Structural Robustness Engineering for NiFe Metal-Supported Solid Oxide Fuel Cells
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation and Characterization of Metal Substrates
3.2. Fabrication of Single Cells
3.3. Electrochemical Performance Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.; Kazmi, W.W.; Hussain, A.; Khan, M.Z.; Bibi, S.; Saleem, M.; Song, R.H.; Sajid, Z.; Ullah, A.; Khan, M.K. Facile and low-temperature synthesis approach to fabricate Sm0.5Sr0.5CoO3−δ cathode material for solid oxide fuel cell. J. Korean Ceram. Soc. 2022, 60, 272–282. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Ma, W.; Morales-Vidal, J.; Tian, J.; Liu, M.T.; Jin, S.; Ren, W.; Taubmann, J.; Chatzichristodoulou, C.; Luterbacher, J.; Chen, H.M.; et al. Encapsulated Co-Ni alloy boosts high-temperature CO2 electroreduction. Nature 2025, 641, 1156–1161. [Google Scholar] [CrossRef]
- Zhang, J.; Ricote, S.; Hendriksen, P.V.; Chen, Y. Advanced Materials for Thin-Film Solid Oxide Fuel Cells: Recent Progress and Challenges in Boosting the Device Performance at Low Temperatures. Adv. Funct. Mater. 2022, 32, 2111205. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Gao, Y.; Yuan, M.; Wang, Z.; Lü, Z.; Li, Q.; Wei, B. Cobalt-free fluorine doped Bi0.7Sr0.3FeO3-6 oxides for energetic cathodes of low-temperature solid oxide fuel cells. Chem. Eng. J. 2023, 452, 139584. [Google Scholar] [CrossRef]
- Tucker, M.C. Progress in metal-supported solid oxide electrolysis cells: A review. Int. J. Hydrogen Energy 2020, 45, 24203–24218. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, H.; Xu, K.; Zhang, X.; Ma, X.; Shuai, S. Review of the Application of Metal-Supported Solid Oxide Fuel Cell in the Transportation Field. Automot. Innov. 2025, 8, 443–471. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Chai, R.; Xia, C. Facile fabrication of the robust and high performance metal-supported solid oxide fuel cell using a directly assembled approach. Mater. Today Energy 2025, 48, 101778. [Google Scholar] [CrossRef]
- Udomsilp, D.; Rechberger, J.; Neubauer, R.; Bischof, C.; Thaler, F.; Schafbauer, W.; Menzler, N.H.; de Haart, L.G.J.; Nenning, A.; Opitz, A.K.; et al. Metal-Supported Solid Oxide Fuel Cells with Exceptionally High Power Density for Range Extender Systems. Cell Rep. Phys. Sci. 2020, 1, 100072. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, T.; Du, X.; Wang, J.; Yang, W.; Sun, C.; Xia, C.; Wang, S.; Zhan, Z. High Activity of Nanoporous-Sm0.2Ce0.8O2-δ@430L Composites for Hydrogen Electro-Oxidation in Solid Oxide Fuel Cells. Adv. Energy Mater. 2014, 4, 1400883. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, H.; Li, C.; Lai, S.Y.; Li, C.; Yang, G.; Sun, H.; Wei, T.; Liu, M. Thermally sprayed high-performance porous metal-supported solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes. J. Mater. Chem. A 2016, 4, 7461–7468. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, J.; Xu, K.; Yang, J.; Zhu, L. Fabrication, property and performance evaluation of Stainless Steel 430L as porous supports for metal supported solid oxide fuel cells. Front. Energy Res. 2023, 11, 1127900. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Li, C.; Yang, X.; Jia, L.; Li, J. A direct CH4 metal-supported solid oxide fuel cell with an engineered Ni/Gd-doped CeO2 anode containing Ni and MnO nanoparticles. Compos. Part B-Eng. 2022, 229, 109462. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Gao, J.; Li, C. Oxidation behavior and interface diffusion of porous metal supported SOFCs with all plasma sprayed functional layers in air at 650 °C. Int. J. Green Energy 2022, 19, 818–826. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Li, C.; Liu, M.; Yang, G. Investigation into the diffusion and oxidation behavior of the interface between a plasma-sprayed anode and a porous steel support for solid oxide fuel cells. J. Power Sources 2016, 323, 1–7. [Google Scholar] [CrossRef]
- Jiang, S.P.; Chen, X. Chromium deposition and poisoning of cathodes of solid oxide fuel cells—A review. Int. J. Hydrogen Energy 2014, 39, 505–531. [Google Scholar] [CrossRef]
- Zhou, L.; Mason, J.H.; Li, W.; Liu, X. Comprehensive review of chromium deposition and poisoning of solid oxide fuel cells (SOFCs) cathode materials. Renew. Sust. Energ. Rev. 2020, 134, 110320. [Google Scholar] [CrossRef]
- Huang, J.; Liang, F.; Zhao, S.; Zhao, L.; Ai, N.; Jiang, S.P.; Wang, X.; Fang, H.; Luo, Y.; Chen, K. Heterogeneous Catalyst Coating for Boosting the Activity and Chromium Tolerance of Cathodes for Solid Oxide Fuel Cells. Adv. Funct. Mater. 2024, 34, 202310402. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Z.; Luo, Y.; Ai, N.; Jiang, S.; Chen, K. Advancements in chromium-tolerant air electrode for solid oxide cells: A mini-review. J. Fuel Chem. Technol. 2025, 53, 249–259. [Google Scholar] [CrossRef]
- Vafakhah, S.; Kaur, G.; Giddey, S. Metal-supported solid oxide cells advancements and challenges. Int. J. Hydrogen Energy 2025, 111, 833–847. [Google Scholar] [CrossRef]
- Li, K.; Wang, X.; Jia, L.; Yan, D.; Pu, J.; Chi, B.; Jian, L. High performance Ni–Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process. Int. J. Hydrogen Energy 2014, 39, 19747–19752. [Google Scholar] [CrossRef]
- Han, Z.; Yang, Z.; Han, M. Fabrication of metal-supported tubular solid oxide fuel cell by phase-inversion method and in situ reduction. Int. J. Hydrogen Energy 2016, 41, 10935–10941. [Google Scholar] [CrossRef]
- Kang, B.S.; Matsuda, J.; Ju, Y.W.; Kim, H.H.; Ishihara, T. Nano strain induced double columnar oxide as highly active oxygen-dissociation electrode for Ni-Fe metal supported solid oxide fuel cells. Nano Energy 2019, 56, 382–390. [Google Scholar] [CrossRef]
- Li, K.; Li, X.; Li, J.; Xie, J.M. Structural Stability of Ni-Fe Supported Solid Oxide Fuel Cells Based on Stress Analysis. J. Inorg. Mater. 2019, 34, 611–617. [Google Scholar] [CrossRef]
- Lin, X.; Xu, J.; Chen, Z.; Ai, N.; Lü, Z.; Jiang, S.P.; Zhao, D.; Wang, X.; Shao, Y.; Chen, K. Thermally driven long–distance elemental diffusion enhances the sinterability of anode and electrolyte of metal–supported solid oxide fuel cells. J. Power Sources 2023, 555, 232401. [Google Scholar] [CrossRef]
- Choi, H.; Kim, T.W.; Na, Y.; Seo, D.; Woo, S.; Huh, J.; Kim, S. Enhanced electrochemical performance of metal-supported solid oxide fuel cells via an inner coating of Gd0.1Ce0.9O2-δ nanosol in the porous NiFe-metal support. J. Power Sources 2018, 406, 81–87. [Google Scholar] [CrossRef]
- Ai, N.; Chen, K.; Liu, S.; Lü, Z.; Su, W.; Jiang, S.P. Effect of characteristics of (Sm,Ce)O2 powder on the fabrication and performance of anode-supported solid oxide fuel cells. Mater. Res. Bull. 2012, 47, 121–129. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.C.; Luo, Y.; Zhang, Y.C.; Tu, S.T. Evolution of thermal stress and failure probability during reduction and re oxidation of solid oxide fuel cell. J. Power Sources 2017, 371, 65–76. [Google Scholar] [CrossRef]
- Xie, J.; Wang, F. Thermal Stress Analysis of Solid Oxide Fuel Cell with Anode Functional Layer. J. Inorg. Mater. 2017, 32, 400–406. [Google Scholar] [CrossRef]
- Wang, X.; Jia, L.; Li, K.; Yan, D.; Chi, B.; Pu, J.; Jian, L. Porous nickel-iron alloys as anode support for intermediate temperature solid oxide fuel cells: II. Cell performance and stability. Int. J. Hydrogen Energy 2018, 43, 21030–21036. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, J.; Wang, Z.; Tian, Y.; Zhang, S.; Li, C. High-performance porous metal-supported solid oxide electrochemical cells with a reduction shrinkage optimized NiFe-based support. J. Power Sources 2025, 631, 236247. [Google Scholar] [CrossRef]
- Liu, X.; Lin, P.; Qian, J.; Zhang, H.; Ai, N.; Guan, C.; Wang, X.; Shao, Y.; Jiang, S.P.; Chen, K. Modulating the structural stability of NiFe metal-supported solid oxide fuel cells. Int. J. Hydrogen Energy 2025, 114, 1–8. [Google Scholar] [CrossRef]
- Novelo, F.; Valenzuela, R. On the reaction-kinetics of nickel ferrite from iron and nickel oxides. Mater. Res. Bull. 1995, 30, 335–340. [Google Scholar] [CrossRef]
- Chang, K.; Feng, W.; Chen, L.-Q. Effect of second-phase particle morphology on grain growth kinetics. Acta Mater. 2009, 57, 5229–5236. [Google Scholar] [CrossRef]
- Guo, C.; Li, G.; Li, S.; Hu, X.; Lu, H.; Li, X.; Xu, Z.; Chen, Y.; Li, Q.; Lu, J.; et al. Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition. Nano Mater. Sci. 2023, 5, 53–77. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Marin, G.B. Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, R.; Chen, Z.; Cheng, Z.; Huang, J.; Sa, B.; Ai, N.; Zhang, L.; Chan, S.H.; Guan, C.; et al. Efficient and Robust Nanocomposite Cermet Anode with Strong Metal–Oxide Interaction for Direct Ammonia Solid Oxide Fuel Cells. Adv. Funct. Mater. 2025, 2025, 2501223. [Google Scholar] [CrossRef]
- Chen, C.L.; Wang, Z.C.; Kato, T.; Shibata, N.; Taniguchi, T.; Ikuhara, Y. Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride. Nat. Commun. 2015, 6, 6327. [Google Scholar] [CrossRef]
- Marrocchelli, D.; Bishop, S.R.; Tuller, H.L.; Yildiz, B. Understanding Chemical Expansion in Non-Stoichiometric Oxides: Ceria and Zirconia Case Studies. Adv. Funct. Mater. 2012, 22, 1958–1965. [Google Scholar] [CrossRef]
- Xia, C.; Wang, Y.; Wang, J.; Lu, X.; Zhang, L. Thermodynamic assessment of the Co-Fe-Ni system and diffusion study of its fcc phase. J. Alloys Compd. 2021, 853, 157165. [Google Scholar] [CrossRef]
- Jiang, S.R. Resistance measurement in solid oxide fuel cells. J. Electrochem. Soc. 2001, 148, A887–A897. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, L.; He, S.; Guan, C.; Zou, Y.; Yue, Z.; Ai, N.; Jiang, S.P.; Shao, Y.; Chen, K. Development of intertwined nanostructured multi-phase air electrodes for efficient and durable reversible solid oxide cells. Appl. Catal. B-Environ. Energy 2022, 305, 121056. [Google Scholar] [CrossRef]
- Zhang, F.; Weng, Q.; Zhang, Y.; Ai, N.; Jiang, S.P.; Guan, C.; Shao, Y.; Fang, H.; Luo, Y.; Chen, K. Facile preparation of electrodes of efficient electrolyte-supported solid oxide fuel cells using a direct assembly approach. Electrochim. Acta 2022, 424, 140643. [Google Scholar] [CrossRef]
- Wang, B.; Yue, Z.; Chen, Z.; Zhang, Y.; Fang, H.; Ai, N.; Wang, R.; Yang, F.; Guan, C.; Jiang, S.P.; et al. Facile Construction of Nanostructured Cermet Anodes with Strong Metal–Oxide Interaction for Efficient and Durable Solid Oxide Fuel Cells. Small 2023, 19, 2304425. [Google Scholar] [CrossRef]
- Qian, J.; Lin, C.; Chen, Z.; Huang, J.; Ai, N.; Jiang, S.P.; Zhou, X.; Wang, X.; Shao, Y.; Chen, K. High-performance, stable buffer-layer-free La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte-supported solid oxide cell with a nanostructured nickel-based hydrogen electrode. Appl. Catal. B-Environ. Energy 2024, 346, 123742. [Google Scholar] [CrossRef]
- Huang, X.; Qian, J.; Zhang, H.; Chen, Z.; Lin, C.; Huang, J.; Ai, N.; Guan, C.; Jiang, S.P.; Chen, K. Mitigating the decomposition phenomenon at the cathode–electrolyte interface of protonic ceramic fuel cells. Rare Met. 2025, 44, 5395–5403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Luo, S.; Lin, P.; Lin, X.; Liu, X.; Qian, J.; Lin, C.; Cheng, Z.; Ai, N.; Jiang, S.P.; et al. Structural Robustness Engineering for NiFe Metal-Supported Solid Oxide Fuel Cells. Catalysts 2025, 15, 832. https://doi.org/10.3390/catal15090832
Zhang H, Luo S, Lin P, Lin X, Liu X, Qian J, Lin C, Cheng Z, Ai N, Jiang SP, et al. Structural Robustness Engineering for NiFe Metal-Supported Solid Oxide Fuel Cells. Catalysts. 2025; 15(9):832. https://doi.org/10.3390/catal15090832
Chicago/Turabian StyleZhang, Haipeng, Shuai Luo, Pinghui Lin, Xu Lin, Xianghui Liu, Jiaqi Qian, Chenghui Lin, Zixiang Cheng, Na Ai, San Ping Jiang, and et al. 2025. "Structural Robustness Engineering for NiFe Metal-Supported Solid Oxide Fuel Cells" Catalysts 15, no. 9: 832. https://doi.org/10.3390/catal15090832
APA StyleZhang, H., Luo, S., Lin, P., Lin, X., Liu, X., Qian, J., Lin, C., Cheng, Z., Ai, N., Jiang, S. P., & Chen, K. (2025). Structural Robustness Engineering for NiFe Metal-Supported Solid Oxide Fuel Cells. Catalysts, 15(9), 832. https://doi.org/10.3390/catal15090832