Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (215)

Search Parameters:
Keywords = GdFe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1989 KB  
Article
Theranostic Verteporfin-Conjugated Upconversion Nanoparticles for Cancer Treatment
by Oleksandr Shapoval, Vitalii Patsula, David Větvička, Miroslav Šlouf, Martina Kabešová, Taras Vasylyshyn, Ludmila Maffei Svobodová, Magdalena Konefal, Olga Kočková, Jan Pankrác, Petr Matouš, Vít Herynek and Daniel Horák
Nanomaterials 2025, 15(22), 1690; https://doi.org/10.3390/nano15221690 (registering DOI) - 7 Nov 2025
Abstract
Photodynamic therapy (PDT) is a highly selective, clinically approved, minimally invasive technique that effectively eliminates cancer cells. Its effectiveness is limited by poor light penetration into tissue and the hydrophobic nature of photosensitizers, highlighting the need for new approaches to treatment. Here, a [...] Read more.
Photodynamic therapy (PDT) is a highly selective, clinically approved, minimally invasive technique that effectively eliminates cancer cells. Its effectiveness is limited by poor light penetration into tissue and the hydrophobic nature of photosensitizers, highlighting the need for new approaches to treatment. Here, a theranostic upconversion nanoplatform, consisting of a NaYF4:Yb,Er,Tm,Fe core and a NaHoF4 shell codoped with Yb, Nd, Gd and Tb ions, was designed to enhance PDT outcomes by integrating multi-wavelength upconversion luminescence, T2-weighted magnetic resonance imaging (MRI) and PDT. The synthesized core–shell upconversion nanoparticles (CS-UCNPs) were coated with new verteporfin (VP)-conjugated alendronate-terminated poly(N,N-dimethylacrylamide-co-2-aminoethyl acrylate) [Ale-P(DMA-AEA)] grafted with poly(ethylene glycol) (PEG). Under 980 nm NIR irradiation, CS-UCNP@Ale-P(DMA-AEA)-PEG-VP nanoparticles generated reactive oxygen species (ROS) due to the efficient energy transfer between CS-UCNPs and VP. In a pilot preclinical study, intratumoral administration of nanoparticle conjugates to mice, followed by exposure to NIR light, induced necrosis of pancreatic tumor and suppressed its growth. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

24 pages, 4939 KB  
Article
Engineering Rare Earth-Assisted Cobalt Oxide Gels Toward Superior Energy Storage in Asymmetric Supercapacitors
by Pritam J. Morankar, Rutuja U. Amate, Aviraj M. Teli, Aditya A. Patil, Sonali A. Beknalkar and Chan-Wook Jeon
Gels 2025, 11(11), 867; https://doi.org/10.3390/gels11110867 - 29 Oct 2025
Viewed by 320
Abstract
The rational design of transition metal oxides with tailored electronic structures and defect chemistries is critical for advancing high-performance supercapacitors. Herein, we report the engineering of cobalt oxide (Co3O4) gels through controlled sol–gel synthesis and rare earth (RE) incorporation [...] Read more.
The rational design of transition metal oxides with tailored electronic structures and defect chemistries is critical for advancing high-performance supercapacitors. Herein, we report the engineering of cobalt oxide (Co3O4) gels through controlled sol–gel synthesis and rare earth (RE) incorporation using neodymium (Nd), gadolinium (Gd), and dual neodymium/gadolinium (Nd/Gd) doping. X-ray diffraction (XRD) confirmed the preservation of the cubic spinel structure with systematic peak shifts and broadening, evidencing lattice strain, oxygen vacancy generation, and defect enrichment. Field-emission scanning electron microscopy (FE-SEM) analyses revealed distinct morphological evolution from compact nanoparticle assemblies in pristine Co3O4 to highly porous, interconnected frameworks in Nd/Gd–Co3O4 (Nd/Gd-Co). X-ray photoelectron spectroscopy (XPS) verified the stable incorporation of RE ions, accompanied by electronic interaction with the Co–O matrix and enhanced oxygen defect states. Electrochemical measurements demonstrated that the Nd/Gd–Co electrode achieved a remarkable areal capacitance of 25 F/cm2 at 8 mA/cm2, superior ionic diffusion coefficients, and the lowest equivalent series resistance (0.26 Ω) among all samples. Long-term cycling confirmed 84.35% capacitance retention with 94.46% coulombic efficiency after 12,000 cycles. Furthermore, the asymmetric pouch-type supercapacitor (APSD) constructed with Nd/Gd–Co as the positive electrode and activated carbon as the negative electrode delivered a wide operational window of 1.5 V, an areal capacitance of 140 mF/cm2, an energy density of 0.044 mWh/cm2, and 89.44% retention after 7000 cycles. These findings establish Nd/Gd-Co gels as robust and scalable electrode materials and demonstrate that RE co-doping is an effective strategy for bridging high energy density with long-term electrochemical stability in asymmetric supercapacitors. Full article
(This article belongs to the Special Issue Gel-Based Materials for Energy Storage)
Show Figures

Figure 1

14 pages, 3663 KB  
Article
Structural Robustness Engineering for NiFe Metal-Supported Solid Oxide Fuel Cells
by Haipeng Zhang, Shuai Luo, Pinghui Lin, Xu Lin, Xianghui Liu, Jiaqi Qian, Chenghui Lin, Zixiang Cheng, Na Ai, San Ping Jiang and Kongfa Chen
Catalysts 2025, 15(9), 832; https://doi.org/10.3390/catal15090832 - 1 Sep 2025
Viewed by 712
Abstract
The chromium-free oxide precursor strategy effectively avoids chromium volatilization and electrode contamination in metal-supported solid oxide fuel cells (MS-SOFCs), while enabling high-temperature co-sintering in air to simplify the fabrication process. However, the drastic microstructural coarsening, dimensional shrinkage, and thermal expansion mismatch with adjacent [...] Read more.
The chromium-free oxide precursor strategy effectively avoids chromium volatilization and electrode contamination in metal-supported solid oxide fuel cells (MS-SOFCs), while enabling high-temperature co-sintering in air to simplify the fabrication process. However, the drastic microstructural coarsening, dimensional shrinkage, and thermal expansion mismatch with adjacent components of such substrates during high-temperature sintering, reduction, and thermal cycling collectively contribute to the interfacial instability and structural degradation of MS-SOFCs. Herein, we address these issues by incorporating a small amount of Gd0.1Ce0.9O1.95 (GDC) to the NiO-Fe2O3 (NFO) substrate. The incorporation of GDC significantly enhances the sintering compatibility and reduction stability of the MS-SOFCs, alleviating the stress-induced warping and distortion. Moreover, the GDC phase has a pinning effect to suppressing the coarsening of the substrates during high-temperature sintering and reduction processes, enhancing mechanical integrity and structural robustness of the single cell. With 15 wt% GDC incorporated into the NiFe substrate, the corresponding MS-SOFC with GDC electrolyte film achieves a peak power density of 0.56 W cm−2 at 600 °C, along with markedly improved structural integrity and operational reliability. This work demonstrates a viable pathway for designing heterophase-engineered supports with matched thermomechanical properties, offering promising prospects for enhancing the durability of MS-SOFCs. Full article
(This article belongs to the Special Issue Metal Oxide-Supported Catalysts)
Show Figures

Graphical abstract

16 pages, 1515 KB  
Article
Fe 3d Orbital Evolution in Ferrocene Ionization: Insights from ΔSCF, EOES, and Orbital Momentum Distribution
by Feng Wang and Vladislay Vasilyev
Molecules 2025, 30(17), 3541; https://doi.org/10.3390/molecules30173541 - 29 Aug 2025
Viewed by 823
Abstract
The ionization of ferrocene (Fc) remains an active topic of interest due to its complex, ulti-electron character. Accurate prediction of its first ionization potential (IP) requires methods that go beyond single-particle approximations, as Koopmans’ theorem, Janak’s theorem, and the outer valence Green function [...] Read more.
The ionization of ferrocene (Fc) remains an active topic of interest due to its complex, ulti-electron character. Accurate prediction of its first ionization potential (IP) requires methods that go beyond single-particle approximations, as Koopmans’ theorem, Janak’s theorem, and the outer valence Green function (OVGF) approach prove inadequate. Using the ΔSCF method, the first IP of Fc was calculated to be ~6.9 ± 0.1 eV, which is in close agreement with experimental values (6.72–6.99 eV). To benchmark computational accuracy, 42 models were evaluated using the CCSD, CCSD(T), and B3LYP methods with Pople and Dunning basis sets, including Fe-specific modifications to better capture 3d electron behavior. The results underscore the importance of proper treatment of Fe 3d orbitals, with B3LYP/m6-31G(d) offering the best compromise between accuracy and computational efficiency. Notably, the singly occupied molecular orbital (SOMO) in Fc+ is identified as the 8a1’ orbital, which is dominated by its Fe 3d character. This orbital, although not the α-HOMO in Fc+, becomes the LUMO upon ionization. Analysis of the excess orbital energy spectrum (EOES) reveals substantial energy shifts upon ionization, particularly in Fe-centered orbitals spanning both the core and valence regions. Theoretical momentum distribution (TMD) analysis of the 8a1’ orbital further quantifies orbital differences before and after ionization, providing complementary insights in momentum space. Finally, energy decomposition analysis (EDA) shows that while most interaction energy components become less stabilizing upon ionization, steric and Pauli terms contribute a small stabilizing effect. Full article
Show Figures

Figure 1

14 pages, 2868 KB  
Article
Effects of Ca Substitution in Single-Phase Sr1-xCaxTi0.8Fe0.2O3-ẟ Oxygen Transport Membranes and in Dual-Phase Sr1-xCaxTi0.8Fe0.2O3-ẟ-Ce0.8Gd0.2O2 Membranes
by Veronica Nigroni, Yuning Tang, Stefan Baumann, Doris Sebold, Enrico Malgrati and Paolo Fedeli
Membranes 2025, 15(9), 258; https://doi.org/10.3390/membranes15090258 - 29 Aug 2025
Viewed by 680
Abstract
Oxygen transport membranes (OTMs) have gained a lot of attention for their application in different innovative fields, but the development of new materials able to combine high oxygen permeability and good chemical stability is crucial to boost the exploitation of such membrane-based technologies. [...] Read more.
Oxygen transport membranes (OTMs) have gained a lot of attention for their application in different innovative fields, but the development of new materials able to combine high oxygen permeability and good chemical stability is crucial to boost the exploitation of such membrane-based technologies. Perovskite oxides are widely studied as mixed ionic-electronic conductors for the realization of OTMs. In this article, we focus on Sr1-xCaxTi0.8Fe0.2O3-ẟ (SCTF) perovskites and investigate the effect of Ca content on the A-site of the permeation properties, both in single-phase SCTF membranes and in dual-phase membranes obtained by combining SCTF and the ionic conductor Ce0.8Gd0.2O2 (CGO). In single-phase samples, we observed that the substitution of 40% Ca preserves the permeation performances of the non-substituted SrTi0.8Fe0.2O3−ẟ membrane while allowing for a substantial decrease in the sintering temperature, thus facilitating membrane manufacturing. In dual-phase membranes, the increase in the Ca content in the perovskite causes an increase in grain size. The permeation is, at least partially, controlled by the kinetics of the surface exchange reactions. This limitation can be overcome by the addition of an activation layer; however, the permeance of activated CGO-SCTF membranes still remains lower compared to the single-phase parent perovskitic membranes. Full article
(This article belongs to the Section Membrane Applications for Gas Separation)
Show Figures

Figure 1

15 pages, 1329 KB  
Article
First In Vitro Characterization of Salinomycinic Acid-Containing Two-Line Ferrihydrite Composites with Pronounced Antitumor Activity as MRI Contrast Agents
by Irena Pashkunova-Martic, Joachim Friske, Daniela Paneva, Zara Cherkezova-Zheleva, Michaela Hejl, Michael Jakupec, Simone Braeuer, Peter Dorkov, Bernhard K. Keppler, Thomas H. Helbich and Juliana Ivanova
Int. J. Mol. Sci. 2025, 26(17), 8405; https://doi.org/10.3390/ijms26178405 - 29 Aug 2025
Viewed by 579
Abstract
Iron(III) (Fe(III)) complexes have recently emerged as safer alternatives to magnetic resonance imaging (MRI) contrast agents (CAs), reigniting interest in biomedical research. Although gadolinium Gd(III)-based contrast agents (CAs) have been widely used in MRI over the past four decades, their use in the [...] Read more.
Iron(III) (Fe(III)) complexes have recently emerged as safer alternatives to magnetic resonance imaging (MRI) contrast agents (CAs), reigniting interest in biomedical research. Although gadolinium Gd(III)-based contrast agents (CAs) have been widely used in MRI over the past four decades, their use in the current clinical routine is severely constrained due to concerns about high toxicity and environmental impact. Research is now focusing on synthesizing safer contrast agents with alternative paramagnetic ions like Fe(III) or Mn(II). MRI CAs with integrated potent therapeutic moieties may offer synergistic advantages over traditional contrast agents in clinical use. The study explored the use of salinomycin-ferrihydrite composites as possible effective ensembles of imaging and therapeutic units in the same molecule, evaluating their anticancer activity and influence on the signal in MRI. The composites were characterized using Mössbauer spectroscopy and ICP-MS for iron content determination. The in vitro relaxivity measurements in a high-field MR scanner demonstrated the potency of the composites as T2 enhancers. The antitumor activity of one selected Sal-ferrihydrite composite was tested in three human cancer cell lines: A549 (non-small cell lung cancer); SW480 (colon cancer); and CH1/PA1 (ovarian teratocarcinoma) by the MTT cell viability assay. The new Sal-ferrihydrite composite showed a pronounced cytotoxicity in all three human cancers in line with enhanced signal in MRI, which makes it a promising candidate for future biomedical applications. The superior cytotoxic effect, together with the strong signal enhancement, makes these compounds promising candidates for further detailed investigations as future theranostic agents. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

18 pages, 4892 KB  
Article
Features of the Solid HDDR Process in Sintered (Nd,Pr,Gd)-Fe-B Magnets at Low Hydrogen Pressure and Low Temperature
by Renhui Liu, Ihor I. Bulyk, Munan Yang, Yifan Wang and Hang Wang
Materials 2025, 18(17), 4019; https://doi.org/10.3390/ma18174019 - 27 Aug 2025
Viewed by 486
Abstract
This article investigates the connection between the process parameters of solid hydrogenation, disproportionation (HD), desorption, and recombination (DR) (HDDR) in sintered (Nd,Pr,Gd)-Fe-B magnets, as well as their phase composition and degree of texture (DoT). During HD, hydrogen pressures of 10–50 kPa were applied [...] Read more.
This article investigates the connection between the process parameters of solid hydrogenation, disproportionation (HD), desorption, and recombination (DR) (HDDR) in sintered (Nd,Pr,Gd)-Fe-B magnets, as well as their phase composition and degree of texture (DoT). During HD, hydrogen pressures of 10–50 kPa were applied at temperatures ranging from 700 to 785 °C for reaction times ranging from 3 to 11 h. DR was performed at 750–850 °C. The HD reaction was observed across the full range of hydrogen pressure and temperature. The phase composition of the disproportionation products depends on the depth in the sample. Applying HDDR treatment at a pressure of 10 kPa is an effective way to increase the DoT of magnets. Magnets are anisotropic following the HDDR treatment across the parameter ranges. The dependence of the DoT value on HDDR treatment parameters is complicated, with the main trend being a decline in DoT with increasing hydrogen pressure. The DoT is determined by the disproportionation and recombination temperatures, as well as the depth at 50 kPa pressure. The recombined phase is isotropic near the sample surface and highly anisotropic within the sample after 50 kPa is applied. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

28 pages, 4848 KB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Viewed by 618
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

21 pages, 5366 KB  
Article
Multifaceted Analysis of Pr2Fe16.75Ni0.25 Intermetallic Compound: Crystallographic Insights, Critical Phenomena, and Thermomagnetic Behavior near Room Temperature
by Jihed Horcheni, Hamdi Jaballah, Sirine Gharbi, Essebti Dhahri and Lotfi Bessais
Magnetochemistry 2025, 11(8), 65; https://doi.org/10.3390/magnetochemistry11080065 - 31 Jul 2025
Viewed by 475
Abstract
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an R3¯m space group. Pr2Fe [...] Read more.
The alloy Pr2Fe16.75Ni0.25 has been examined to investigate its structural properties, critical behavior, and magnetocaloric effects. Rietveld’s refinement of X-ray diffraction patterns has revealed a rhombohedral structure with an R3¯m space group. Pr2Fe16.9Ni0.25 also demonstrates a direct magnetocaloric effect near room temperature, accompanied by a moderate magnetic entropy change (ΔSMmax = 5.5 J kg−1 K−1 at μ0ΔH=5 T) and a broad working temperature range. Furthermore, the Relative Cooling Power (RCP) is approximately 89% of the widely recognized gadolinium (Gd) for μ0ΔH=2 T. This compound exhibits a commendable magnetocaloric response, on par with or even surpassing that of numerous other intermetallic alloys. Critical behavior was analyzed using thermo-magnetic measurements, employing methods such as the modified Arrott plot, critical isotherm analysis, and Kouvel-Fisher techniques. The obtained critical exponents (β, γ, and δ) exhibit similarities to those of the 3D-Ising model, characterized explicitly by intermediate range interactions. Full article
Show Figures

Figure 1

18 pages, 3426 KB  
Article
XPS on Co0.95R0.05Fe2O4 Nanoparticles with R = Gd or Ho
by Adam Szatmari, Rareș Bortnic, Tiberiu Dragoiu, Radu George Hategan, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Appl. Sci. 2025, 15(15), 8313; https://doi.org/10.3390/app15158313 - 25 Jul 2025
Viewed by 687
Abstract
Co0.95R0.05Fe2O4 nanoparticles were synthesized using a sol-gel approach incorporating bio-based agents and were found to be single phases adopting a cubic Fd-3m structure. XPS shows the presence of Gd3+ and Ho3+ ions. The spin–orbit [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles were synthesized using a sol-gel approach incorporating bio-based agents and were found to be single phases adopting a cubic Fd-3m structure. XPS shows the presence of Gd3+ and Ho3+ ions. The spin–orbit splitting of about 15.4 eV observed in Co 2p core-level spectra is an indication that Co is predominantly present as Co3+ state, while the satellite structures located at about 6 eV higher energies than the main lines confirm the existence of divalent Co in Co0.95R0.05Fe2O4. The positions of the Co 3s and Fe 3s main peaks obtained by curve fitting and the exchange splitting obtained values for Co 3s and Fe 3s levels point to the high Co3+/Co2+ and Fe3+/Fe2+ ratios in both samples. The saturation magnetizations are smaller for the doped samples compared to the pristine ones. For theoretical magnetization calculation, we have considered that the heavy rare earths are in octahedral sites and their magnetic moments are aligned antiparallelly with 3d transition magnetic moments. ZFC-FC curves shows that some nanoparticles remain superparamagnetic, while the rest are ferrimagnetic, ordered at room temperature, and showing interparticle interactions. The MS/Ms ratio at room temperature is below 0.5, indicating the predominance of magnetostatic interactions. Full article
Show Figures

Figure 1

15 pages, 7502 KB  
Article
Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin
by Xuan Liu, Jie Chao, Feifei Guo, Liangliang Chang, Xinyang Zhang, Wei Long and Zengzhe Xi
Nanomaterials 2025, 15(11), 792; https://doi.org/10.3390/nano15110792 - 24 May 2025
Cited by 2 | Viewed by 914
Abstract
Addressing the limitations of poor piezoelectric photocatalytic activity and insufficient magnetic recovery in pure BiFeO3 nanoparticles, Gd and Zr co-doped BiFeO3 nanoparticles were synthesized via the sol-gel method. The structural characterization revealed a rhombohedral-to-orthorhombic phase transition with reduced grain size (~35 [...] Read more.
Addressing the limitations of poor piezoelectric photocatalytic activity and insufficient magnetic recovery in pure BiFeO3 nanoparticles, Gd and Zr co-doped BiFeO3 nanoparticles were synthesized via the sol-gel method. The structural characterization revealed a rhombohedral-to-orthorhombic phase transition with reduced grain size (~35 nm) and lattice distortion due to dopant incorporation. An XPS analysis confirmed Fe3+ dominance and oxygen vacancy enrichment, while optimized BGFZ9 exhibited enhanced remanent magnetization (0.1753 emu/g, 14.14 increase) compared to undoped BFO. The synergistic piezo-photocatalytic system achieved 81.08% Ofloxacin degradation within 120 min (rate constant: 0.0136 min−1, 1.26 higher than BFO) through stress-induced piezoelectric fields that promoted electron transfer for ·O2/·OH radical generation via O2 reduction. The Ofloxacin degradation efficiency decreased to 24.36% after four cycles, with structural integrity confirmed by XRD phase stability. This work demonstrates a triple-optimization mechanism (crystal phase engineering, defect modulation, and magnetic enhancement) for designing magnetically recoverable multiferroic catalysts in pharmaceutical wastewater treatment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

14 pages, 1420 KB  
Article
Utilizing T1- and T2-Specific Contrast Agents as “Two Colors” MRI Correlation
by Adriaan L. Frencken, Barbara Blasiak, Boguslaw Tomanek, Danuta Kruk and Frank C. J. M. van Veggel
Materials 2025, 18(10), 2290; https://doi.org/10.3390/ma18102290 - 14 May 2025
Cited by 2 | Viewed by 1006
Abstract
Magnetic resonance imaging (MRI) is widely used as a medical imaging technique due to its non-invasive nature, high spatial contrast, and virtually unlimited depth of penetration. Different modalities can be used for contrast in MRI, including T1 (spin–lattice) and T2 or [...] Read more.
Magnetic resonance imaging (MRI) is widely used as a medical imaging technique due to its non-invasive nature, high spatial contrast, and virtually unlimited depth of penetration. Different modalities can be used for contrast in MRI, including T1 (spin–lattice) and T2 or T2 * (spin–spin) proton relaxation times, and specific contrast agents (CAs) have been developed that locally enhance the contrasts in MRI images. We present a method combining T1- and T2-specific CAs in a single imaging technique, referred to as correlation MRI. This technique allows different CAs to be used simultaneously to visualize contrast between multiple types of tissue in the same image when applied as targeted CAs. An obstacle for the quantitative use of correlation MRI is that T1 and T2 relaxivity changes generated by CAs are not independent of each other. Here, we measured relaxivities in mixtures with various concentrations of Cas, including Magnevist (Gd3+-based, primarily a T1 CA) and Feridex (Fe2+- and Fe3+-based, primarily a T2 CA), and compared them to theoretically predicted values. It was found that, at clinically relevant concentrations, relaxivities of the mixtures deviate from linearly added values. We finally propose a three-dimensional calibration curve to quantitatively determine the concentration in mixtures of CAs, based on the measured relaxivities. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

15 pages, 924 KB  
Article
The Role of Periarticular Knee Muscle Torques in Ensuring the Body Balance of Older Adults with Balance Disturbances
by Piotr Prochor, Łukasz Magnuszewski, Paulina Zalewska, Michał Świętek, Zyta Beata Wojszel and Szczepan Piszczatowski
J. Clin. Med. 2025, 14(9), 3251; https://doi.org/10.3390/jcm14093251 - 7 May 2025
Viewed by 656
Abstract
Background: The role of the periarticular muscles of the knee joint in ensuring body balance is still ambiguous. Therefore, we conducted clinical and biomechanical assessments on 52 older adults (36 women and 16 men, age of 67.58 ± 7.30 years, body weight [...] Read more.
Background: The role of the periarticular muscles of the knee joint in ensuring body balance is still ambiguous. Therefore, we conducted clinical and biomechanical assessments on 52 older adults (36 women and 16 men, age of 67.58 ± 7.30 years, body weight of 75.10 ± 13.42 kg, and height of 163.92 ± 8.80 cm) to determine the role of the knee muscles in balance maintenance. Methods: The clinical examination included the Dizziness Handicap Inventory (DHI), the Geriatric Depression Scale (GDS), the Performance-Oriented Mobility Assessment (POMA), the Functional Reach Test (FRT), the Falls Efficacy Scale—International (FES-I), and bioimpedance parameters (skeletal muscle mass—SMM—and its derived parameter—Diff SMM). The biomechanical assessment involved parameters that characterize muscle torques of knee joint extensors and flexors in isokinetic and isometric conditions, as well as changes in the centre of pressure (COP) position while standing with eyes open and closed. Results: Based on treatment history and DHI results (>10 points), 26 participants were identified as having balance disorders, while the remaining participants formed the control group. Statistical analysis was performed to determine differences between the groups. The groups significantly differed in terms of the results obtained from the DHI (p < 0.001) and GDS (p = 0.04) questionnaires as well as FES-I (p < 0.001) and POMA (p = 0.002) tests. While SMM (p = 0.012) was similar in the groups, Diff SMM (p = 0.04) significantly differed. The multiple regression analysis confirmed the knee joint extensor parameters’ significant role in predicting the COP path (p = 0.03 and p = 0.04 for two assumed models). Conclusions: The obtained results proved that the muscle torques of knee extensors can be used in the diagnostic process of older patients with balance disorders, indicating possible rehabilitation directions. Full article
(This article belongs to the Special Issue Challenges and Advances in Geriatrics and Gerontology)
Show Figures

Figure 1

15 pages, 7226 KB  
Article
Structural, Magnetic, and Magnetocaloric Properties of Ce2(Fe, Co)17 Compounds: Tuning Magnetic Transitions and Enhancing Refrigeration Efficiency
by Hamdi Jaballah, Jihed Horcheni, Jacques Moscovici, Abderrahime Ayadim and Lotfi Bessais
Materials 2025, 18(9), 1958; https://doi.org/10.3390/ma18091958 - 25 Apr 2025
Viewed by 685
Abstract
This study explores the structural, magnetic, and magnetocaloric properties of Ce2(Fe, Co)17 (x = 0, 0.5, 0.6, and 0.7) compounds synthesized via arc melting under high temperatures exceeding 2300 K. The as-cast ingots are subsequently sealed and subjected to [...] Read more.
This study explores the structural, magnetic, and magnetocaloric properties of Ce2(Fe, Co)17 (x = 0, 0.5, 0.6, and 0.7) compounds synthesized via arc melting under high temperatures exceeding 2300 K. The as-cast ingots are subsequently sealed and subjected to a heat treatment at 1323 K to improve homogeneity and crystallinity. Detailed analyses using X-ray diffraction and magnetometry reveal that cobalt substitution significantly impacts the structural and magnetic behavior, enabling precise tuning of the magnetic transition temperature and magnetic order. The substitution induces an anisotropic increase in cell parameters and shifts the magnetocaloric effect (MCE) from low temperatures (200 K for x = 0) to near room temperature (285 K for x = 0.7), enhancing the operating temperature range. The magnetocaloric effect is studied across different magnetic transitions: a metamagnetic and ferro-antiferromagnetic transition followed by a paramagnetic state in one sample, and a direct ferro-paramagnetic transition in another. The compounds exhibit a second-order magnetic phase transition, ensuring a reversible MCE, with a relative cooling power (RCP) that is approximately 85% of that of pure Gd. Moreover, the use of cerium, the most cost-effective rare-earth element (5 $/kg), combined with its low atomic concentration (10%) in these intermetallics, enhances the sustainability and affordability of these materials. These findings underline the potential of iron-rich Ce-based compounds for next-generation refrigeration and energy-harvesting applications. Full article
Show Figures

Figure 1

14 pages, 2688 KB  
Article
Carbonaceous Shale Deposits as Potential Unconventional Sources for Rare Earth Elements at the Witbank Coalfield, Permian Vryheid Formation, South Africa
by George Oluwole Akintola
Minerals 2025, 15(4), 388; https://doi.org/10.3390/min15040388 - 6 Apr 2025
Viewed by 1227
Abstract
Carbonaceous shale has garnered significant interest as a viable alternative source of rare earth elements (REEs) besides conventional REE-bearing ores. This study characterized rare earth element + Yttrium+ Scandium (REYs) enrichment in the 11 core samples of carbonaceous shale (7) and coal (4) [...] Read more.
Carbonaceous shale has garnered significant interest as a viable alternative source of rare earth elements (REEs) besides conventional REE-bearing ores. This study characterized rare earth element + Yttrium+ Scandium (REYs) enrichment in the 11 core samples of carbonaceous shale (7) and coal (4) collected from Arnot Mine. Major elements of the studied carbonaceous shale (CS) and coal showed high amounts of SiO2, Al2O3, and Fe2O3, indicating a high content of aluminosilicate and iron-rich minerals. The plots Na2O + K2O against SiO2 suggested alkali granite, granite, and granodiorite provenance sources for the studied shale and coal. The samples showed enrichment in low and heavy rare elements crystallized from a low potassium tholeiitic and medium calc-alkaline magma based on the plots of LaN/YbN and K2O vs. SiO2. The mineralogical and maceral analysis revealed the dominant presence of kaolinite (15%–45%), and it was suggested as the cation exchange site resulting from the isomorphous substitution of Al3+ for Si4+. Additionally, siderite was suggested as one of the REY hosts due to the Fe3+ site forming a complex with the REE3+ ions. Furthermore, the samples were classified as lignite to sub-bituminous coal category with dominant minerals including kaolinite, quartz, and siderite. The outlook coefficient (Coutl) of REY in CS revealed a promising area for economically viable, having two enrichment types, including low (La, Ce, Pr, Nd, and Sm) and heavy (Ho, Er, Tm, Yb, and Lu). The EuN/EuN* and CeN/CeN* ratio for the current studied samples exhibited a weak negative to no anomaly, and most of the studied samples were characterized by distinctive positive Gd anomalies derived from sediment source regions weathered from alkali granite, granite, and granodiorite provenance formed from a low potassium tholeiitic and medium calc-alkaline magma. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop