Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,617)

Search Parameters:
Keywords = Gansu province

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 971 KiB  
Article
Optimization of Activated Rubber Asphalt Production Parameters Based on Rheological Properties and Multi-Index Evaluation
by Jing Zhao, Xiangqing Zhao, Bo Li, Yongning Wang, Huan Zhao and Kai Kang
Materials 2025, 18(15), 3712; https://doi.org/10.3390/ma18153712 - 7 Aug 2025
Abstract
This study presents a method to more reasonably control the quality performance of activated rubber asphalt by microwave activation. Different activated rubber asphalt preparation process parameters (reaction temperature, stirring rate, and reaction time) were selected to explore the influence of different process parameters [...] Read more.
This study presents a method to more reasonably control the quality performance of activated rubber asphalt by microwave activation. Different activated rubber asphalt preparation process parameters (reaction temperature, stirring rate, and reaction time) were selected to explore the influence of different process parameters on the macroscopic properties of rubber asphalt, and a multi-indicator evaluation model was set up using the theoretical method of the RSR model to determine the optimal production process parameters. The results showed that reaction temperature had the strongest influence (gray correlation > 0.85) among production parameters, followed by stirring rate and reaction time. The optimal parameters identified were a reaction temperature of 220 °C, a stirring rate of 1000 rpm, and a reaction time of 120 min, under which the viscosity–temperature sensitivity decreased by approximately 18%, and the rutting factor (G*/sinδ) increased by over 20%, indicating significant improvements in rheological stability and high-temperature performance. The integrated evaluation approach provided reliable and practical guidance for producing high-performance activated rubber asphalt. Full article
(This article belongs to the Special Issue Development of Sustainable Asphalt Materials)
Show Figures

Figure 1

28 pages, 5073 KiB  
Article
Exploring the Potential of Nitrogen Fertilizer Mixed Application to Improve Crop Yield and Nitrogen Partial Productivity: A Meta-Analysis
by Yaya Duan, Yuanbo Jiang, Yi Ling, Wenjing Chang, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Guangping Qi and Bin Liu
Plants 2025, 14(15), 2417; https://doi.org/10.3390/plants14152417 - 4 Aug 2025
Viewed by 169
Abstract
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase [...] Read more.
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase yield and income and improve nitrogen fertilizer efficiency. This study used urea alone (Urea) and slow-release nitrogen fertilizer alone (C/SRF) as controls and employed meta-analysis and a random forest model to assess MNF effects on crop yield and nitrogen partial factor productivity (PFPN), and to identify key influencing factors. Results showed that compared with urea, MNF increased crop yield by 7.42% and PFPN by 8.20%, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 20 °C, and elevations of 750–1050 m; in soils with a pH of 5.5–6.5, where 150–240 kg·ha−1 nitrogen with 25–35% content and an 80–100 day release period was applied, and the blending ratio was ≥0.3; and when planting rapeseed, maize, and cotton for 1–2 years. The top three influencing factors were crop type, nitrogen rate, and soil pH. Compared with C/SRF, MNF increased crop yield by 2.44% and had a non-significant increase in PFPN, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 5 °C, average annual precipitation ≤ 400 mm, and elevations of 300–900 m; in sandy soils with pH > 7.5, where 150–270 kg·ha−1 nitrogen with 25–30% content and a 40–80 day release period was applied, and the blending ratio was 0.4–0.7; and when planting potatoes and rapeseed for 3 years. The top three influencing factors were nitrogen rate, crop type, and average annual precipitation. In conclusion, MNF should comprehensively consider crops, regions, soil, and management. This study provides a scientific basis for optimizing slow-release nitrogen fertilizers and promoting the large-scale application of MNF in farmland. Full article
(This article belongs to the Special Issue Nutrient Management for Crop Production and Quality)
Show Figures

Figure 1

25 pages, 10097 KiB  
Article
Biocrusts Alter the Pore Structure and Water Infiltration in the Top Layer of Rammed Soils at Weiyuan Section of the Great Wall in China
by Xiaoju Yang, Fasi Wu, Long Li, Ruihua Shang, Dandan Li, Lina Xu, Jing Cui and Xueyong Zhao
Coatings 2025, 15(8), 908; https://doi.org/10.3390/coatings15080908 - 3 Aug 2025
Viewed by 118
Abstract
The surface of the Great Wall harbors a large number of non-vascular plants dominated by cyanobacteria, lichens and mosses as well as microorganisms, and form biocrusts by cementing with the soils and greatly alters the pore structure of the soil and the ecohydrological [...] Read more.
The surface of the Great Wall harbors a large number of non-vascular plants dominated by cyanobacteria, lichens and mosses as well as microorganisms, and form biocrusts by cementing with the soils and greatly alters the pore structure of the soil and the ecohydrological processes associated with the soil pore space, and thus influences the soil resistance to erosion. However, the microscopic role of the biocrusts in influencing the pore structure of the surface of the Great Wall is not clear. This study chose the Warring States Qin Great Wall in Weiyuan, Gansu Province, China, as research site to quantify thepore structure characteristics of the three-dimensional of bare soil, cyanobacterial-lichen crusts, and moss crusts at the depth of 0–50 mm, by using optical microscopy, scanning electron microscopy, and X-ray computed tomography and image analysis, and the precipitation infiltration process. The results showed that the moss crust layer was dominated by large pores with long extension and good connectivity, which provided preferential seepage channels for precipitation infiltration, while the connectivity between the cyanobacterial-lichen crust voids was poor; The porosity of the cyanobacterial-lichen crust and the moss crust was 500% and 903.27% higher than that of the bare soil, respectively. The porosity of the subsurface layer of cyanobacterial-lichen crust and moss crust was significantly lower than that of the biocrusts layer by 92.54% and 97.96%, respectively, and the porosity of the moss crust was significantly higher than that of the cyanobacterial-lichen crust in the same layer; Cyanobacterial-lichen crusts increased the degree of anisotropy, mean tortuosity, moss crust reduced the degree of anisotropy, mean tortuosity. Biocrusts increased the fractal dimension and Euler number of pores. Compared with bare soil, moss crust and cyanobacterial-lichen crust increased the isolated porosity by 2555% and 4085%, respectively; Biocrusts increased the complexity of the pore network models; The initial infiltration rate, stable infiltration rate, average infiltration rate, and the total amount of infiltration of moss crusted soil was 2.26 and 3.12 times, 1.07 and 1.63 times, respectively, higher than that of the cyanobacterial-lichen crusts and the bare soil, by 1.53 and 2.33 times, and 1.13 and 2.08 times, respectively; CT porosity and clay content are significantly positively correlated with initial soil infiltration rate (|r| ≥ 0.85), while soil type and organic matter content are negatively correlated with initial soil infiltration rate. The soil type and bulk density are directly positively and negatively correlated with CT porosity, respectively (|r| ≥ 0.52). There is a significant negative correlation between soil clay content and porosity (|r| = 0.15, p < 0.001). Biocrusts alter the erosion resistance of rammed earth walls by affecting the soil microstructure of the earth’s great wall, altering precipitation infiltration, and promoting vascular plant colonisation, which in turn alters the erosion resistance of the wall. The research results have important reference for the development of disposal plans for biocrusts on the surface of archaeological sites. Full article
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 - 2 Aug 2025
Viewed by 293
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

21 pages, 6618 KiB  
Article
Comparison of Deep Learning Models for LAI Simulation and Interpretable Hydrothermal Coupling in the Loess Plateau
by Junpo Yu, Yajun Si, Wen Zhao, Zeyu Zhou, Jiming Jin, Wenjun Yan, Xiangyu Shao, Zhixiang Xu and Junwei Gan
Plants 2025, 14(15), 2391; https://doi.org/10.3390/plants14152391 - 2 Aug 2025
Viewed by 225
Abstract
As the world’s largest loess deposit region, the Loess Plateau’s vegetation dynamics are crucial for its regional water–heat balance and ecosystem functioning. Leaf Area Index (LAI) serves as a key indicator bridging canopy architecture and plant physiological activities. Existing studies have made significant [...] Read more.
As the world’s largest loess deposit region, the Loess Plateau’s vegetation dynamics are crucial for its regional water–heat balance and ecosystem functioning. Leaf Area Index (LAI) serves as a key indicator bridging canopy architecture and plant physiological activities. Existing studies have made significant advancements in simulating LAI, yet accurate LAI simulation remains challenging. To address this challenge and gain deeper insights into the environmental controls of LAI, this study aims to accurately simulate LAI in the Loess Plateau using deep learning models and to elucidate the spatiotemporal influence of soil moisture and temperature on LAI dynamics. For this purpose, we used three deep learning models, namely Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and Interpretable Multivariable (IMV)-LSTM, to simulate LAI in the Loess Plateau, only using soil moisture and temperature as inputs. Results indicated that our approach outperformed traditional models and effectively captured LAI variations across different vegetation types. The attention analysis revealed that soil moisture mainly influenced LAI in the arid northwest and temperature was the predominant effect in the humid southeast. Seasonally, soil moisture was crucial in spring and summer, notably in grasslands and croplands, whereas temperature dominated in autumn and winter. Notably, forests had the longest temperature-sensitive periods. As LAI increased, soil moisture became more influential, and at peak LAI, both factors exerted varying controls on different vegetation types. These findings demonstrated the strength of deep learning for simulating vegetation–climate interactions and provided insights into hydrothermal regulation mechanisms in semiarid regions. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

16 pages, 2656 KiB  
Article
Plastic Film Mulching Regulates Soil Respiration and Temperature Sensitivity in Maize Farming Across Diverse Hydrothermal Conditions
by Jianjun Yang, Rui Wang, Xiaopeng Shi, Yufei Li, Rafi Ullah and Feng Zhang
Agriculture 2025, 15(15), 1667; https://doi.org/10.3390/agriculture15151667 - 1 Aug 2025
Viewed by 205
Abstract
Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but [...] Read more.
Soil respiration (Rt), consisting of heterotrophic (Rh) and autotrophic respiration (Ra), plays a vital role in terrestrial carbon cycling and is sensitive to soil temperature and moisture. In dryland agriculture, plastic film mulching (PM) is widely used to regulate soil hydrothermal conditions, but its effects on Rt components and their temperature sensitivity (Q10) across regions remain unclear. A two-year field study was conducted at two rain-fed maize sites: Anding (warmer, semi-arid) and Yuzhong (colder, drier). PM significantly increased Rt, Rh, and Ra, especially Ra, due to enhanced root biomass and improved microclimate. Yield increased by 33.6–165%. Peak respiration occurred earlier in Anding, aligned with maize growth and soil temperature. PM reduced Q10 of Rt and Ra in Anding, but only Ra in Yuzhong. Rh Q10 remained stable, indicating microbial respiration was less sensitive to temperature changes. Structural equation modeling revealed that Rt and Ra were mainly driven by soil temperature and root biomass, while Rh was more influenced by microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Despite increased CO2 emissions, PM improved carbon emission efficiency (CEE), particularly in Yuzhong (+67%). The application of PM is recommended to enhance yield while optimizing carbon efficiency in dryland farming systems. Full article
Show Figures

Figure 1

32 pages, 444 KiB  
Article
Does Digital Literacy Increase Farmers’ Willingness to Adopt Livestock Manure Resource Utilization Modes: An Empirical Study from China
by Xuefeng Ma, Yahui Li, Minjuan Zhao and Wenxin Liu
Agriculture 2025, 15(15), 1661; https://doi.org/10.3390/agriculture15151661 - 1 Aug 2025
Viewed by 256
Abstract
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia [...] Read more.
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia and Gansu, two provinces in China that have long implemented livestock manure resource utilization policies, from December 2023 to January 2024, and employed the binary probit model to analyze how digital literacy influences farmers’ willingness to adopt two livestock manure resource utilization modes, as well as to analyze the moderating role of three policy regulations. This paper also explores the heterogeneous results in different village forms and income groups. The results are as follows: (1) Digital literacy significantly and positively impacts farmers’ willingness to adopt both the “household collection” mode and the “livestock community” mode. For every one-unit increase in a farmer’s digital literacy, the probability of farmers’ willingness to adopt the “household collection” mode rises by 22 percentage points, and the probability of farmers’ willingness to adopt the “livestock community” mode rises by 19.8 percentage points. After endogeneity tests and robustness checks, the conclusion still holds. (2) Mechanism analysis results indicate that guiding policy and incentive policy have a positive moderation effect on the link between digital literacy and the willingness to adopt the “household collection” mode. Meanwhile, incentive policy also positively moderates the relationship between digital literacy and the willingness to adopt the “livestock community” mode. (3) Heterogeneity analysis results show that the positive effect of digital literacy on farmers’ willingness to adopt two livestock manure resource utilization modes is stronger in “tight-knit society” rural areas and in low-income households. (4) In further discussion, we find that digital literacy removes the information barriers for farmers, facilitating the conversion of willingness into behavior. The value of this study is as follows: this paper provides new insights for the promotion of livestock and poultry manure resource utilization policies in countries and regions similar to the development process of northwest China. Therefore, enhancing farmers’ digital literacy in a targeted way, strengthening the promotion of grassroots policies on livestock manure resource utilization, formulating diversified ecological compensation schemes, and establishing limited supervision and penalty rules can boost farmers’ willingness to adopt manure resource utilization models. Full article
(This article belongs to the Special Issue Application of Biomass in Agricultural Circular Economy)
Show Figures

Figure 1

7 pages, 1017 KiB  
Communication
Observing the Ionization of Metastable States of Sn14+ in an Electron Beam Ion Trap
by Qi Guo, Zhaoying Chen, Fangshi Jia, Wenhao Xia, Xiaobin Ding, Jun Xiao, Yaming Zou and Ke Yao
Atoms 2025, 13(8), 71; https://doi.org/10.3390/atoms13080071 - 1 Aug 2025
Viewed by 134
Abstract
This study investigates the ionization balance of Sn ions in an electron beam ion trap (EBIT). Highly charged Sn ions are produced via collisions with a quasi-monochromatic electron beam, and the charge state distribution is analyzed using a Wien filter. Significant Sn15+ [...] Read more.
This study investigates the ionization balance of Sn ions in an electron beam ion trap (EBIT). Highly charged Sn ions are produced via collisions with a quasi-monochromatic electron beam, and the charge state distribution is analyzed using a Wien filter. Significant Sn15+ production occurs at electron energies below the ionization potential of Sn14+ (379 eV). Calculations attribute this to electron-impact ionization from metastable Sn14+ states. Full article
(This article belongs to the Special Issue 21st International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

24 pages, 3523 KiB  
Article
Mechanistic Elucidation and Establishment of Drying Kinetic Models of Differential Metabolite Regulation in Rheum palmatum During Natural Sun Drying: An Integrated Physiology, Untargeted Metabolomics, and Enzymology Study
by Wen Luo, Jinrong Guo, Jia Zhou, Mingjun Yang and Yonggang Wang
Biology 2025, 14(8), 963; https://doi.org/10.3390/biology14080963 - 1 Aug 2025
Viewed by 207
Abstract
Rhubarb, a medicinal herb in Gansu Province, China, undergoes significant quality changes during sun-drying. This study investigated color changes, drying kinetics, anthraquinone (AQ) content, metabolic profiles, and enzyme activity during the process. Results showed that drying induced enzymatic browning, with the browning index [...] Read more.
Rhubarb, a medicinal herb in Gansu Province, China, undergoes significant quality changes during sun-drying. This study investigated color changes, drying kinetics, anthraquinone (AQ) content, metabolic profiles, and enzyme activity during the process. Results showed that drying induced enzymatic browning, with the browning index (BI) progressively increasing over extended drying periods (4–16 h) and with greater slice thickness (2–8 mm). Catalase (CAT) activity first decreased and then increased, while polyphenol oxidase (PPO) activity decreased throughout drying. Slice thickness significantly affected AQ content, with the highest in 2 mm slices and the lowest in 4 mm slices. The drying process followed a logarithmic model (R2 = 0.99418, RMSE = 0.02310, and χ2 = 0.0005). Metabolomics analysis identified 631 differential metabolites, with 8 key metabolites linked to flavonoid biosynthesis, phenylalanine biosynthesis, and tyrosine metabolism. Fifteen enzymes were involved in metabolite synthesis and decomposition, though some enzyme activity trends contradicted metabolite changes. This study provides insight into rhubarb drying mechanisms and a basis for optimizing the drying process. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

36 pages, 2981 KiB  
Article
Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces
by Guangyao Deng, Siqian Hou and Keyu Di
Sustainability 2025, 17(15), 6972; https://doi.org/10.3390/su17156972 - 31 Jul 2025
Viewed by 168
Abstract
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, [...] Read more.
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, and 2017, using total trade decomposition, social network analysis, and exponential random graph models. The key findings are as follows: (1) The total virtual water trade volume remains stable, with Xinjiang, Jiangsu, and Guangdong as the core regions, while remote areas such as Shaanxi and Gansu have lower trade volumes. The primary industry dominates, and it is driven by simple value chains. (2) Provinces such as Xinjiang, Heilongjiang, and Jiangsu form the network’s core. Network density and symmetry increased from 2012 to 2015 but declined slightly in 2017, with efficiency peaking and then dropping, and the clustering coefficient decreased annually. Four economic sectors exhibit distinct interactions: frequent two-way flows in Sector 1, significant inflows in Sector 2, prominent net spillovers in Sector 3, and key brokers in Sector 4. (3) The network evolved from a core-periphery structure with weak ties to a stable, heterogeneous, and resilient system. (4) Influencing factors, such asper capita water resources, economic development, and population, significantly impact trade. Similarities in economic levels, population, and water endowments promote trade, while spatial distance has a limited effect, with geographic proximity showing a significant negative impact on long-distance trade. Full article
Show Figures

Figure 1

19 pages, 4196 KiB  
Article
Corridors of Suitable Distribution of Betula platyphylla Sukaczev Forest in China Under Climate Warming
by Bingying Xie, Huayong Zhang, Xiande Ji, Bingjian Zhao, Yanan Wei, Yijie Peng and Zhao Liu
Sustainability 2025, 17(15), 6937; https://doi.org/10.3390/su17156937 - 30 Jul 2025
Viewed by 188
Abstract
Betula. platyphylla Sukaczev (B. platyphylla) forest is an important montane forest type. Global warming has impacted its distribution. However, how it affects suitable distribution across ecoregions and corresponding biodiversity protection measures remains unclear. This study used the Maxent model to analyze [...] Read more.
Betula. platyphylla Sukaczev (B. platyphylla) forest is an important montane forest type. Global warming has impacted its distribution. However, how it affects suitable distribution across ecoregions and corresponding biodiversity protection measures remains unclear. This study used the Maxent model to analyze the suitable distribution and driving variables of B. platyphylla forest in China and its four ecoregions. The minimum cumulative resistance (MCR) model was applied to construct corridors nationwide. Results show that B. platyphylla forest in China is currently mainly distributed in the four ecoregions; specifically, in Gansu and Shaanxi Province in Northwest China, Heilongjiang Province in Northeast China, Sichuan Province in Southwest China, and Hebei Province and Inner Mongolia Autonomous Region in North China. Precipitation and temperature are the main factors affecting suitable distribution. With global warming, the suitable areas in China including the North, Northwest China ecoregions are projected to expand, while Northeast and Southwest China ecoregions will decline. Based on the suitable areas, we considered 45 corridors in China, spanning the four ecoregions. Our results help understand dynamic changes in the distribution of B. platyphylla forest in China under global warming, providing scientific guidance for montane forests’ sustainable development. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

19 pages, 955 KiB  
Review
Methicillin-Resistant Staphylococcus aureus (MRSA): Resistance, Prevalence, and Coping Strategies
by Jiajing Li, Fusheng Cheng, Xiaojuan Wei, Yubin Bai, Qing Wang, Bing Li, Yaxin Zhou, Bintao Zhai, Xuzheng Zhou, Weiwei Wang and Jiyu Zhang
Antibiotics 2025, 14(8), 771; https://doi.org/10.3390/antibiotics14080771 - 30 Jul 2025
Viewed by 428
Abstract
Increased antimicrobial resistance requires effective ways to overcome the global challenge of bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA). From the emergence of MRSA to its continued evolution, it is important to explore this pathogen from fresh perspectives and develop corresponding coping strategies [...] Read more.
Increased antimicrobial resistance requires effective ways to overcome the global challenge of bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA). From the emergence of MRSA to its continued evolution, it is important to explore this pathogen from fresh perspectives and develop corresponding coping strategies to counter its growing threat. New coping strategies are continuously emerging, including but not limited to enhancing penetration capabilities or targeting their virulence. This review summarizes the epidemiological characteristics, drug resistance mechanisms, and therapeutic strategies of MRSA that have emerged over the past fifteen years. The focus of this paper is to explore the promising applications and current limitations of novel MRSA control strategies. This review serves as a key resource for treating MRSA infections and discussing novel strategies to overcome bacterial drug resistance. Full article
Show Figures

Figure 1

18 pages, 6570 KiB  
Article
Deposition Process and Interface Performance of Aluminum–Steel Joints Prepared Using CMT Technology
by Jie Zhang, Hao Du, Xinyue Wang, Yinglong Zhang, Jipeng Zhao, Penglin Zhang, Jiankang Huang and Ding Fan
Metals 2025, 15(8), 844; https://doi.org/10.3390/met15080844 - 29 Jul 2025
Viewed by 280
Abstract
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of [...] Read more.
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of equipment. Achieving high-quality joining between the aluminum alloy and steel has become a key process in the preparation of the anode assembly. To join the guide rods and steel claws, this work uses Cold Metal Transfer (CMT) technology to clad aluminum on the steel surface and employs machine vision to detect surface forming defects in the cladding layer. The influence of different currents on the interfacial microstructure and mechanical properties of aluminum alloy cladding on the steel surface was investigated. The results show that increasing the cladding current leads to an increase in the width of the fusion line and grain size and the formation of layered Fe2Al5 intermetallic compounds (IMCs) at the interface. As the current increases from 90 A to 110 A, the thickness of the Al-Fe IMC layer increases from 1.46 μm to 2.06 μm. When the current reaches 110 A, the thickness of the interfacial brittle phase is the largest, at 2 ± 0.5 μm. The interfacial region where aluminum and steel are fused has the highest hardness, and the tensile strength first increases and then decreases with the current. The highest tensile strength is 120.45 MPa at 100 A. All the fracture surfaces exhibit a brittle fracture. Full article
Show Figures

Figure 1

5 pages, 159 KiB  
Editorial
Editorial for Special Issue “Adsorption Properties and Environmental Applications of Clay Minerals”
by Dušan Vopálka and Bin Mu
Minerals 2025, 15(8), 791; https://doi.org/10.3390/min15080791 - 28 Jul 2025
Viewed by 139
Abstract
Clay minerals play a fundamental role in various environmental processes, particularly in controlling the movement of various ions and molecules in soils, waters and natural and/or engineered barriers of waste storage facilities [...] Full article
(This article belongs to the Special Issue Adsorption Properties and Environmental Applications of Clay Minerals)
18 pages, 1371 KiB  
Article
Estimating Galactic Structure Using Galactic Binaries Resolved by Space-Based Gravitational Wave Observatories
by Shao-Dong Zhao, Xue-Hao Zhang, Soumya D. Mohanty, Màrius Josep Fullana i Alfonso, Yu-Xiao Liu and Qun-Ying Xie
Universe 2025, 11(8), 248; https://doi.org/10.3390/universe11080248 - 28 Jul 2025
Viewed by 193
Abstract
Space-based gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA) and Taiji, will observe GWs from O(108) galactic binary systems, allowing a completely unobscured view of the Milky Way structure. While previous studies have established theoretical expectations [...] Read more.
Space-based gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA) and Taiji, will observe GWs from O(108) galactic binary systems, allowing a completely unobscured view of the Milky Way structure. While previous studies have established theoretical expectations based on idealized data-analysis methods that use the true catalog of sources, we present an end-to-end analysis pipeline for inferring galactic structure parameters based on the detector output alone. We employ the GBSIEVER algorithm to extract GB signals from LISA Data Challenge data and develop a maximum likelihood approach to estimate a bulge-disk galactic model using the resolved GBs. We introduce a two-tiered selection methodology, combining frequency derivative thresholding and proximity criteria, to address the systematic overestimation of frequency derivatives that compromises distance measurements. We quantify the performance of our pipeline in recovering key Galactic structure parameters and the potential biases introduced by neglecting the errors in estimating the parameters of individual GBs. Our methodology represents a step forward in developing practical techniques that bridge the gap between theoretical possibilities and observational implementation. Full article
Show Figures

Figure 1

Back to TopTop