 0.008. Conclusions: Ultrasound ability is based on hand–eye coordination and spatial relationships. Increased aptitude in these abilities may forecast future success in this skill. Those who may need more assistance can have their training tailored to them and further support offered. Full article
Show Figures

Figure A1

12 pages, 7858 KiB  
Article
Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings
by Bastien Van Esbeen, Valentin Manto, Damien Kinet, Corentin Guyot and Christophe Caucheteur
Sensors 2025, 25(13), 3921; https://doi.org/10.3390/s25133921 - 24 Jun 2025
Viewed by 381
Abstract
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce [...] Read more.
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce costs and maintenance time, and to prevent machine failures. First, FBG strain sensors were glued vertically along the tower to investigate the sensors behavior as a function of their height. The maximum signal-to-noise ratio is obtained when FBGs are placed at the tower base. Then, four packages were installed inside the tower, at the base, according to four cardinal directions. Each package contains an FBG strain sensor, and an extra temperature FBG for discrimination. The use of easy-to-deploy packages is a must for industrial installations. Afterwards, by using power spectral density (PSD) on the strain signals, three sources of tower oscillations are discovered: wind force, structure unbalance, and 1st tower mode resonance, each with its intrinsic frequency. Wind force and structure unbalance cause mechanical stresses at a frequency proportional to the wind turbine rotational speed, while the 1st tower mode frequency depends only on the machine geometry, regardless of the rotational speed. This study also analyzes the deformation amplitude for different rotational rates within the VAWT operational range (10–35 rpm). The resonance amplitude depends on the proximity of the rotational rate to the resonant frequency (22 rpm) and the duration at that rate. For structure unbalance, the oscillation amplitude increases with the rotational rate, due to the centrifugal effect. It is supposed that wind force deformation amplitude naturally depends on wind speed, which is unpredictable at a given precise time. The results of our experimental observations are very valuable for both the wind turbine manufacturer and owner. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

38 pages, 3461 KiB  
Article
A Parallel Plate Variable Capacitor-Based Wind Pressure Sensor: Closed-Form Solution and Numerical Design and Calibration
by Xiao-Ting He, Jun-Song Ran, Jing-Miao Yin, Jun-Yi Sun and Ying Guo
Sensors 2025, 25(12), 3760; https://doi.org/10.3390/s25123760 - 16 Jun 2025
Viewed by 359
Abstract
In this paper, a parallel plate variable capacitor-based wind pressure sensor is proposed, which uses a wind-driven peripherally fixed circular membrane as its pressure-sensitive element and a spring-reset parallel plate variable capacitor as its sensing element. The circular membrane is first driven by [...] Read more.
In this paper, a parallel plate variable capacitor-based wind pressure sensor is proposed, which uses a wind-driven peripherally fixed circular membrane as its pressure-sensitive element and a spring-reset parallel plate variable capacitor as its sensing element. The circular membrane is first driven by the wind, and then it pushes the spring-reset movable electrode plate of the parallel plate variable capacitor to move, resulting in a change in the capacitance of the capacitor. The wind pressure, i.e., the direct action force per unit area exerted by the wind on the circular membrane, is thus detected by measuring the capacitance change of the capacitor. The elastic contact problem between the circular membrane and the spring-reset movable electrode plate is analytically solved, and its closed-form solution is presented, where the usually adopted small rotation angle assumption of the membrane is given up. The analytical relationship between the input pressure and output capacitance of the capacitive wind pressure sensor proposed here is derived. The validity of the closed-form solution is proved, and how to use the closed-form solution and input/output analytical relationship for the numerical design and calibration of the capacitive wind pressure sensor proposed here is illustrated. Finally, the qualitative and quantitative effects of changing design parameters on the capacitance–pressure analytical relationship of the wind pressure measurement system are investigated comprehensively. Full article
Show Figures

Figure 1

31 pages, 5729 KiB  
Article
Signal-Induced Heap Transform-Based QR-Decomposition and Quantum Circuit for Implementing 3-Qubit Operations
by Artyom M. Grigoryan, Alexis Gomez, Isaac Espinoza and Sos S. Agaian
Information 2025, 16(6), 466; https://doi.org/10.3390/info16060466 - 30 May 2025
Cited by 1 | Viewed by 455
Abstract
This article presents a novel approach to the decomposition of unitary operations for 3-qubit systems by 28 controlled rotations and no permutations. The QR decomposition is described, which is based on the concept of the discrete signal-induced heap transform (DsiHT) and its quantum [...] Read more.
This article presents a novel approach to the decomposition of unitary operations for 3-qubit systems by 28 controlled rotations and no permutations. The QR decomposition is described, which is based on the concept of the discrete signal-induced heap transform (DsiHT) and its quantum analogue. This transform is generated by a given signal and may use different paths, or orders, of processing the data, and, among them, one can find paths that allow one to construct efficient quantum circuits for implementing multi-qubit unitary gates. The case of real unitary matrices is considered. The proposed approach is described in detail, and quantum circuits are presented for computing 3-qubit operations. This approach allowed us to write simple Qiskit codes to implement the decomposition of 3-qubit operations. Examples with quantum circuits for the quantum 3-qubit quantum cosine and Hartley transforms are described. Full article
(This article belongs to the Section Information Theory and Methodology)
Show Figures

Figure 1

Back to TopTop