Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = Geographic Information Systems (GISs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10490 KiB  
Article
A Web-Based Distribution Network Geographic Information System with Protective Coordination Functionality
by Jheng-Lun Jiang, Tung-Sheng Zhan and Ming-Tang Tsai
Energies 2025, 18(15), 4127; https://doi.org/10.3390/en18154127 - 4 Aug 2025
Viewed by 24
Abstract
In the modern era of smart grids, integrating advanced Geographic Information Systems (GISs) with protection coordination functionalities is pivotal for enhancing the reliability and efficiency of distribution networks. This paper presents an implementation of a web-based distribution network GIS platform that seamlessly integrates [...] Read more.
In the modern era of smart grids, integrating advanced Geographic Information Systems (GISs) with protection coordination functionalities is pivotal for enhancing the reliability and efficiency of distribution networks. This paper presents an implementation of a web-based distribution network GIS platform that seamlessly integrates distribution system feeder GIS monitoring with the system model file layout, fault current analysis, and coordination simulation functions. The system can provide scalable and accessible solutions for power utilities, ensuring that protective devices operate in a coordinated manner to minimize outage impacts and improve service restoration times. The proposed GIS platform has demonstrated significant improvements in fault management and relay coordination through extensive simulation and field testing. This research advances the capabilities of distribution network management and sets a foundation for future enhancements in smart grid technology. Full article
Show Figures

Figure 1

23 pages, 22378 KiB  
Article
Counter-Cartographies of Extraction: Mapping Socio-Environmental Changes Through Hybrid Geographic Information Technologies
by Mitesh Dixit, Nataša Danilović Hristić and Nebojša Stefanović
Land 2025, 14(8), 1576; https://doi.org/10.3390/land14081576 - 1 Aug 2025
Viewed by 165
Abstract
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice [...] Read more.
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice zone”—an area deliberately subjected to harm for broader economic interests. Employing a hybrid methodology that combines ethnographic fieldwork with Geographic Information Systems (GISs), this study spatializes narratives of extractive violence collected from residents through walking interviews, field sketches, and annotated aerial imagery. By integrating satellite data, legal documents, environmental sensors, and lived testimonies, it uncovers the concept of “slow violence,” where incremental harm occurs through bureaucratic neglect, ambient pollution, and legal ambiguity. Critiquing the abstraction of Planetary Urbanization theory, this research employs countertopography and forensic spatial analysis to propose a counter-cartographic framework that integrates geospatial analysis with local narratives. It demonstrates how global mining finance manifests locally through tangible experiences, such as respiratory illnesses and disrupted community relationships, emphasizing the potential of counter-cartography as a tool for visualizing and contesting systemic injustice. Full article
Show Figures

Figure 1

16 pages, 1873 KiB  
Systematic Review
A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
by Ayda Zaroujtaghi, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati and Ali Soltani
Future Transp. 2025, 5(3), 97; https://doi.org/10.3390/futuretransp5030097 (registering DOI) - 1 Aug 2025
Viewed by 158
Abstract
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data [...] Read more.
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data models, methodologies, and outcomes from 2004 to 2024. This study addresses this gap through a longitudinal analysis of GIS-based transportation research from 2004 to 2024, adhering to PRISMA guidelines. By conducting a mixed-methods analysis of 241 peer-reviewed articles, this study delineates major trends, such as increased emphasis on sustainability, equity, stakeholder involvement, and the incorporation of advanced technologies. Prominent domains include land use–transportation coordination, accessibility, artificial intelligence, real-time monitoring, and policy evaluation. Expanded data sources, such as real-time sensor feeds and 3D models, alongside sophisticated modeling techniques, enable evidence-based, multifaceted decision-making. However, challenges like data limitations, ethical concerns, and the need for specialized expertise persist, particularly in developing regions. Future geospatial innovations should prioritize the responsible adoption of emerging technologies, inclusive capacity building, and environmental justice to foster equitable and efficient transportation systems. This review highlights GIS’s evolution from a supplementary tool to a cornerstone of data-driven, sustainable urban mobility planning, offering insights for researchers, practitioners, and policymakers to advance transportation strategies that align with equity and sustainability goals. Full article
Show Figures

Figure 1

24 pages, 1016 KiB  
Article
Harnessing Intelligent GISs for Educational Innovation: A Bibliometric Analysis of Real-Time Data Models
by Eloy López-Meneses, Irene-Magdalena Palomero-Ilardia, Noelia Pelícano-Piris and María-Belén Morales-Cevallos
Educ. Sci. 2025, 15(8), 976; https://doi.org/10.3390/educsci15080976 - 29 Jul 2025
Viewed by 343
Abstract
This study explores the potential of Intelligent Geographic Information Systems (GISs) in advancing educational practices through the integration of real-time data models. The objective is to investigate how GIS technology can enhance teaching and learning by providing interactive and dynamic learning environments. The [...] Read more.
This study explores the potential of Intelligent Geographic Information Systems (GISs) in advancing educational practices through the integration of real-time data models. The objective is to investigate how GIS technology can enhance teaching and learning by providing interactive and dynamic learning environments. The research employs a bibliometric analysis based on the Scopus database, covering the period from 2000 to 2024, to identify key trends, the evolution of GIS applications in education, and their pedagogical impact. Findings reveal that GISs, particularly when incorporating real-time data, enable a more immersive learning experience, facilitate data-driven decision-making, and promote student engagement through project-based learning. However, challenges such as the lack of specialized training for educators and limitations in technological infrastructure remain significant barriers to widespread adoption. The study concludes that Intelligent GISs have the potential to transform education by fostering personalized, interdisciplinary learning and enhancing educational management. It emphasizes the need for further research aimed at developing user-friendly systems and addressing ethical concerns to ensure the benefits of GIS technology are accessible to all students. Future studies should examine the long-term effects of GISs on student outcomes and explore their integration into diverse educational contexts. Full article
Show Figures

Figure 1

20 pages, 9605 KiB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 - 28 Jul 2025
Viewed by 431
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

24 pages, 3066 KiB  
Article
Urban Flood Susceptibility Mapping Using GIS and Analytical Hierarchy Process: Case of City of Uvira, Democratic Republic of Congo
by Isaac Bishikwabo, Hwaba Mambo, John Kowa Kamanda, Chérifa Abdelbaki, Modester Alfred Nanyunga and Navneet Kumar
GeoHazards 2025, 6(3), 38; https://doi.org/10.3390/geohazards6030038 - 21 Jul 2025
Viewed by 382
Abstract
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy [...] Read more.
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Making approach. It integrates eight factors contributing to flood occurrence: distance from water bodies, elevation, slope, rainfall intensity, drainage density, soil type, topographic wetness index, and land use/land cover. The results indicate that proximity to water bodies, drainage density and slope are the most influential factors driving flood susceptibility in Uvira. Approximately 87.3% of the city’s land area is classified as having high to very high flood susceptibility, with the most affected zones concentrated along major rivers and the shoreline of Lake Tanganyika. The reliability of the AHP-derived weights is validated by a consistency ratio of 0.008, which falls below the acceptable threshold of 0.1. This research provides valuable insights to support urban planning and inform flood management strategies. Full article
Show Figures

Figure 1

34 pages, 16612 KiB  
Article
Identification of Optimal Areas for the Cultivation of Genetically Modified Cotton in Mexico: Compatibility with the Center of Origin and Centers of Genetic Diversity
by Antonia Macedo-Cruz
Agriculture 2025, 15(14), 1550; https://doi.org/10.3390/agriculture15141550 - 19 Jul 2025
Viewed by 354
Abstract
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting [...] Read more.
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting and harvest dates based on agroclimatic conditions, such as temperature, precipitation, and soil type, as well as identifying areas with a lower risk of water or thermal stress. As a result, cotton productivity is optimized, and costs associated with supplementary irrigation or losses due to adverse conditions are reduced. However, data from automatic weather stations in Mexico are scarce and incomplete. Instead, grid meteorological databases (DMM, in Spanish) were used with daily temperature and precipitation data from 1983 to 2020 to determine the heat units (HUs) for each cotton crop development stage; daily and accumulated HU; minimum, mean, and maximum temperatures; and mean annual precipitation. This information was used to determine areas that comply with environmental, geographic, and regulatory conditions (NOM-059-SEMARNAT-2010, NOM-026-SAG/FITO-2014) to delimit areas with agricultural potential for planting genetically modified (GM) cotton. The methodology made it possible to produce thirty-four maps at a 1:250,000 scale and a digital GIS with 95% accuracy. These maps indicate whether a given agricultural parcel is optimal for cultivating GM cotton. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

33 pages, 39261 KiB  
Article
Assessing Geohazards on Lefkas Island, Greece: GIS-Based Analysis and Public Dissemination Through a GIS Web Application
by Eleni Katapodi and Varvara Antoniou
Appl. Sci. 2025, 15(14), 7935; https://doi.org/10.3390/app15147935 - 16 Jul 2025
Viewed by 350
Abstract
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety [...] Read more.
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety of residents and the island’s tourism-dependent economy, particularly due to its seismic activity and Mediterranean climate. By combining the Sendai Framework for Disaster Risk Reduction with GIS capabilities, we created detailed hazard maps that visually represent areas of susceptibility and provide critical insights for local authorities and the public. The web application developed serves as a user-friendly platform for disseminating hazard information and educational resources, thus promoting community preparedness and resilience. The findings highlight the necessity for proactive land management strategies and community engagement in disaster risk reduction efforts. This study underscores GIS’s pivotal role in fostering informed decision making and enhancing the safety of Lefkas Island’s inhabitants and visitors in the face of environmental challenges. Full article
(This article belongs to the Special Issue Emerging GIS Technologies and Their Applications)
Show Figures

Figure 1

21 pages, 1415 KiB  
Review
Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment
by Su-Ok Hwang, Byeong-Hun Han, Hyo-Gyeom Kim and Baik-Ho Kim
Hydrobiology 2025, 4(3), 19; https://doi.org/10.3390/hydrobiology4030019 - 16 Jul 2025
Viewed by 509
Abstract
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system [...] Read more.
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system was applied to four representative river basins—the Mississippi, Amazon, Yangtze, and Danube—demonstrating enhanced predictive accuracy (up to 94%), spatial pollution mapping precision (85–95%), and species detection sensitivity (+18–30%) compared to conventional methods. Furthermore, the framework reduces operational costs by up to 40%, highlighting its potential for cost-effective deployment in low-resource regions. Despite its strengths, challenges persist in the areas of regulatory acceptance, data standardization, and digital infrastructure. We recommend legal recognition of AI and eDNA indicators, investment in explainable AI (XAI), and global data harmonization initiatives. The integrated AI-GIS-eDNA framework offers a scalable and policy-relevant tool for adaptive freshwater governance in the Anthropocene. Full article
(This article belongs to the Special Issue Ecosystem Disturbance in Small Streams)
Show Figures

Figure 1

31 pages, 5716 KiB  
Article
Quantitative Assessment of Flood Risk Through Multi Parameter Morphometric Analysis and GeoAI: A GIS-Based Study of Wadi Ranuna Basin in Saudi Arabia
by Maram Hamed AlRifai, Abdulla Al Kafy and Hamad Ahmed Altuwaijri
Water 2025, 17(14), 2108; https://doi.org/10.3390/w17142108 - 15 Jul 2025
Viewed by 473
Abstract
The integration of traditional geomorphological approaches with advanced artificial intelligence techniques represents a promising frontier in flood risk assessment for arid regions. This study presents a comprehensive analysis of the Wadi Ranuna basin in Medina, Saudi Arabia, combining detailed morphometric parameters with advanced [...] Read more.
The integration of traditional geomorphological approaches with advanced artificial intelligence techniques represents a promising frontier in flood risk assessment for arid regions. This study presents a comprehensive analysis of the Wadi Ranuna basin in Medina, Saudi Arabia, combining detailed morphometric parameters with advanced Geospatial Artificial Intelligence (GeoAI) algorithms to enhance flood susceptibility modeling. Using digital elevation models (DEMs) and geographic information systems (GISs), we extracted 23 morphometric parameters across 67 sub-basins and applied XGBoost, Random Forest, and Gradient Boosting (GB) models to predict both continuous flood susceptibility indices and binary flood occurrences. The machine learning models utilize morphometric parameters as input features to capture complex non-linear interactions, including threshold-dependent relationships where the stream frequency impact intensifies above 3.0 streams/km2, and the compound effects between the drainage density and relief ratio. The analysis revealed that the basin covers an area of 188.18 km2 with a perimeter of 101.71 km and contains 610 streams across six orders. The basin exhibits an elongated shape with a form factor of 0.17 and circularity ratio of 0.23, indicating natural flood-moderating characteristics. GB emerged as the best-performing model, achieving an RMSE of 6.50 and an R2 value of 0.9212. Model validation through multi-source approaches, including field verification at 35 locations, achieved 78% spatial correspondence with documented flood events and 94% accuracy for very high susceptibility areas. SHAP analysis identified the stream frequency, overland flow length, and drainage texture as the most influential predictors of flood susceptibility. K-Means clustering uncovered three morphometrically distinct zones, with Cluster 1 exhibiting the highest flood risk potential. Spatial analysis revealed 67% of existing infrastructure was located within high-risk zones, with 23 km of major roads and eight critical facilities positioned in flood-prone areas. The spatial distribution of GBM-predicted flood susceptibility identified high-risk zones predominantly in the central and southern parts of the basin, covering 12.3% (23.1 km2) of the total area. This integrated approach provides quantitative evidence for informed watershed management decisions and demonstrates the effectiveness of combining traditional morphometric analysis with advanced machine learning techniques for enhanced flood risk assessment in arid regions. Full article
Show Figures

Figure 1

19 pages, 9752 KiB  
Article
Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains
by Imon Abedin, Tanoy Mukherjee, Shantanu Kundu, Sanjib Baruah, Pralip Kumar Narzary, Joynal Abedin and Hilloljyoti Singha
Earth 2025, 6(3), 78; https://doi.org/10.3390/earth6030078 - 12 Jul 2025
Viewed by 308
Abstract
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from [...] Read more.
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from its designation as a national park in 2000 through 2024. The satellite imagery was used to classify LULC types and track landscape changes over time. In 2000, grasslands were the dominant land cover (28.78%), followed by semi-evergreen forests (25.58%). By 2013, shrubland became the most prominent class (81.31 km2), and degraded forest expanded to 75.56 km2. During this period, substantial areas of grassland (29.94 km2), degraded forest (10.87 km2), semi-evergreen forest (12.33 km2), and bareland (10.50 km2) were converted to shrubland. In 2024, degraded forest further increased, covering 80.52 km2 (23.47%). This change resulted since numerous areas of shrubland (11.46 km2) and semi-evergreen forest (27.48 km2) were converted into degraded forest. Furthermore, significant shifts were observed in grassland, shrubland, and degraded forest, indicating a substantial and consistent decline in grassland. These changes are largely attributed to recurring Brahmaputra River floods and increasing anthropogenic pressures. This study recommends a targeted Grassland Recovery Project, control of invasive species, improved surveillance, increased staffing, and the relocation of forest villages to reduce human impact and support community-based conservation efforts. Hence, protecting the landscape through informed LULC-based management can help maintain critical habitat patches, mitigate anthropogenic degradation, and enhance the survival prospects of native floral and faunal assemblages in DSNP. Full article
Show Figures

Figure 1

33 pages, 725 KiB  
Review
Individual and Synergistic Contributions of GIS, Remote Sensing, and AI in Advancing Climate-Resilient Agriculture
by Cristian-Dumitru Mălinaș, Florica Matei, Ioana Delia Pop, Tudor Sălăgean and Anamaria Mălinaș
AgriEngineering 2025, 7(7), 230; https://doi.org/10.3390/agriengineering7070230 - 10 Jul 2025
Viewed by 656
Abstract
Agriculture faces a dual challenge in the context of climate change, serving as both a significant contributor to greenhouse gas (GHG) emissions and a sector highly vulnerable to its impacts. Addressing this requires a transition toward climate-resilient agriculture (CRA). Emerging technologies, including geospatial [...] Read more.
Agriculture faces a dual challenge in the context of climate change, serving as both a significant contributor to greenhouse gas (GHG) emissions and a sector highly vulnerable to its impacts. Addressing this requires a transition toward climate-resilient agriculture (CRA). Emerging technologies, including geospatial tools (e.g., Geographic Information Systems (GISs) and remote sensing (RS)), as well as artificial intelligence (AI), offer promising methods to support this transition. However, their individual capabilities, limitations, and appropriate applications are not always well understood or clearly delineated in the literature. A common issue is the frequent overlap between GISs and RS, with many studies assessing GIS contributions while concurrently employing RS techniques, without explicitly distinguishing between the two (or vice versa). In this sense, the objective of this review is to conduct a critical analysis of the existing state of the art in terms of the distinct roles, limitations, and complementarities of GISs, RS, and AI in advancing CRA, guided by an original definition we propose for CRA (structured around three key dimensions and their corresponding targets). Furthermore, this review introduces a synthesis matrix that integrates both the individual contributions and the synergistic potential of these technologies. This synergy-focused matrix offers not just a summary, but a practical decision support matrix that could be used by researchers, practitioners, and policymakers in selecting the most appropriate technological configuration for their objectives in CRA-related work. Such support is increasingly needed, especially considering that RS and AI have experienced exponential growth in the past five years, while GISs, despite being the more established “big brother” among these technologies, remain underutilized and is often insufficiently understood in agricultural applications. Full article
Show Figures

Graphical abstract

28 pages, 10581 KiB  
Article
A Textual Semantic Analysis Framework Integrating Geographic Metaphors and GIS-Based Spatial Analysis Methods
by Yu Liu, Zhen Ren, Kaifeng Wang, Qin Tian, Xi Kuai and Sheng Li
Symmetry 2025, 17(7), 1064; https://doi.org/10.3390/sym17071064 - 4 Jul 2025
Viewed by 440
Abstract
Geographic information systems (GISs) have shown considerable promise in enhancing textual semantic analysis. Current textual semantic analysis methods face significant limitations in accurately delineating semantic boundaries, identifying semantic clustering patterns, and representing knowledge evolution. To address these issues, this study proposes a framework [...] Read more.
Geographic information systems (GISs) have shown considerable promise in enhancing textual semantic analysis. Current textual semantic analysis methods face significant limitations in accurately delineating semantic boundaries, identifying semantic clustering patterns, and representing knowledge evolution. To address these issues, this study proposes a framework that innovatively introduces GIS methods into textual semantic analysis and aligns them with the conceptual foundation of geographical metaphor theory. Specifically, word embedding models are employed to endow semantic primitives with comprehensive, high-dimensional semantic representations. GIS methods and geographical metaphors are subsequently utilized to project both semantic primitives and their relationships into a low-dimensional geospatial analog, thereby constructing a semantic space model that facilitates accurate delineation of semantic boundaries. On the basis of this model, spatial correlation measurements are adopted to reveal underlying semantic patterns, while knowledge evolution is represented using ArcGIS 10.7-based visualization techniques. Experiments on social media data validate the effectiveness of the framework in semantic boundary delineation and clustering pattern identification. Moreover, the framework supports dynamic three-dimensional visualization of topic evolution. Importantly, by employing specialized visualization methods, the proposed framework enables the intuitive representation of semantic symmetry and asymmetry within semantic spaces. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Data Mining)
Show Figures

Figure 1

17 pages, 7452 KiB  
Article
A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas
by Francesco Rouhana and Dima Jawad
ISPRS Int. J. Geo-Inf. 2025, 14(7), 261; https://doi.org/10.3390/ijgi14070261 - 3 Jul 2025
Viewed by 467
Abstract
Critical transportation networks in developing countries often lack structural robustness and functional redundancy due to insufficient planning and preparedness. These deficiencies increase vulnerability to disruptions and impede effective post-disaster response and recovery. Understanding how such networks perform under stress is essential to improving [...] Read more.
Critical transportation networks in developing countries often lack structural robustness and functional redundancy due to insufficient planning and preparedness. These deficiencies increase vulnerability to disruptions and impede effective post-disaster response and recovery. Understanding how such networks perform under stress is essential to improving resilience in hazard-prone urban environments. This paper presents an integrated predictive methodology for assessing the operational resilience of urban transportation networks under extreme events, specifically tailored to data-scarce and high-risk contexts. By combining Geographic Information Systems (GISs) with complex network theory, the framework captures both spatial and topological dependencies. The methodology is applied to Beirut, the capital of Lebanon, a densely populated and disaster-prone Mediterranean city, through scenario-based simulations that account for interdependent stressors such as traffic dynamics, structural fragility, and geophysical hazards. Results reveal that the network exhibits low redundancy and high sensitivity to even minor disruptions, leading to rapid performance degradation. These findings indicate that the network should be classified as highly vulnerable. The study offers a robust framework for assessing infrastructure resilience and supporting evidence-based decision-making in critical urban network management. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation)
Show Figures

Figure 1

26 pages, 9203 KiB  
Article
Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis
by A A Alazba, Amr Mossad, Hatim M. E. Geli, Ahmed El-Shafei, Ahmed Elkatoury, Mahmoud Ezzeldin, Nasser Alrdyan and Farid Radwan
Land 2025, 14(6), 1302; https://doi.org/10.3390/land14061302 - 18 Jun 2025
Viewed by 566
Abstract
Drought, a natural phenomenon intricately intertwined with the broader canvas of climate change, exacts a heavy toll by ushering in acute terrestrial water scarcity. Its ramifications reverberate most acutely within the agricultural heartlands, particularly those nestled in arid regions. To address this pressing [...] Read more.
Drought, a natural phenomenon intricately intertwined with the broader canvas of climate change, exacts a heavy toll by ushering in acute terrestrial water scarcity. Its ramifications reverberate most acutely within the agricultural heartlands, particularly those nestled in arid regions. To address this pressing issue, this study harnesses the temperature vegetation dryness index (TVDI) as a robust drought indicator, enabling a granular estimation of land water content trends. This endeavor unfolds through the sophisticated integration of geographic information systems (GISs) and remote sensing technologies (RSTs). The methodology bedrock lies in the judicious utilization of 72 high-resolution satellite images captured by the Landsat 7 and 8 platforms. These images serve as the foundational building blocks for computing TVDI values, a key metric that encapsulates the dynamic interplay between the normalized difference vegetation index (NDVI) and the land surface temperature (LST). The findings resonate with significance, unveiling a conspicuous and statistically significant uptick in the TVDI time series. This shift, observed at a confidence level of 0.05 (ZS = 1.648), raises a crucial alarm. Remarkably, this notable surge in the TVDI exists in tandem with relatively insignificant upticks in short-term precipitation rates and LST, at statistically comparable significance levels. The implications are both pivotal and starkly clear: this profound upswing in the TVDI within agricultural domains harbors tangible environmental threats, particularly to groundwater resources, which form the lifeblood of these regions. The call to action resounds strongly, imploring judicious water management practices and a conscientious reduction in water withdrawal from reservoirs. These measures, embraced in unison, represent the imperative steps needed to defuse the looming crisis. Full article
Show Figures

Figure 1

Back to TopTop