Signal-Induced Heap Transform-Based QR-Decomposition and Quantum Circuit for Implementing 3-Qubit Operations
Abstract
:1. Introduction
- New effective paths for the DsiHTs of different lengths. No additional permutations with Gray codes or CNOT gates are required at each state of the decomposition.
- Only Given rotations are gates required to perform the operation with unitary real matrices.
- A universal and transparent circuit for quantum 3-qubit operations with a maximum of 28 controlled-rotation gates and depth of 18.
- The circuit for the 3-qubit quantum Hartley transform (QHyT) with 21 controlled-rotation gates and 1 local rotation gate.
- A simple circuit for generating any 3-qubit operation with a real unitary matrix.
- A general method for constructing circuits for multi-qubit operations with maximum of rotation gates and no permutations for qubits.
2. The Concept of the DsiHT
3. DsiHT-Based QR Decomposition
3.1. Three-Qubit Gate Circuits
3.2. Inverse Transform and 3-Qubit Gate Circuit
4. Examples of the QR Decomposition-Based Quantum Transforms
4.1. Quantum Hartley Transform
4.2. The Quantum Cosine Transforms
4.3. Three-Qubit Real Unitary Gate
- and the diagonal matrix by the commands:
- It does not require any permutations, including CNOT operations, for any unitary gate in the quantum computation,
- Only the Given rotations are gates required to perform the operation with unitary real matrix,
- It gives us a simple (transparent) calculation quantum circuit,
- It generates a unique table of keys.
4.4. Simulations in Qiskit
- Increasing shot count improves convergence and lowers MSRE.
- Complicated transforms like the QCT-IV show more initial variance but stabilize with enough shots.
- Amplitudes, both large and small, are consistently and accurately recovered.
5. Application of the QsiHT for Preparing Dicke States
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DsiHT | Discrete signal-induced Heap transform |
QsiHT | Quantum signal-induced Heap transform |
QR | QR decomposition of the matrix |
DCT | Discrete cosine transform |
QCT | Quantum cosine transform |
DHyT | Discrete Hartley transform |
QHyT | Quantum Hartley transform |
MSRE | Mean square root error |
BP | Bit plane |
Appendix A
Basis States | Probabilities | ||||
---|---|---|---|---|---|
Theoretical | 1000 Shots | 10,000 Shots | 100,000 Shots | 1,000,000 Shots | |
000 | 1.2500 × 10−1 | 1.1900 × 10−1 | 1.2870 × 10−1 | 1.2510 × 10−1 | 1.2485 × 10−1 |
001 | 1.2500 × 10−1 | 1.1900 × 10−1 | 1.2100 × 10−1 | 1.2470 × 10−1 | 1.2538 × 10−1 |
010 | 1.2500 × 10−1 | 1.2200 × 10−1 | 1.2760 × 10−1 | 1.2546 × 10−1 | 1.2463 × 10−1 |
011 | 1.2500 × 10−1 | 1.2300 × 10−1 | 1.2660 × 10−1 | 1.2465 × 10−1 | 1.2510 × 10−1 |
100 | 1.2500 × 10−1 | 1.3100 × 10−1 | 1.2520 × 10−1 | 1.2531 × 10−1 | 1.2490 × 10−1 |
101 | 1.2500 × 10−1 | 1.4200 × 10−1 | 1.1880 × 10−1 | 1.2522 × 10−1 | 1.2493 × 10−1 |
110 | 1.2500 × 10−1 | 1.3300 × 10−1 | 1.2660 × 10−1 | 1.2474 × 10−1 | 1.2523 × 10−1 |
111 | 1.2500 × 10−1 | 1.1100 × 10−1 | 1.2550 × 10−1 | 1.2482 × 10−1 | 1.2499 × 10−1 |
MSRE | 0.0000 | 3.2355 × 10−3 | 1.1201 × 10−3 | 1.0297 × 10−4 | 7.7507 × 10−5 |
Basis States | Amplitudes | ||||
---|---|---|---|---|---|
Theoretical | 1000 Shots | 10,000 Shots | 100,000 Shots | 1,000,000 Shots | |
000 | 8.8382 × 10−1 | 8.8034 × 10−1 | 8.8386 × 10−1 | 8.8439 × 10−1 | 8.8367 × 10−1 |
001 | 1.0778 × 10−1 | 1.1402 × 10−1 | 1.1705 × 10−1 | 1.0977 × 10−1 | 1.4147 × 10−1 |
010 | 1.0778 × 10−1 | 1.1402 × 10−1 | 1.0583 × 10−1 | 1.1050 × 10−1 | 1.0768 × 10−1 |
011 | 2.1557 × 10−2 | 0.0000 | 2.4495 × 10−2 | 2.4083 × 10−2 | 1.5800 × 10−1 |
100 | 1.4197 × 10−1 | 1.2247 × 10−1 | 1.4595 × 10−1 | 1.4032 × 10−1 | 1.0781 × 10−1 |
101 | 2.0294 × 10−1 | 1.9748 × 10−1 | 1.9975 × 10−1 | 2.0032 × 10−1 | 2.0363 × 10−1 |
110 | 1.5766 × 10−1 | 1.7029 × 10−1 | 1.4900 × 10−1 | 1.5579 × 10−1 | 2.1354 × 10−2 |
111 | 3.3011 × 10−1 | 3.4059 × 10−1 | 3.3151 × 10−1 | 3.3005 × 10−1 | 3.3017 × 10−1 |
MSRE | 0.0000 | 4.3904 × 10−3 | 1.7733 × 10−3 | 6.9689 × 10−4 | 1.2011 × 10−4 |
Basis States | Probabilities | ||||
---|---|---|---|---|---|
Theoretical | 1000 Shots | 10,000 Shots | 100,000 Shots | 1,000,000 Shots | |
000 | 1.2500 × 10−1 | 1.3100 × 10−1 | 1.2630 × 10−1 | 1.2432 × 10−1 | 1.2448 × 10−1 |
001 | 2.4048 × 10−1 | 2.5300 × 10−1 | 2.3880 × 10−1 | 2.4113 × 10−1 | 2.4092 × 10−1 |
010 | 2.1339 × 10−1 | 2.0400 × 10−1 | 2.2010 × 10−1 | 2.1394 × 10−1 | 2.1318 × 10−1 |
011 | 1.7284 × 10−1 | 1.7500 × 10−1 | 1.6700 × 10−1 | 1.7293 × 10−1 | 1.7255 × 10−1 |
100 | 1.2500 × 10−1 | 1.1800 × 10−1 | 1.2620 × 10−1 | 1.2684 × 10−1 | 1.2581 × 10−1 |
101 | 7.7165 × 10−2 | 8.1000 × 10−2 | 7.5300 × 10−2 | 7.5530 × 10−2 | 7.6708 × 10−2 |
110 | 3.6612 × 10−2 | 2.5000 × 10−2 | 3.7500 × 10−2 | 3.5730 × 10−2 | 3.6679 × 10−2 |
111 | 9.5151 × 10−3 | 1.3000 × 10−2 | 8.8000 × 10−3 | 9.5800 × 10−3 | 9.6760 × 10−3 |
MSRE | 0.0000 | 2.7843 × 10−3 | 1.1848 × 10−3 | 3.5423 × 10−4 | 1.5218 × 10−4 |
Basis States | Amplitudes | ||||
---|---|---|---|---|---|
Theoretical | 1000 Shots | 10,000 Shots | 100,000 Shots | 1,000,000 Shots | |
000 | 6.4670 × 10−2 | 5.4772 × 10−2 | 6.4031 × 10−2 | 6.6332 × 10−2 | 7.8088 × 10−1 |
001 | 2.6580 × 10−1 | 2.7749 × 10−1 | 2.6115 × 10−1 | 2.6327 × 10−1 | 1.2230 × 10−3 |
010 | 5.8332 × 10−2 | 0.0000 | 5.3852 × 10−2 | 5.8992 × 10−2 | 1.2901 × 10−1 |
011 | 1.2858 × 10−1 | 4.4721 × 10−2 | 1.3038 × 10−1 | 1.2869 × 10−1 | 7.5290 × 10−3 |
100 | 2.1557 × 10−2 | 1.3038 × 10−1 | 2.0000 × 10−2 | 2.4698 × 10−2 | 4.3500 × 10−4 |
101 | 7.8699 × 10−1 | 7.8613 × 10−1 | 7.9126 × 10−1 | 7.8765 × 10−1 | 1.2060 × 10−3 |
110 | 1.4082 × 10−1 | 1.5811 × 10−1 | 1.4142 × 10−1 | 1.4061 × 10−1 | 6.1714 × 10−2 |
111 | 5.1534 × 10−1 | 5.0794 × 10−1 | 5.1118 × 10−1 | 5.1524 × 10−1 | 1.8001 × 10−2 |
MSRE | 0.0000 | 4.4057 × 10−3 | 1.1436 × 10−3 | 5.5883 × 10−4 | 5.3591 × 10−5 |
Basis States | Probabilities | ||||
---|---|---|---|---|---|
Theoretical | 1000 Shots | 10,000 Shots | 100,000 Shots | 1,000,000 Shots | |
000 | 2.4760 × 10−1 | 2.3700 × 10−1 | 2.6950 × 10−1 | 2.4690 × 10−1 | 2.4702 × 10−1 |
001 | 2.2893 × 10−1 | 2.1600 × 10−1 | 5.9600 × 10−2 | 2.2967 × 10−1 | 2.2923 × 10−1 |
010 | 1.9445 × 10−1 | 2.0800 × 10−1 | 1.6100 × 10−1 | 1.9533 × 10−1 | 1.9501 × 10−1 |
011 | 1.4939 × 10−1 | 1.4400 × 10−1 | 2.2900 × 10−2 | 1.4907 × 10−1 | 1.4889 × 10−1 |
100 | 1.0061 × 10−1 | 1.1200 × 10−1 | 1.6010 × 10−1 | 9.9720 × 10−2 | 1.0080 × 10−1 |
101 | 5.5554 × 10−2 | 6.4000 × 10−2 | 1.1530 × 10−1 | 5.6180 × 10−2 | 5.5681 × 10−2 |
110 | 2.1066 × 10−2 | 1.5000 × 10−2 | 1.9350 × 10−1 | 2.0720 × 10−2 | 2.0991 × 10−2 |
111 | 2.4018 × 10−3 | 4.0000 × 10−3 | 1.8100 × 10−2 | 2.4100 × 10−3 | 2.3770 × 10−3 |
MSRE | 0.0000 | 3.3835 × 10−3 | 1.1433 × 10−3 | 2.2436 × 10−4 | 1.2787 × 10−4 |
Basis States | Amplitudes | ||||
---|---|---|---|---|---|
Theoretical | 1000 Shots | 10,000 Shots | 100,000 Shots | 1,000,000 Shots | |
000 | 8.4581 × 10−1 | 8.5323 × 10−1 | 8.4611 × 10−1 | 8.4414 × 10−1 | 8.4609 × 10−1 |
001 | 4.5045 × 10−1 | 4.3474 × 10−1 | 4.4452 × 10−1 | 4.5399 × 10−1 | 4.5016 × 10−1 |
010 | 4.7257 × 10−2 | 7.0711 × 10−2 | 5.0990 × 10−2 | 4.7011 × 10−2 | 4.7381 × 10−2 |
011 | 2.7948 × 10−2 | 0.0000 | 3.0000 × 10−2 | 2.9496 × 10−2 | 2.8018 × 10−2 |
100 | 6.5434 × 10−3 | 3.1623 × 10−2 | 1.0000 × 10−2 | 7.0711 × 10−3 | 6.2450 × 10−3 |
101 | 1.4990 × 10−1 | 1.5492 × 10−1 | 1.4866 × 10−1 | 1.5103 × 10−1 | 1.4971 × 10−1 |
110 | 2.3285 × 10−1 | 2.2583 × 10−1 | 2.4145 × 10−1 | 2.3141 × 10−1 | 2.3240 × 10−1 |
111 | 4.4181 × 10−2 | 4.4721 × 10−2 | 5.0000 × 10−2 | 4.2661 × 10−2 | 4.4621 × 10−2 |
MSRE | 0.0000 | 3.9186 × 10−3 | 1.6523 × 10−3 | 6.0945 × 10−4 | 1.0447 × 10−4 |
References
- Householder, A.S. Unitary Triangulation of a Nonsymmetric Matrix. J. ACM 1958, 5, 339–342. [Google Scholar] [CrossRef]
- Bindel, D.; Demmel, J.; Kahan, W.; Marques, O. On Computing Givens Rotations Reliably and Efficiently; LAPACK Working Note 148; UT-CS-00-449; University of Tennessee: Knoxville, TN, USA, 2001. [Google Scholar]
- Demmel, J.; Grigori, L.; Hoemmen, M.; Langou, J. Communication-optimal parallel and sequential QR and LU factorizations. SIAM J. Sci. Comp. 2012, 34, 206–239. [Google Scholar] [CrossRef]
- Grigoryan, A.M. New method of Givens rotations for triangularization of square matrices. J. Adv. Linear Algebra Matrix Theory (ALAMT) 2014, 4, 65–78. [Google Scholar] [CrossRef]
- Björck, A. Solving Linear Least Squares Problems by Gram-Schmidt Orthogonalization. BIT 1967, 7, 1–21. [Google Scholar] [CrossRef]
- Rutishause, H. Simultaneous Iteration Method for Symmetric Matrices. In Linear Algebra. Handbook for Automatic Computation; Bauer, F.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 186. [Google Scholar]
- Deutsch, D. Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Sci. 1989, 425, 73–90. [Google Scholar]
- Deutsch, D.; Barenco, A.; Ekert, A. Universality in quantum computation. Proc. R. Soc. Lond. A Math. Phys. Sci. 1995, 449, 669–677. [Google Scholar]
- Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.A.; Weinfurter, H. Elementary gates for quantum computation. Phys. Rev. A 1995, 52, 3457. [Google Scholar] [CrossRef]
- Knill, E. Approximation by Quantum Circuits; LANL Rep. LAUR-95-2225; Los Alamos National Laboratory: Los Alamos, NM, USA, 1995.
- Shende, V.V.; Markov, I.L. Quantum circuits for incompletely specified two-qubit operators. Quantum Inf. Comput. 2005, 5, 49–58. [Google Scholar] [CrossRef]
- Shende, V.V.; Bullock, S.S.; Markov, I.L. Synthesis of quantum logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2006, 25, 1000–1010. [Google Scholar] [CrossRef]
- Plesch, N.; Brukner, C. Quantum state preparation with universal gate decompositions. arXiv 2010, arXiv:1003.5760v2. [Google Scholar] [CrossRef]
- Vartiainen, J.J.; Möttönen, M.; Salomaa, M.M. Efficient decomposition of quantum gates. Phys. Rev. Lett. 2004, 92, 177902. [Google Scholar] [CrossRef] [PubMed]
- Möttönen, M.; Vartiainen, J.J.; Bergholm, V.; Salomaa, M.M. Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 2004, 93, 130502. [Google Scholar] [CrossRef]
- Mikko, M.; Vartiainen, J.J. Decompositions of general quantum gates. arXiv 2005, arXiv:quant-ph/0504100v1. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bergholm, V.; Vartiainen, J.J.; Möttönen, M.; Salomaa, M.M. Quantum circuits with uniformly controlled one-qubit gates. arXiv 2004, arXiv:quant-ph/0410066v2. [Google Scholar] [CrossRef]
- Frdoriaka, D. Decomposition of unitary matrix into quantum gates. arXiv 2025, arXiv:2501.07786. [Google Scholar]
- Ahmed, N.; Rao, K.R. Orthogonal Transforms for Digital Signal Processing; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Elliot, D.F.; Rao, K.R. Fast Transforms—Algorithms, Analyzes, and Applications; Academic: New York, NY, USA, 1982. [Google Scholar]
- Blahut, R.E. Fast Algorithms for Digital Signal Processing; Addison-Wesley: Reading, MA, USA, 1985. [Google Scholar]
- Bracewell, R.N. The Hartley Transform; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Grigoryan, A.M.; Grigoryan, M.M. Brief Notes in Advanced DSP: Fourier Analysis with MATLAB; CRC Press, Taylor, and Francis Group: Abingdon, UK, 2009. [Google Scholar]
- Vetterli, M.; Ligtenberg, A. A Discrete Fourier-cosine Transform Chip. IEEE J. Sel. Areas Commun. 1986, 4, 49–61. [Google Scholar] [CrossRef]
- Tseng, C.C.; Hwang, T.M. Quantum circuit design of 8×8 discrete cosine transform using its fast computation flow graph. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, Japan, 23–26 May 2005; Volume 1, pp. 828–831. [Google Scholar]
- Rao, K.R.; Yip, R. Discrete cosine transform: Algorithms, Advantages, and Applications; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Rötteler, M.; Püschel, M.; Beth, T. Fast Signal Transforms for Quantum Computers. 1999, pp. 31–43. Available online: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Fast-Signal-Transforms-for-Quantum-Computers.pdf (accessed on 31 March 2025).
- Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Tseng, C.C.; Hwang, T.M. Quantum circuit design of 8×8 discrete Hartley transform. In Proceedings of the 2004 IEEE International Symposium on Circuits and Systems (ISCAS), Vancouver, BC, Canada, 23–26 May 2004; p. III-397. [Google Scholar]
- Grigoryan, A.M. 2-D and 1-D multi-paired transforms: Frequency-time type wavelets. IEEE Trans. Signal Process. 2001, 49, 344–353. [Google Scholar] [CrossRef]
- Grigoryan, A.M.; Agaian, S.S. Paired quantum Fourier transform with log2N Hadamard gates. Quantum Inf. Process. 2019, 18, 217. [Google Scholar] [CrossRef]
- Cybenko, G. Reducing quantum computations to elementary unitary operations. Comput. Sci. Eng. 2001, 3, 27–32. [Google Scholar] [CrossRef]
- Grigoryan, A.M. Fast Heap transform-based QR-decomposition of real and complex matrices: Algorithms and codes, [9411-21]. In Proceedings of the SPIE vol. 9411, 2015 Electronic Imaging: Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2015, San Francisco, CA, USA, 10–11 February 2015. [Google Scholar]
- Grigoryan, A.M.; Grigoryan, M.M. Nonlinear approach of construction of fast unitary transforms. In Proceedings of the 2006 40th Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, 22–24 March 2006; pp. 1073–1078. [Google Scholar] [CrossRef]
- Grigoryan, A.M.; Agaian, S.S. Quantum Image Processing in Practice: A Mathematical Toolbox; Wiley: Hoboken, NJ, USA, 2025; 320p. [Google Scholar]
- Qiskit Development Team. Qiskit: An Open-Source Framework for Quantum Computing, Version 1.3.2, Computer software. IBM Quantum: Armonk, NY, USA, 2019.
- Bärtschi, A.; Eidenbenz, S. Deterministic preparation of Dicke states. arXiv 2019, arXiv:1904.07358. [Google Scholar]
- Zhang, X.M.; Li, T.; Yuan, X. Quantum state preparation with optimal circuit depth: Implementations and applications. arXiv 2023, arXiv:2201.11495v4. [Google Scholar] [CrossRef] [PubMed]
- Volya, D.; Mishra, P. State preparation on quantum computers via quantum steering. arXiv 2023, arXiv:2302.13518v3. [Google Scholar] [CrossRef]
- Pinto, D.F.; Friedrich, L.; Maziero, J. Preparing general mixed quantum states on quantum computers. arXiv 2024, arXiv:2402.04212. [Google Scholar]
- Grigoryan, A.M. Effective methods of QR-decompositions of square complex matrices by fast discrete signal-induced heap transforms. Adv. Linear Algebra Matrix Theory (ALAMT) 2023, 12, 87–110. [Google Scholar] [CrossRef]
Path | # Rotations | # Non-Ajacent Planes | # Permutations | Depth |
---|---|---|---|---|
#1 | 3 | 1 | 1 | 3 |
#2 | 3 | 1 | 1 | 3 |
#3 | 3 | 0 | 0 | 2 |
Basis States | Probabilities | ||||
---|---|---|---|---|---|
Theoretical | 1000 Shots | 10,000 Shots | 100,000 Shots | 1,000,000 Shots | |
00 | 6.6667 × 10−2 | 8.0000 × 10−2 | 7.0000 × 10−2 | 6.6070 × 10−2 | 6.6823 × 10−2 |
01 | 2.6667 × 10−1 | 2.7200 × 10−1 | 2.6600 × 10−1 | 2.6618 × 10−1 | 2.6680 × 10−1 |
10 | 6.0000 × 10−1 | 5.7500 × 10−1 | 6.0090 × 10−1 | 6.0075 × 10−1 | 5.9999 × 10−1 |
11 | 6.6667 × 10−2 | 7.3000 × 10−2 | 6.3100 × 10−2 | 6.7000 × 10−2 | 6.6393 × 10−2 |
MSRE | 0 | 7.3796 × 10−3 | 1.2522 × 10−3 | 2.8134 × 10−4 | 8.5119 × 10−5 |
QsiHT | # Rotations | # Non-Adjacent Planes | # Permutations/CNOTs | Depth |
---|---|---|---|---|
1 | 0 | 0 | 1 | |
2 | 0 | 0 | 2 | |
3 | 0 | 0 | 2 | |
4 | 0 | 0 | 3 | |
5 | 0 | 0 | 3 | |
6 | 0 | 0 | 4 | |
7 | 0 | 0 | 3 | |
Total | 28 | 0 | 0 | 18 |
253.6751 | |||||||
13 | |||||||
QsiHT | # Rotation Gates | # Permutations/CNOTs | Depth |
---|---|---|---|
0 | 0 | 0 | |
1 | 0 | 1 | |
3 | 0 | 2 | |
4 | 0 | 3 | |
5 | 0 | 3 | |
6 | 0 | 4 | |
3 | 0 | 3 | |
Total | 22 | 0 | 16 − 1 = 15 |
# Rotation Gates | # Permutations/CNOTs | Depth | |
---|---|---|---|
QR by QsiHT | 22 | 0 | 18 |
QCD | 12 | 12 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoryan, A.M.; Gomez, A.; Espinoza, I.; Agaian, S.S. Signal-Induced Heap Transform-Based QR-Decomposition and Quantum Circuit for Implementing 3-Qubit Operations. Information 2025, 16, 466. https://doi.org/10.3390/info16060466
Grigoryan AM, Gomez A, Espinoza I, Agaian SS. Signal-Induced Heap Transform-Based QR-Decomposition and Quantum Circuit for Implementing 3-Qubit Operations. Information. 2025; 16(6):466. https://doi.org/10.3390/info16060466
Chicago/Turabian StyleGrigoryan, Artyom M., Alexis Gomez, Isaac Espinoza, and Sos S. Agaian. 2025. "Signal-Induced Heap Transform-Based QR-Decomposition and Quantum Circuit for Implementing 3-Qubit Operations" Information 16, no. 6: 466. https://doi.org/10.3390/info16060466
APA StyleGrigoryan, A. M., Gomez, A., Espinoza, I., & Agaian, S. S. (2025). Signal-Induced Heap Transform-Based QR-Decomposition and Quantum Circuit for Implementing 3-Qubit Operations. Information, 16(6), 466. https://doi.org/10.3390/info16060466